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Abstract

In this paper we revisit the topological twisted sigma model with H-flux. We explicitly

expand and then twist the worldsheet Lagrangian for bi-Hermitian geometry. we show

that the resulting action consists of a BRST exact term and pullback terms, which only

depend on one of the two generalized complex structures and the B-field. We then discuss

the topological feature of the model.

1 Introduction

It is a very convenient and powerful approach to obtain topological field theories by twist-

ing supersymmetric field theory [1]. It was furthur shown that the N = (2, 2) worldsheet

sigma model with the Kähler target space admits A and B types of twisting [2]. However

the Kähler condition is not crucial to perform the A and B twists. What is really needed

is to have N = (2, 2) worldsheet supersymmetry so that U(1)V and U(1)A exist.

From the viewpoint of the N = (2, 2) worldsheet supersymmetry algebra the twists

are achieved by replacing the 2d Euclideanized spacetime rotation group U(1)E with the

diagonal subgroup of U(1)E ×U(1)R, where U(1)R is either U(1)V or U(1)A R-symmetry

in the N = (2, 2) supersymmetry group.

In 1984 the most general geometric backgrounds for N = (2, 2) supersymmetric sigma

models was proposed by Gates, Hull, and Roček [4]. The geometric backgrounds (a.k.a.

bi-Hermitian geometry) consists of a set of data (J+, J−, g, H). J± are two different

integrable complex structures and the metric g is Hermitian with respect to either one
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of J±. Moreover J± are convariantly constant with respect to the torsional connections

Γ ± g−1H , where H is a closed 3-form on the manifold. The manifold is apparently

non-Kähler due to the presence of the torsions.

Bi-Hermitian geometry started to re-receive new attention after Hitchin introduced

the notion of generalized geometry [6] and Gualtieri furthur showed that the geometry

is equivalent to a pair of commuting (twisted) generalized complex ((T)GC for short)

structures on the manifold M , namely, the twisted generalized Kähler structure [7].

Since the worldsheet theory with bi-Hermitian target has N = (2, 2) supersymmetry,

we definitely can consider its topological twisted models. In [5] Kapustin and Li considered

such a topological model and showed that on the classical level the topological observables

in a given twisted model correspond to the Lie algebroid cohomologies associated with

one of the two twisted generalized complex structures. The same problem was also con-

sidered by many other authors from Hamiltonian approach or using Batalin-Vilkovisky

quantization [8] [9] [10].

Although it is definitely true that the twisted models for bi-Hermitian geometries are

topological, the explicit construction of the twisted Lagrangian is lacking. The difficulties

of such a calculation lie in that people are so accustomed to using complex geometry that

they feel relunctant to perform a calculation which needs to be done in the real coordinate

basis with projectors. A priori, we should be able to express the twisted Lagrangian for

the generalized geometry as some BRST exact piece plus certain pullback terms which

only depend on one of the twisted generalized complex structures.

By the end of the paper we will see that this is indeed true. However since the pullback

object is not closed it is not clear that the action is topological. This issue is made clear in

[15]. The paper is organized as follows. In Section 2 we first review the sigma models with

Riemannian and Kähler targets and discuss the properties of the twisted Lagrangian. In

Section 3 we present the computation of the twisted topological models for bi-Hermitian

geometries and express the twisted Lagrangian in the aforementioned way. In section 4 we

conclude, discuss the limitation of the twisted models, and mention some open questions.

Some basics and definitions of the generalized geometry will be presented in the appendix.
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2 Topological sigma model with Kähler targets

We first recall some basic facts about the worldsheet sigma models with Riemannian

or Kähler manifolds as targets. Throughout the whole paper lowercase English letters

a, b, c, ... are indices for the real coordinates on the targets, while Greek letter µ, ν, σ, ...

are those for holomorphic coordinates. (And of course µ̄, ν̄, σ̄, ... for antiholomorphic

coordiantes.) Although it has been shown that the off-shell formalism exists even for the

bi-Hermitian geometry [11], we will only work in the on-shell supersymmetry formalism

to simplify the calculation.

The nonlinear sigma model with a Riemannian manifold M has natural (1, 1) world-

sheet supersymmetric formalism. The model is governed by an embedding map Φ : Σ →

M where Σ is a Riemann surface. The Lagrangian is

L = 2t

∫

d2z d2θ gab(Φ)D+ΦaD−Φb (2.1)

where

D± =
∂

∂θ±
+ iθ±(

∂

∂x0
±

∂

∂x1
) (2.2)

Φa = φa + θ+ψa
+ + θ−ψa

−
+ θ−θ+F a (2.3)

d2z =
i

2
dz ∧ dz̄ (2.4)

Exapnding out (2.1) and then setting F a = Γa
bcψ

b
+ψ

c
−

(the on-shell value of F a) we

have

L = 2t

∫

d2z (
1

2
gab∂zφ

a∂z̄φ
b +

i

2
gabψ

a
−
Dzψ

b
−

+
i

2
gabψ

a
+Dz̄ψ

b
+ +

1

4
Rabcdψ

a
+ψ

b
+ψ

c
−
ψd
−
) (2.5)

where Dz̄ψ
a
+ = ∂z̄ψ

a
+ + Γa

bc ∂z̄φ
b ψc

+ and Dzψ
a
−

= ∂zψ
a
−

+ Γa
bc ∂zφ

b ψc
−
.

If the target space is Kähler the nonlinear sigma model will have an additional (1, 1)

supersymmetry, turning the theory into N = (2, 2) sigma model [3]. The Lagrangian of

such a sigma model is written as

L = 2t

∫

d2z (
1

2
gab∂zφ

a∂z̄φ
b + igµ̄µψ

µ̄
−Dzψ

µ
−

+ igµ̄µψ
µ̄
+Dz̄ψ

µ
+ +Rµµ̄νν̄ψ

µ
+ψ

µ̄
+ψ

ν
−
ψν̄
−
) (2.6)
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The detailed supersymmetry transformations are listed as follows [2].

δφµ = iǫ−ψ
µ
+ + iǫ+ψ

µ
−

δφµ̄ = iǭ−ψ
µ̄
+ + iǭ+ψ

µ̄
−

δψ
µ
+ = −ǭ−∂zφ

µ − iǫ+ψ
ν
−
Γµ

νσψ
σ
+

δψ
µ̄
+ = −ǫ−∂zφ

µ̄ − iǭ+ψ
ν̄
−
Γµ̄

ν̄σ̄ψ
σ̄
+

δψ
µ
− = −ǭ+∂z̄φ

µ − iǫ−ψ
ν
+Γµ

νσψ
σ
−

δψ
µ̄
− = −ǫ+∂z̄φ

µ̄ − iǭ−ψ
ν̄
+Γµ̄

ν̄σ̄ψ
σ̄
−

(2.7)

2.1 Kähler A model

An A-twist will turn ψ
µ
+ and ψ

µ̄
− into sections of Φ∗(T 1,0X) and Φ∗(T 0,1X), denoted as

χµ and χµ̄. And ψ
µ̄
+ and ψ

µ
− become sections of Ω1,0

Σ ⊗ Φ∗(T 0,1X) and Ω0,1
Σ ⊗ Φ∗(T 1,0X),

denoted as ψµ̄
z and ψµ

z̄ . In order to get the transformation laws we simply set ǫ+ = ǭ− = 0

in (2.7). After A-twist the Lagrangian becomes

L = 2t

∫

d2z (
1

2
gab∂zφ

a∂z̄φ
b + igµ̄µψ

µ̄
zDz̄χ

µ

+ igµ̄µψ
µ
z̄Dzχ

µ̄ − Rµµ̄νν̄ψ
µ
z̄ψ

µ̄
zχ

νχν̄) (2.8)

The key fact as stated in [2] is that the Lagrangian can be recast into a very suggestive

form, which is a BRST exact term plus a pullback term depdending only on the Kähler

structure of the target space. Upon deriving this the equatoins of motion of ψ are needed.

L = it

∫

d2z{Q, VA} + t

∫

Φ∗(K) (2.9)

with VA = gµν̄(ψ
ν̄
z∂z̄φ

µ + ∂zφ
ν̄ψ

µ
z̄ ) and K = −igµν̄dz

µdzν̄ . From this expression we realize

that the Kähler A model depends only on the cohomology class of K.
∫

Φ∗(K) also

depends on the homotopy class of the mapping Φ, but in the path integral all the homotopy

classes will be summed over.

2.2 Kähler B model

We also recall some basics about the Kähler B model which will be useful later. The

B twist will turn ψ
µ̄
± into sections of Φ∗(T 0,1X), and ψ

µ
+ and ψ

µ
− into sections of Ω1,0

Σ ⊗
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Φ∗(T 0,1X) and Ω0,1
Σ ⊗ Φ∗(T 0,1X) respectively. The transformation can be written as

δφµ = 0

δφµ̄ = iǫηµ̄

δηµ̄ = δθµ = 0

δρµ = −ǫdφµ (2.10)

where

ηµ̄ = ψ
µ̄
+ + ψ

µ̄
−

θµ = gµµ̄(ψµ̄
+ − ψ

µ̄
−)

ρµ = ψ
µ
+ + ψ

µ
− (2.11)

After the B twisting the Lagrangian explicitly becomes

L = t

∫

d2z ( gab∂zφ
a∂z̄φ

b + igµ̄µη
µ̄(Dzρ

µ
z̄ +Dz̄ρ

µ
z )

+ iθµ(Dz̄ρ
µ
z −Dzρ

µ
z̄ ) +Rµµ̄νν̄ρ

µ
zρ

ν
z̄η

µ̄θσg
σν̄) (2.12)

which can be reexpressed as follows.

L = it

∫

{Q, VB} + tW (2.13)

where

W =

∫

Σ

(−θµDρ
µ −

i

2
Rµµ̄νν̄ρ

µ ∧ ρνηµ̄θσg
σν̄) (2.14)

and the D operator is the exterior derivative on the worldsheet Σ by using the pullback

of the Levi-Civita connection on M . The model is topological because it is independent

of the complex structure of the worldsheet and the Kähler structure of the target space.

However the model do depend on the complex structure, which can be seen from the

BRST variations of the fields.

3 Bi-Hermitian geometry and its topological twisted

models

As stated in the introduction the most general (2, 2) nonlinear sigma model with H is

described in [4], which is also known as ”bi-Hermitian geometry.” We will simply quote
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the properties of the geometry, without any derivations of the requirements. With the

non-trivial B-field turned on, the worldsheet action is given by

L = 2t

∫

d2z d2θ (gab(Φ) + bab(Φ))D+ΦaD−Φb (3.1)

The first set of (1, 1) supersymmetry is as usual while the additional (1, 1) supersym-

metry transformations are given by two different complex structures

δ1Φa = iǫ1+D+Φa + iǫ1
−
D−Φa

δ2Φa = iǫ2+D+ΦbJa
+b + iǫ2

−
D−ΦbJa

−b (3.2)

where J+ and J− are the complex structures seen by the left and right movers re-

spectively. Requiring (3.1) to be invariant under the transformations leads us to the

conditions:

J t
±
gJ± = g ∇±J± = 0 (3.3)

where ∇± are the covariant derivatives with torsional connections Γ± = Γ ± g−1H . The

first condition implies that the metric is Hermitian with respect to the either one of the

complex structures J±. And the second condition in (3.3) explicitly becomes

Ja
±b,c = Γd

±cbJ
a
±d − Γa

±cdJ
d
±b. (3.4)

Equation (3.4) will be used when we try to contruct the generalized A/B models in real

coordinate basis. Moreover the H field is of type (2, 1) + (1, 2) with respect to both

complex structures J±. Expanding (3.1) out and then setting F a to its on-shell value we

have the following worldsheet action in component fields

F a = Γa
+bcψ

b
+ψ

c
−

= −Γa
−bcψ

b
−
ψc

+ (3.5)

L = 2t

∫

d2z(
1

2
(gab + bab)∂zφ

a∂z̄φ
b +

i

2
gab(ψ

a
−
∂zψ

b
−

+ ψa
+∂z̄ψ

b
+) (3.6)

+
i

2
ψa
−
∂zφ

bψc
−
(Γabc −Habc) +

i

2
ψa

+∂z̄φ
bψc

+(Γabc +Habc) +
1

4
R+abcdψ

a
+ψ

b
+ψ

c
−
ψd
−
)

where R+abcd is the curvature of the torsional connection Γa
+bc.
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R±abcd = Rabcd ±
1

2
(∇dHabc −∇cHabd) +

1

4
(He

adHebc −He
acHebd) (3.7)

Since the theory is of (2, 2) type there exist two U(1) R-symmetries for the worldsheet

fermions, U(1)V and U(1)A [5]. The topological A and B twists will shift the spins of the

fermions by the charges of U(1)V and U(1)A respectively. The charge assignments are

worked out in [5] and [13].

U(1)V : qV (P̄+ψ+) = −1 qV (P̄−ψ−) = −1

U(1)A : qA(P̄+ψ+) = −1 qV (P̄−ψ−) = +1 (3.8)

with the following projectors defined for conveniences.

P± =
1

2
(1 + iJ±), P̄± =

1

2
(1 − iJ±) (3.9)

Moreover the U(1) R-symmetry used in the topological twist needs to be non-anomalous.

The anomalies are computed by Atiyah-Singer index theorem and the conditions are

U(1)V : c1(T
1,0
− ) − c1(T

1,0
+ ) = 0

U(1)A : c1(T
1,0
− ) + c1(T

1,0
+ ) = 0 (3.10)

Using the language of generalized complex geometry we have two commuting twisted

generalized complex structures (J1,J2). J1 and J2 are endomorphisms on TM ⊕ T ∗M ,

which square to −1. Let E1 and E2 be the i-eigenbundles of J1 and J2. The conditions

can be repackaged into

U(1)V : c1(E2) = 0

U(1)A : c1(E1) = 0 (3.11)

The supersymmetry transformation laws can be derived from (3.2).

δ1
+φ = ψ+ δ1

−
φ = ψ− δ2

+φ = J+ψ+ δ2
−
φ = J−ψ−

δ1
+ψ+ = −i∂zφ δ1

−
ψ+ = F δ2

+ψ+ = iJ+∂zφ δ2
−
ψ+ = J−F

δ1
+ψ− = −F δ1

−
ψ− = −i∂z̄ δ2

+ψ− = −J+F δ2
−
ψ− = iJ−∂z̄φ (3.12)
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We can then define the linear combinations of the supersymmetry generators.

Q+ =
1

2
(Q1

+ + iQ2
+) Q̄+ =

1

2
(Q1

+ − iQ2
+)

Q− =
1

2
(Q1

−
+ iQ2

−
) Q̄− =

1

2
(Q1

−
− iQ2

−
) (3.13)

We then express the on-shell variation laws in the following forms

δφa = i(ǫ+(P+ψ+)a + ǭ+(P̄+ψ+)a) + i(ǫ−(P−ψ−)a + ǭ−(P̄−ψ−)a)

δψ+ = −ǫ+(P̄+∂zφ)a − ǭ+(P+∂zφ)a − Γa
+bcδφ

bψc
+

+ iHa
bc(ǫ+(P+ψ+)b + ǭ+(P̄+ψ+)b)ψc

+ −
i

2
(ǫ+P

a
+d + ǭ+P̄

a
+d)H

d
bcψ

b
+ψ

c
+

δψ− = −ǫ−(P̄−∂zφ)a − ǭ−(P−∂zφ)a − Γa
−bcδφ

bψc
−

+ iHa
bc(ǫ−(P−ψ−)b + ǭ−(P̄−ψ−)b)ψc

−
−
i

2
(ǫ−P

a
−d + ǭ−P̄

a
−d)H

d
bcψ

b
−
ψc
−

(3.14)

where ǫ± are the variation parameters of Q±.

The BRST operators for the generalized A and B models can be taken as:

QA = Q+ + Q̄−, QB = Q̄+ + Q̄−. (3.15)

Before the topological twists we have the worldsheet fermions P+ψ+, P̄+ψ+, P−ψ−,

and P̄−ψ−. These fermions are sections of certain bundles. For instance P̄+ψ+ is a section

of K1/2 ⊗ Φ∗(T 0,1
+ X) where K is the canonical line bundle of the worldsheet (the bundle

of (1, 0) form.) and T 0,1
+ is the (0, 1) part of the tangent bundle with respect to J+. After

performing topological A-twist, the spins of the fermions will be changed as follows.

(P+ψ+)a ≡ χa ∈ Γ(Φ∗(T 1,0
+ X))

(P̄+ψ+)a ≡ χa
z ∈ Γ(Ω

(1,0)
Σ ⊗ Φ∗(T 0,1

+ X))

(P−ψ−)a ≡ λa
z̄ ∈ Γ(Ω

(0,1)
Σ ⊗ Φ∗(T 1,0

− X))

(P̄−ψ−)a ≡ λa ∈ Γ(Φ∗(T 0,1
− X)) (3.16)

On the other hand the B-twist case can be obtained similarly. For completeness we

list the sections in the generalized B-model with the BRST charge QB = Q̄+ + Q̄−.
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(P+ψ+)a ≡ χa
z ∈ Γ(Ω

(1,0)
Σ ⊗ Φ∗(T 1,0

+ X))

(P̄+ψ+)a ≡ χa ∈ Γ(Φ∗(T 0,1
+ X))

(P−ψ−)a ≡ λa
z̄ ∈ Γ(Ω

(0,1)
Σ ⊗ Φ∗(T 1,0

− X))

(P̄−ψ−)a ≡ λa ∈ Γ(Φ∗(T 0,1
− X)) (3.17)

3.1 Generalized A model

We will use the generalized A-model as our first explicit example. The BRST variation

of the fields can be written down by setting the variation of Q̄+ and Q− in (3.14) to be

zero.

{QA, φ
a} = χa + λa

{QA, χ
a} = −iΓa

+bcλ
bχc

{QA, λ
a} = −iΓa

−bcχ
bλc

{QA, χ
a
z} = −iΓa

+bc(χ
b + λb)χc

z

−(P̄+∂zφ)a + iP̄ a
+dH

d
bcχ

bχc
z

{QA, λ
a
z̄} = −iΓa

−bc(χ
b + λb)λa

z̄

−(P−∂zφ)a − iP a
−dH

d
bcλ

bλc
z̄ (3.18)

After the twisting the Lagrangian becomes:

L = 2t

∫

d2z(
1

2
(gab + bab)∂zφ

a∂z̄φ
b + igab(χ

a
z∂z̄χ

b + λa
z̄∂zλ

b) (3.19)

+ i(Γabc −Habc)χ
a
z∂z̄φ

bχc + i(Γabc +Habc)λ
a
z̄∂zφ

bλc +R+abcdχ
aχb

zλ
c
z̄λ

d)

We mimic the VA operator in Kähler A model (2.9) by virtue of the projectors.

VA = gab(χ
a
z(P+∂z̄φ)b + λa

z̄(P̄−∂zφ)b) (3.20)

The BRST variations of (P+∂z̄φ)b and (P̄−∂zφ)b will involve the derivatives of the

complex structures and can be re-expressed in terms of Γ± and the projectors (3.9) by

using (3.4) and J± = −i(P± − P̄±).
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{QA, (P+∂φ)b} = ∂χb + (P+∂λ)b +
1

2
Γd

+ec(P+ − P̄+)b
d(χ

c + λc)∂φe

−
1

2
Γb

+cd(χ
c + λc)(P+∂φ− P̄+∂φ)d

{QA, (P̄−∂φ)b} = ∂λb + (P̄−∂χ)b −
1

2
Γd
−ec(P− − P̄−)b

d(χ
c + λc)∂φe

+
1

2
Γb
−cd(χ

c + λc)(P−∂φ− P̄−∂φ)d (3.21)

Here the ∂ operator could be either ∂z or ∂z̄. Performing the BRST variations to V

by using (3.18) and (3.21) we obtain

{QA,VA} = igab((P̄+∂zφ)a(P+∂z̄φ)b + (P−∂z̄φ)a(P̄−∂zφ)b) + gab(χ
a
z∂z̄χ

b + λa
z̄∂zλ

b)

+(Γabc +Habc)χ
a
z∂z̄φ

bχc + (Γabc −Habc)λ
a
z̄∂zφ

bλc (3.22)

The curvature term will be recovered if we use the equations of motion for χz and λz̄.

To visualize that the model only depends on one of the generalized complex structure one

can use the following identities.

g(P±·, P̄±·) =
1

2
g(·, ·) +

i

2
g(J±·, ·) =

1

2
g(·, ·) +

i

2
ω±(·, ·)

g(P̄±·, P±·) =
1

2
g(·, ·)−

i

2
g(J±·, ·) =

1

2
g(·, ·)−

i

2
ω±(·, ·) (3.23)

The scalar term in (3.22) becomes

gab((P̄+∂zφ)a(P+∂z̄φ)b + (P−∂z̄φ)a(P̄−∂zφ)b) = 2gab∂zφ
a∂z̄φ

b − iω̃ab∂zφ
a∂z̄φ

b (3.24)

where ω̃ = 1
2
(ω+ + ω−) which appear in J2 in (A.2).

Comparing the twisted action (3.19) and (3.22) we obtain the following suggestive

equation, modulo the equations of motion for χz and λz̄.

L = it

∫

d2z {QA,VA} + t

∫

Φ∗(−iω̃) + t

∫

Φ∗(b) (3.25)

Apparently the action of the generalized A model depends on one of the generalized

complex structures J2 and the pullback of the spacetime b field. The topological feature

of the action will be made clear in the next section.
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3.2 Generalized B model

The generalized B model has the field contents as listed in (3.17). By projecting out ǫ±

in (3.14) the BRST variations for these fields are similarly obtained.

{QB, φ
a} = χa + λa

{QB, χ
a} = −iΓa

+bcλ
bχc

{QB, λ
a} = −iΓa

−bcχ
bλc

{QB, χ
a
z} = −iΓa

+bc(χ
b + λb)χc

z

−(P+∂zφ)a + iP a
+dH

d
bcχ

bχc
z

{QB, λ
a
z̄} = −iΓa

−bc(χ
b + λb)λa

z̄

−(P−∂zφ)a − iP a
−dH

d
bcλ

bλc
z̄ (3.26)

with QB = Q̄+ + Q̄−. Comparing (3.18) and (3.26) we can see that the A and B model

variantion laws are simply exchanged if we substitute J+ by −J+. In generalized B model

the operator in the BRST exact term is given by

VB = gab(χ
a
z(P̄+∂z̄φ)b + λa

z̄(P̄−∂zφ)b) (3.27)

The variations of (P̄±∂φ)b are given by

{QB, (P̄±∂φ)b} = (P̄±(∂χ + ∂λ))b −
1

2
Γd
±ec(P± − P̄±)b

d(χ
c + λc)∂φe

+
1

2
Γb
−cd(χ

c + λc)(P±∂φ− P̄±∂φ)d (3.28)

Note that P̄+χ = χ and P̄−λ = λ. Again the ∂ could be either ∂z or ∂z̄.

The Lagrangian after the twisting is given by

L = 2t

∫

d2z(
1

2
(gab + bab)∂zφ

a∂z̄φ
b + igab(χ

a
z∂z̄χ

b + λa
z̄∂zλ

b) (3.29)

+ i(Γabc −Habc)χ
a
z∂z̄φ

bχc + i(Γabc +Habc)λ
a
z̄∂zφ

bλc +R+abcdχ
aχb

zλ
cλd

z̄)

In order to determine the pullback term we compute {Q,VB}.

{QB,VB} = igab((P+∂zφ)a(P̄+∂z̄φ)b + (P−∂z̄φ)a(P̄−∂zφ)b) + gab(χ
a
z∂z̄χ

b + λa
z̄∂zλ

b)

+(Γabc +Habc)χ
a
z∂z̄φ

bχc + (Γabc −Habc)λ
a
z̄∂zφ

bλc (3.30)
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In deriving this we have used the equations of motion of the fermionic fields. Note that

(3.22) and (3.30) are almost the same except for the scalar kinetic terms. This will result

in the different GCS dependence. Namely,

L = it

∫

d2z {QB,VB} + t

∫

Φ∗(iδω) + t

∫

Φ∗(b) (3.31)

where δω = 1
2
(ω+ − ω−) appearing in J1 (A.2). Contrary to the generalized A model,

the generalized B model depends on J1. At first sight the results (3.25) (3.31) seem nice

and confirm our original guess. A second thought, however, reveals the issue that neither

of b − iω̃ and b + iδω is closed. The consequence of this is that under small coordinate

repaprametrization the variation of the pullback will be nonvanishing and proportional to

H [16]. One way to solve this issue is to appeal to the GCG [15]. Working in generalized

B model, we assume the pure spinor s1 associated with TGC structure J1 can be put

into the following form:

s1 = exp(b + β) (3.32)

−β̄ = b∓ iω± − γ± (3.33)

where dβ = 0 and the multiplication in the exponential is the wedge product. A direct

but lengthy computation shows, in generalized B model,

L = it

∫

d2z {QB,VB +
1

2
γ+abχ

a
z∂z̄φ

b −
1

2
γ−abλ

a
z̄∂zφ

b} + t

∫

Φ∗(β̄) (3.34)

We refer the interested readers to [15] for more details about this construction. Al-

ternatively one could simply say that without this construction the model is topological

in the sense that the worldsheet metric is irrelevant and the puckback term only depends

on the homotopy class of the embedding.

4 Conclusion and Discussion

In this paper we study the topological twisted models with H-flux. We explicitly expand

the N = (2, 2) worldsheet action with bi-Hermitian target spaces and twist the action.

We found that the generalized twisted models have many similar features to the Kähler

twisted models. For example, the action can always be written as a sum of a BRST exact
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term and some pullback terms, from which the geometric dependence of the topological

models can be read off. The generalized A/B model depends only on one of the twisted

generalized complex structures J2/ J1.

Although it is very powerful to construct interesting examples of topological field

theories by ”twisting” the spins of the fields, some topological constraints for anomaly

cancellations always come with it. Recently people have tried to construct the topological

models for generalized geometries by using Batalin-Vilkovisky formalism to get around

this limitation[12].

Another advantage of the twisted models is that it makes explicit the studying the

mirror symmetry, in this case, of the non-Kähler spaces. The lacking of the non-Kähler

examples, however, is a long-standing problem along this direction. Although the ”gen-

eralized Kähler” examples provided in [14] are not twisted by H-field, it would still be

very interesting to study the topological models for those geometries. Another interesting

problem is to generalize the usual Kähler quotients to obtain explicit bi-Hermitian exam-

ples. We would like to visit these problems in the future.
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A Appendix: Generalized complex geometry

In the appendix we give a short summary of the definitions of (twisted) generalized com-

plex structure (GC or TGC for short). Let M be an even dimensional manifold and H

be a closed 3-form on M . The twisted Dorfman backet ◦ is defined as a binary operation
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on the sections of TM ⊕ T ∗M .

(X ⊕ ζ) ◦ (Y ⊕ η) = [X, Y ] ⊕ (LXη − ıY dζ + ıY ıXH) (A.1)

where X, Y ∈ Γ(TM) and ζ, η ∈ Γ(T ∗M). The bundle TM ⊕ T ∗M has a metric h with

(n, n) signature defined by an inner product for the sections in TM ⊕ T ∗M .

A TGC-structure on M is an endomorphism J on TM ⊕ T ∗M such that

(1) J 2 = −1

(2) h(·, ·) = h(J ·,J ·)

(3) The i-eigenbundle of J is closed (or involutive) with respect to the twisted Dorfman

bracket. This condition is equivalent to an integrability condition for the (T)GC-structure.

Setting H = 0 the word ”twisted” is dropped everywhere and we will get the defini-

tions for Dorfman brackets and GC-structures.

(Twisted) generalized Kähler structure consists of two commuting (T)GC-structures

J1 and J2 such that G = −J1J2 is a positive definite metric on TM ⊕ T ∗M .

A (twisted) generalized Kähler structure is physically relevant because it has been

shown that the structure is equivalent to the bi-Hermitian geometry [7]. The two (twisted)

commuting generalized complex structures J1 and J2 can be expressed in terms of the

data of the bi-Hermitian geometry, namely, (J+, J−, g,H).

J1 =

(

J̃ −α

δω −J̃ t

)

, J2 =

(

δJ −β

ω̃ −δJ t

)

(A.2)

where

J̃ =
1

2
(J+ + J−), β =

1

2
(ω−1

+ + ω−1
−

), ω̃ =
1

2
(ω+ + ω−),

δJ =
1

2
(J+ − J−), α =

1

2
(ω−1

+ − ω−1
−

), δω =
1

2
(ω+ − ω−). (A.3)

ω±(·, ·) = g(J±·, ·) (A.4)

The H is preserved by J± in the sense that the following constraints are satisfied and

moreover it is of (2, 1) + (1, 2) type with respect to both J±.

H(X, Y, Z) = H(J±X, J±Y, Z) +H(J±X, Y, J±Z) +H(X, J±Y, J±Z) (A.5)

H(J±X, J±Y, J±Z) = H(J±X, Y, Z) +H(X, J±Y, Z) +H(X, Y, J±Z) (A.6)

14



The following identity is useful in deriving equations.

H(X, Y, Z) = ∓dω±(J±X, J±Y, J±Z) (A.7)
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