Branching fraction measurement of $\bar{B}^{0} \rightarrow D^{(*)+} \pi^{-}$and $B^{-} \rightarrow D^{(*) 0} \pi^{-}$ and isospin analysis of $\bar{B} \rightarrow D^{(*)} \pi$ decays

B. Aubert, ${ }^{1}$ R. Barate,,${ }^{1}$ M. Bona, ${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees,,${ }^{1}$ V. Poireau, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ E. Grauges, ${ }^{2}$ A. Palano, ${ }^{3}$ J. C. Chen, ${ }^{4}$ N. D. Qi, ${ }^{4}$ G. Rong, ${ }^{4}$ P. Wang, ${ }^{4}$ Y. S. Zhu, ${ }^{4}$ G. Eigen, ${ }^{5}$ I. Ofte, ${ }^{5}$ B. Stugu, ${ }^{5}$ G. S. Abrams, ${ }^{6}$ M. Battaglia, ${ }^{6}$ D. N. Brown, ${ }^{6}$ J. Button-Shafer, ${ }^{6}$ R. N. Cahn, ${ }^{6}$
E. Charles, ${ }^{6}$ M. S. Gill, ${ }^{6}$ Y. Groysman, ${ }^{6}$ R. G. Jacobsen, ${ }^{6}$ J. A. Kadyk, ${ }^{6}$ L. T. Kerth, ${ }^{6}$ Yu. G. Kolomensky, ${ }^{6}$ G. Kukartsev, ${ }^{6}$ G. Lynch, ${ }^{6}$ L. M. Mir, ${ }^{6}$ T. J. Orimoto, ${ }^{6}$ M. Pripstein, ${ }^{6}$ N. A. Roe, ${ }^{6}$ M. T. Ronan, ${ }^{6}$ W. A. Wenzel, ${ }^{6}$ P. del Amo Sanchez, ${ }^{7}$ M. Barrett, ${ }^{7}$ K. E. Ford, ${ }^{7}$ T. J. Harrison, ${ }^{7}$ A. J. Hart, ${ }^{7}$ C. M. Hawkes, ${ }^{7}$ S. E. Morgan, ${ }^{7}$ A. T. Watson, ${ }^{7}$ T. Held,,${ }^{8}$ H. Koch,,${ }^{8}$ B. Lewandowski, ${ }^{8}$ M. Pelizaeus, ${ }^{8}$ K. Peters, ${ }^{8}$ T. Schroeder, ${ }^{8}$ M. Steinke, ${ }^{8}$ J. T. Boyd, ${ }^{9}$ J. P. Burke, ${ }^{9}$ W. N. Cottingham, ${ }^{9}$ D. Walker, ${ }^{9}$ T. Cuhadar-Donszelmann,,10 B. G. Fulsom, ${ }^{10}$ C. Hearty,,10 N. S. Knecht, ${ }^{10}$ T. S. Mattison, ${ }^{10}$ J. A. McKenna, ${ }^{10}$ A. Khan, ${ }^{11}$ P. Kyberd, ${ }^{11}$ M. Saleem, ${ }^{11}$ D. J. Sherwood, ${ }^{11}$ L. Teodorescu, ${ }^{11}$ V. E. Blinov, ${ }^{12}$ A. D. Bukin, ${ }^{12}$ V. P. Druzhinin, ${ }^{12}$ V. B. Golubev,,12 A. P. Onuchin, ${ }^{12}$ S. I. Serednyakov, ${ }^{12}$ Yu. I. Skovpen, ${ }^{12}$ E. P. Solodov, ${ }^{12}$ K. Yu Todyshev, ${ }^{12}$ D. S. Best, ${ }^{13}$ M. Bondioli, ${ }^{13}$ M. Bruinsma, ${ }^{13}$ M. Chao, ${ }^{13}$ S. Curry, ${ }^{13}$ I. Eschrich, ${ }^{13}$ D. Kirkby, ${ }^{13}$ A. J. Lankford, ${ }^{13}$ P. Lund, ${ }^{13}$ M. Mandelkern,,13 R. K. Mommsen, ${ }^{13}$ W. Roethel, ${ }^{13}$ D. P. Stoker, ${ }^{13}$ S. Abachi, ${ }^{14}$ C. Buchanan, ${ }^{14}$ S. D. Foulkes, ${ }^{15}$ J. W. Gary, ${ }^{15}$ O. Long, ${ }^{15}$ B. C. Shen, ${ }^{15}$ K. Wang, ${ }^{15}$ L. Zhang, ${ }^{15}$ H. K. Hadavand, ${ }^{16}$ E. J. Hill, ${ }^{16}$ H. P. Paar, ${ }^{16}$ S. Rahatlou, ${ }^{16}$ V. Sharma, ${ }^{16}$ J. W. Berryhill, ${ }^{17}$ C. Campagnari, ${ }^{17}$ A. Cunha, ${ }^{17}$ B. Dahmes, ${ }^{17}$ T. M. Hong, ${ }^{17}$ D. Kovalskyi, ${ }^{17}$ J. D. Richman, ${ }^{17}$ T. W. Beck, ${ }^{18}$ A. M. Eisner, ${ }^{18}$ C. J. Flacco, ${ }^{18}$ C. A. Heusch, ${ }^{18}$ J. Kroseberg, ${ }^{18}$ W. S. Lockman, ${ }^{18}$ G. Nesom, ${ }^{18}$ T. Schalk, ${ }^{18}$ B. A. Schumm, ${ }^{18}$ A. Seiden, ${ }^{18}$ P. Spradlin, ${ }^{18}$ D. C. Williams, ${ }^{18}$ M. G. Wilson, ${ }^{18}$ J. Albert, ${ }^{19}$ E. Chen, ${ }^{19}$ A. Dvoretskii, ${ }^{19}$ F. Fang, ${ }^{19}$ D. G. Hitlin, ${ }^{19}$ I. Narsky, ${ }^{19}$ T. Piatenko, ${ }^{19}$ F. C. Porter, ${ }^{19}$ A. Ryd, ${ }^{19}$ A. Samuel, ${ }^{19}$ G. Mancinelli, ${ }^{20}$ B. T. Meadows, ${ }^{20}$ K. Mishra, ${ }^{20}$ M. D. Sokoloff, ${ }^{20}$ F. Blanc, ${ }^{21}$ P. C. Bloom, ${ }^{21}$ S. Chen, ${ }^{21}$ W. T. Ford, ${ }^{21}$ J. F. Hirschauer, ${ }^{21}$ A. Kreisel, ${ }^{21}$ M. Nagel, ${ }^{21}$ U. Nauenberg, ${ }^{21}$ A. Olivas, ${ }^{21}$ W. O. Ruddick, ${ }^{21}$ J. G. Smith, ${ }^{21}$ K. A. Ulmer, ${ }^{21}$ S. R. Wagner, ${ }^{21}$ J. Zhang, ${ }^{21}$ A. Chen, ${ }^{22}$ E. A. Eckhart, ${ }^{22}$ A. Soffer, ${ }^{22}$ W. H. Toki, ${ }^{22}$ R. J. Wilson, ${ }^{22}$ F. Winklmeier, ${ }^{22}$ Q. Zeng, ${ }^{22}$ D. D. Altenburg, ${ }^{23}$ E. Feltresi, ${ }^{23}$ A. Hauke, ${ }^{23}$ H. Jasper, ${ }^{23}$ A. Petzold, ${ }^{23}$ B. Spaan, ${ }^{23}$ T. Brandt, ${ }^{24}$ V. Klose, ${ }^{24}$ H. M. Lacker, ${ }^{24}$ W. F. Mader, ${ }^{24}$ R. Nogowski, ${ }^{24}$ J. Schubert, ${ }^{24}$ K. R. Schubert, ${ }^{24}$ R. Schwierz, ${ }^{24}$ J. E. Sundermann, ${ }^{24}$ A. Volk, ${ }^{24}$ D. Bernard, ${ }^{25}$ G. R. Bonneaud, ${ }^{25}$ P. Grenier,,$^{25, *}$ E. Latour, ${ }^{25}$ Ch. Thiebaux, ${ }^{25}$ M. Verderi, ${ }^{25}$ P. J. Clark, ${ }^{26}$ W. Gradl, ${ }^{26}$ F. Muheim, ${ }^{26}$ S. Playfer, ${ }^{26}$ A. I. Robertson,,26 Y. Xie, ${ }^{26}$ M. Andreotti, ${ }^{27}$ D. Bettoni, ${ }^{27}$ C. Bozzi, ${ }^{27}$ R. Calabrese, ${ }^{27}$ G. Cibinetto, ${ }^{27}$ E. Luppi, ${ }^{27}$ M. Negrini, ${ }^{27}$ A. Petrella,,${ }^{27}$ L. Piemontese, ${ }^{27}$ E. Prencipe,,${ }^{27}$ F. Anulli, ${ }^{28}$ R. Baldini-Ferroli, ${ }^{28}$ A. Calcaterra, ${ }^{28}$
R. de Sangro, ${ }^{28}$ G. Finocchiaro, ${ }^{28}$ S. Pacetti, ${ }^{28}$ P. Patteri, ${ }^{28}$ I. M. Peruzzi, ${ }^{28, ~} \dagger$ M. Piccolo, ${ }^{28}$ M. Rama, ${ }^{28}$ A. Zallo, ${ }^{28}$ A. Buzzo, ${ }^{29}$ R. Capra, ${ }^{29}$ R. Contri, ${ }^{29}$ M. Lo Vetere, ${ }^{29}$ M. M. Macri, ${ }^{29}$ M. R. Monge, ${ }^{29}$ S. Passaggio, ${ }^{29}$ C. Patrignani, ${ }^{29}$ E. Robutti, ${ }^{29}$ A. Santroni, ${ }^{29}$ S. Tosi, ${ }^{29}$ G. Brandenburg, ${ }^{30}$ K. S. Chaisanguanthum, ${ }^{30}$ M. Morii, ${ }^{30}$ J. Wu, ${ }^{30}$ R. S. Dubitzky, ${ }^{31}$ J. Marks, ${ }^{31}$ S. Schenk, ${ }^{31}$ U. Uwer, ${ }^{31}$ D. J. Bard, ${ }^{32}$ W. Bhimji, ${ }^{32}$ D. A. Bowerman, ${ }^{32}$ P. D. Dauncey, ${ }^{32}$ U. Egede, ${ }^{32}$ R. L. Flack, ${ }^{32}$ J. A. Nash, ${ }^{32}$ M. B. Nikolich, ${ }^{32}$ W. Panduro Vazquez, ${ }^{32}$ P. K. Behera, ${ }^{33}$
X. Chai, ${ }^{33}$ M. J. Charles, ${ }^{33}$ U. Mallik, ${ }^{33}$ N. T. Meyer, ${ }^{33}$ V. Ziegler, ${ }^{33}$ J. Cochran, ${ }^{34}$ H. B. Crawley, ${ }^{34}$ L. Dong, ${ }^{34}$ V. Eyges, ${ }^{34}$ W. T. Meyer, ${ }^{34}$ S. Prell, ${ }^{34}$ E. I. Rosenberg, ${ }^{34}$ A. E. Rubin, ${ }^{34}$ A. V. Gritsan, ${ }^{35}$ A. G. Denig, ${ }^{36}$ M. Fritsch, ${ }^{36}$ G. Schott, ${ }^{36}$ N. Arnaud, ${ }^{37}$ M. Davier, ${ }^{37}$ G. Grosdidier, ${ }^{37}$ A. Höcker, ${ }^{37}$ F. Le Diberder, ${ }^{37}$ V. Lepeltier, ${ }^{37}$ A. M. Lutz, ${ }^{37}$ A. Oyanguren, ${ }^{37}$ S. Pruvot, ${ }^{37}$ S. Rodier, ${ }^{37}$ P. Roudeau, ${ }^{37}$ M. H. Schune, ${ }^{37}$ A. Stocchi, ${ }^{37}$ W. F. Wang, ${ }^{37}$ G. Wormser, ${ }^{37}$ C. H. Cheng, ${ }^{38}$ D. J. Lange,,${ }^{38}$ D. M. Wright, ${ }^{38}$ C. A. Chavez, ${ }^{39}$ I. J. Forster, ${ }^{39}$ J. R. Fry, ${ }^{39}$ E. Gabathuler, ${ }^{39}$ R. Gamet, ${ }^{39}$ K. A. George, ${ }^{39}$ D. E. Hutchcroft, ${ }^{39}$ D. J. Payne, ${ }^{39}$ K. C. Schofield, ${ }^{39}$ C. Touramanis, ${ }^{39}$ A. J. Bevan, ${ }^{40}$ F. Di Lodovico, ${ }^{40}$ W. Menges, ${ }^{40}$ R. Sacco, ${ }^{40}$ G. Cowan, ${ }^{41}$ H. U. Flaecher, ${ }^{41}$ D. A. Hopkins, ${ }^{41}$ P. S. Jackson, ${ }^{41}$ T. R. McMahon, ${ }^{41}$ S. Ricciardi, ${ }^{41}$ F. Salvatore, ${ }^{41}$ A. C. Wren, ${ }^{41}$ D. N. Brown, ${ }^{42}$ C. L. Davis, ${ }^{42}$ J. Allison, ${ }^{43}$ N. R. Barlow, ${ }^{43}$ R. J. Barlow, ${ }^{43}$ Y. M. Chia, ${ }^{43}$ C. L. Edgar, ${ }^{43}$ G. D. Lafferty, ${ }^{43}$ M. T. Naisbit, ${ }^{43}$ J. C. Williams, ${ }^{43}$ J. I. Yi, ${ }^{43}$ C. Chen, ${ }^{44}$ W. D. Hulsbergen, ${ }^{44}$ A. Jawahery, ${ }^{44}$ C. K. Lae, ${ }^{44}$ D. A. Roberts, ${ }^{44}$ G. Simi, ${ }^{44}$ G. Blaylock, ${ }^{45}$ C. Dallapiccola, ${ }^{45}$ S. S. Hertzbach, ${ }^{45}$ X. Li, ${ }^{45}$ T. B. Moore, ${ }^{45}$ S. Saremi, ${ }^{45}$
H. Staengle, ${ }^{45}$ R. Cowan, ${ }^{46}$ G. Sciolla, ${ }^{46}$ S. J. Sekula, ${ }^{46}$ M. Spitznagel,,${ }^{46}$ F. Taylor, ${ }^{46}$ R. K. Yamamoto, ${ }^{46}$ H. Kim, ${ }^{47}$ S. E. Mclachlin,,${ }^{47}$ P. M. Patel, ${ }^{47}$ S. H. Robertson, ${ }^{47}$ A. Lazzaro, ${ }^{48}$ V. Lombardo, ${ }^{48}$ F. Palombo, ${ }^{48}$ J. M. Bauer, ${ }^{49}$ L. Cremaldi, ${ }^{49}$ V. Eschenburg, ${ }^{49}$ R. Godang, ${ }^{49}$ R. Kroeger, ${ }^{49}$ D. A. Sanders, ${ }^{49}$ D. J. Summers, ${ }^{49}$ H. W. Zhao, ${ }^{49}$ S. Brunet, ${ }^{50}$ D. Côté, ${ }^{50}$ M. Simard, ${ }^{50}$ P. Taras, ${ }^{50}$ F. B. Viaud, ${ }^{50}$ H. Nicholson, ${ }^{51}$ N. Cavallo, ${ }^{52,}{ }^{\ddagger}$ G. De Nardo, ${ }^{52}$ F. Fabozzi,,${ }^{52, \ddagger}$ C. Gatto, ${ }^{52}$ L. Lista, ${ }^{52}$ D. Monorchio, ${ }^{52}$ P. Paolucci, ${ }^{52}$ D. Piccolo,,${ }^{52}$ C. Sciacca, ${ }^{52}$ M. Baak, ${ }^{53}$ G. Raven, ${ }^{53}$ H. L. Snoek, ${ }^{53}$ C. P. Jessop, ${ }^{54}$ J. M. LoSecco, ${ }^{54}$ T. Allmendinger, ${ }^{55}$ G. Benelli, ${ }^{55}$ K. K. Gan, ${ }^{55}$ K. Honscheid, ${ }^{55}$ D. Hufnagel, ${ }^{55}$ P. D. Jackson, ${ }^{55}$ H. Kagan, ${ }^{55}$ R. Kass,,${ }^{55}$ A. M. Rahimi, ${ }^{55}$ R. Ter-Antonyan, ${ }^{55}$ Q. K. Wong, ${ }^{55}$ N. L. Blount, ${ }^{56}$ J. Brau, ${ }^{56}$ R. Frey,,${ }^{56}$ O. Igonkina, ${ }^{56}$ M. Lu, ${ }^{56}$ R. Rahmat, ${ }^{56}$ N. B. Sinev, ${ }^{56}$ D. Strom, ${ }^{56}$ J. Strube, ${ }^{56}$ E. Torrence, ${ }^{56}$ A. Gaz,,${ }^{57}$ M. Margoni, ${ }^{57}$ M. Morandin,,${ }^{57}$ A. Pompili, ${ }^{57}$ M. Posocco, ${ }^{57}$ M. Rotondo,,${ }^{57}$ F. Simonetto, ${ }^{57}$ R. Stroili, ${ }^{57}$ C. Voci, ${ }^{57}$ M. Benayoun, ${ }^{58}$ J. Chauveau, ${ }^{58}$ H. Briand, ${ }^{58}$ P. David, ${ }^{58}$ L. Del Buono, ${ }^{58}$ Ch. de la Vaissière,,${ }^{58}$ O. Hamon, ${ }^{58}$ B. L. Hartfiel,,${ }^{58}$ M. J. J. John, ${ }^{58}$ Ph. Leruste,,${ }^{58}$ J. Malclès, ${ }^{58}$ J. Ocariz, ${ }^{58}$ L. Roos, ${ }^{58}$ G. Therin, ${ }^{58}$ L. Gladney, ${ }^{59}$ J. Panetta,,${ }^{59}$ M. Biasini, ${ }^{60}$ R. Covarelli, ${ }^{60}$ C. Angelini, ${ }^{61}$ G. Batignani, ${ }^{61}$ S. Bettarini, ${ }^{61}$ F. Bucci, ${ }^{61}$ G. Calderini, ${ }^{61}$ M. Carpinelli, ${ }^{61}$ R. Cenci, ${ }^{61}$ F. Forti, ${ }^{61}$ M. A. Giorgi, ${ }^{61}$ A. Lusiani, ${ }^{61}$ G. Marchiori, ${ }^{61}$ M. A. Mazur, ${ }^{61}$ M. Morganti, ${ }^{61}$ N. Neri, ${ }^{61}$ E. Paoloni, ${ }^{61}$ G. Rizzo, ${ }^{61}$ J. J. Walsh,,${ }^{61}$ M. Haire, ${ }^{62}$ D. Judd,,62 D. E. Wagoner, ${ }^{62}$ J. Biesiada, ${ }^{63}$ N. Danielson, ${ }^{63}$ P. Elmer, ${ }^{63}$ Y. P. Lau, ${ }^{63}$ C. Lu, ${ }^{63}$ J. Olsen, ${ }^{63}$ A. J. S. Smith, ${ }^{63}$ A. V. Telnov, ${ }^{63}$ F. Bellini, ${ }^{64}$ G. Cavoto, ${ }^{64}$ A. D'Orazio, ${ }^{64}$ D. del Re, ${ }^{64}$ E. Di Marco, ${ }^{64}$ R. Faccini, ${ }^{64}$ F. Ferrarotto, ${ }^{64}$ F. Ferroni, ${ }^{64}$ M. Gaspero, ${ }^{64}$ L. Li Gioi, ${ }^{64}$ M. A. Mazzoni, ${ }^{64}$ S. Morganti, ${ }^{64}$ G. Piredda, ${ }^{64}$ F. Polci,,${ }^{64}$ F. Safai Tehrani, ${ }^{64}$ C. Voena, ${ }^{64}$ M. Ebert, ${ }^{65}$ H. Schröder, ${ }^{65}$ R. Waldi, ${ }^{65}$ T. Adye ${ }^{66}$ N. De Groot, ${ }^{66}$ B. Franek, ${ }^{66}$ E. O. Olaiya, ${ }^{66}$ F. F. Wilson, ${ }^{66}$ R. Aleksan, ${ }^{67}$ S. Emery, ${ }^{67}$ A. Gaidot, ${ }^{67}$ S. F. Ganzhur, ${ }^{67}$ G. Hamel de Monchenault, ${ }^{67}$ W. Kozanecki, ${ }^{67}$ M. Legendre, ${ }^{67}$ G. Vasseur, ${ }^{67}$ Ch. Yèche, ${ }^{67}$ M. Zito, ${ }^{67}$ X. R. Chen, ${ }^{68}$ H. Liu, ${ }^{68}$ W. Park, ${ }^{68}$ M. V. Purohit, ${ }^{68}$ J. R. Wilson, ${ }^{68}$ M. T. Allen, ${ }^{69}$ D. Aston,,${ }^{69}$ R. Bartoldus, ${ }^{69}$ P. Bechtle, ${ }^{69}$ N. Berger,,${ }^{69}$ R. Claus, ${ }^{69}$ J. P. Coleman, ${ }^{69}$ M. R. Convery, ${ }^{69}$ M. Cristinziani, ${ }^{69}$ J. C. Dingfelder, ${ }^{69}$ J. Dorfan, ${ }^{69}$ G. P. Dubois-Felsmann, ${ }^{69}$ D. Dujmic, ${ }^{69}$ W. Dunwoodie, ${ }^{69}$ R. C. Field, ${ }^{69}$ T. Glanzman, ${ }^{69}$ S. J. Gowdy, ${ }^{69}$ M. T. Graham, ${ }^{69}$ V. Halyo, ${ }^{69}$ C. Hast, ${ }^{69}$ T. Hryn'ova, ${ }^{69}$ W. R. Innes, ${ }^{69}$ M. H. Kelsey, ${ }^{69}$ P. Kim, ${ }^{69}$ D. W. G. S. Leith, ${ }^{69}$ S. Li,,${ }^{69}$ S. Luitz,${ }^{69}$ V. Luth, ${ }^{69}$ H. L. Lynch, ${ }^{69}$ D. B. MacFarlane,${ }^{69}$ H. Marsiske, ${ }^{69}$ R. Messner, ${ }^{69}$ D. R. Muller, ${ }^{69}$ C. P. O'Grady, ${ }^{69}$ V. E. Ozcan, ${ }^{69}$ A. Perazzo, ${ }^{69}$ M. Perl,,${ }^{69}$ T. Pulliam, ${ }^{69}$ B. N. Ratcliff, ${ }^{69}$ A. Roodman, ${ }^{69}$ A. A. Salnikov, ${ }^{69}$ R. H. Schindler, ${ }^{69}$ J. Schwiening, ${ }^{69}$ A. Snyder, ${ }^{69}$ J. Stelzer, ${ }^{69}$ D. Su, ${ }^{69}$ M. K. Sullivan,,${ }^{69}$ K. Suzuki, ${ }^{69}$ S. K. Swain, ${ }^{69}$ J. M. Thompson, ${ }^{69}$ J. Va'vra, ${ }^{69}$ N. van Bakel, ${ }^{69}$ M. Weaver, ${ }^{69}$ A. J. R. Weinstein, ${ }^{69}$ W. J. Wisniewski, ${ }^{69}$ M. Wittgen, ${ }^{69}$ D. H. Wright, ${ }^{69}$ A. K. Yarritu, ${ }^{69}$ K. Yi, ${ }^{69}$ C. C. Young, ${ }^{69}$ P. R. Burchat, ${ }^{70}$ A. J. Edwards, ${ }^{70}$ S. A. Majewski, ${ }^{70}$ B. A. Petersen, ${ }^{70}$ C. Roat, ${ }^{70}$ L. Wilden, ${ }^{70}$ S. Ahmed, ${ }^{71}$ M. S. Alam, ${ }^{71}$ R. Bula, ${ }^{71}$ J. A. Ernst,,${ }^{71}$ V. Jain, ${ }^{71}$ B. Pan, ${ }^{71}$ M. A. Saeed, ${ }^{71}$ F. R. Wappler, ${ }^{71}$ S. B. Zain, ${ }^{71}$ W. Bugg, ${ }^{72}$ M. Krishnamurthy, ${ }^{72}$ S. M. Spanier, ${ }^{72}$ R. Eckmann, ${ }^{73}$ J. L. Ritchie, ${ }^{73}$ A. Satpathy, ${ }^{73}$ C. J. Schilling, ${ }^{73}$ R. F. Schwitters, ${ }^{73}$ J. M. Izen, ${ }^{74}$ X. C. Lou, ${ }^{74}$ S. Ye, ${ }^{74}$ F. Bianchi, ${ }^{75}$ F. Gallo, ${ }^{75}$ D. Gamba, ${ }^{75}$ M. Bomben, ${ }^{76}$ L. Bosisio, ${ }^{76}$ C. Cartaro, ${ }^{76}$ F. Cossutti, ${ }^{76}$ G. Della Ricca, ${ }^{76}$ S. Dittongo, ${ }^{76}$ L. Lanceri, ${ }^{76}$ L. Vitale, ${ }^{76}$ V. Azzolini, ${ }^{77}$ F. Martinez-Vidal, ${ }^{77}$ Sw. Banerjee, ${ }^{78}$ B. Bhuyan, ${ }^{78}$ C. M. Brown, ${ }^{78}$ D. Fortin, ${ }^{78}$ K. Hamano, ${ }^{78}$ R. Kowalewski, ${ }^{78}$ I. M. Nugent, ${ }^{78}$ J. M. Roney, ${ }^{78}$ R. J. Sobie, ${ }^{78}$ J. J. Back, ${ }^{79}$ P. F. Harrison, ${ }^{79}$ T. E. Latham, ${ }^{79}$ G. B. Mohanty, ${ }^{79}$ M. Pappagallo, ${ }^{79}$ H. R. Band, ${ }^{80}$ X. Chen, ${ }^{80}$ B. Cheng, ${ }^{80}$ S. Dasu, ${ }^{80}$ M. Datta, ${ }^{80}$ K. T. Flood, ${ }^{80}$ J. J. Hollar, ${ }^{80}$ P. E. Kutter, ${ }^{80}$ B. Mellado, ${ }^{80}$ A. Mihalyi, ${ }^{80}$ Y. Pan, ${ }^{80}$ M. Pierini, ${ }^{80}$ R. Prepost, ${ }^{80}$ S. L. Wu, ${ }^{80}$ Z. Yu, ${ }^{80}$ and H. Neal ${ }^{81}$
(The BABAR Collaboration)

[^0][^1]${ }^{79}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{80}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{81}$ Yale University, New Haven, Connecticut 06511, USA

(Dated: February 6, 2007)

Abstract

Using 65 million $\Upsilon(4 S) \rightarrow B \bar{B}$ events collected with the BABAR detector at the PEP-II $e^{+} e^{-}$ storage ring at the Stanford Linear Accelerator Center, we measure the color-favored branching fractions $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{+} \pi^{-}\right)=(2.55 \pm 0.05 \pm 0.16) \times 10^{-3}, \mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \pi^{-}\right)=(2.79 \pm 0.08 \pm 0.17) \times 10^{-3}$, $\mathcal{B}\left(B^{-} \rightarrow D^{0} \pi^{-}\right)=(4.90 \pm 0.07 \pm 0.22) \times 10^{-3}$ and $\mathcal{B}\left(B^{-} \rightarrow D^{* 0} \pi^{-}\right)=(5.52 \pm 0.17 \pm 0.42) \times 10^{-3}$, where the first error is statistical and the second is systematic. With these results and the current world average for the branching fraction for the color-suppressed decay $\bar{B}^{0} \rightarrow D^{(*) 0} \pi^{0}$, the cosines of the strong phase difference δ between the $I=1 / 2$ and $I=3 / 2$ isospin amplitudes are determined to be $\cos \delta=0.872_{-0.007-0.029}^{+0.008+0.031}$ for the $\bar{B} \rightarrow D \pi$ process and $\cos \delta=0.924_{-0.017-0.054}^{+0.019+0.063}$ for the $\bar{B} \rightarrow D^{*} \pi$ process. Under the isospin symmetry, the results for $\cos \delta$ suggest the presence of finalstate interactions in the $D \pi$ system.

PACS numbers: $13.25 . \mathrm{Hw}, 12.15 . \mathrm{Hh}, 11.30 . \mathrm{Er}$

The $\bar{B} \rightarrow D \pi$ and $\bar{B} \rightarrow D^{*} \pi$ processes provide very good opportunities to test the theories of hadronic B meson decays due to their clean and dominant hadronic decay channels. With the development of heavy quark effective theory (HQET) [1, 2] and soft collinear effective theory (SCET) [3, 4], the theoretical description for these hadronic decays has improved considerably, and the factorization hypothesis in heavy quark hadronic decay has been put on a more solid basis. The three decay amplitudes \mathcal{A} for $\bar{B} \rightarrow D \pi$ can be expressed in terms of two isospin amplitudes, $A_{1 / 2}$ and $A_{3 / 2}$, under the isospin symmetry of the strong interaction:

$$
\begin{gather*}
\mathcal{A}\left(\bar{B}^{0} \rightarrow D^{+} \pi^{-}\right)=\sqrt{1 / 3} A_{3 / 2}+\sqrt{2 / 3} A_{1 / 2} \tag{1}\\
\sqrt{2} \mathcal{A}\left(\bar{B}^{0} \rightarrow D^{0} \pi^{0}\right)=\sqrt{4 / 3} A_{3 / 2}-\sqrt{2 / 3} A_{1 / 2} \tag{2}\\
\mathcal{A}\left(B^{-} \rightarrow D^{0} \pi^{-}\right)=\sqrt{3} A_{3 / 2} \tag{3}
\end{gather*}
$$

where isospin amplitudes $A_{1 / 2}$ and $A_{3 / 2}$ correspond to the transitions into $D \pi$ final states with pure $I=1 / 2$ and $I=3 / 2$ isospin eigenstates $[5,6]$. An identical decomposition holds for $\bar{B} \rightarrow D^{*} \pi$ decays. The isospin amplitudes are not necessarily the same in the $\bar{B} \rightarrow D \pi$ and $\bar{B} \rightarrow D^{*} \pi$ systems. In the context of QCD factorization [6], $A_{1 / 2}$ and $A_{3 / 2}$ for $\bar{B} \rightarrow D \pi$ (similarly for $\bar{B} \rightarrow D^{*} \pi$) are related by

$$
\begin{equation*}
\frac{A_{1 / 2}}{\sqrt{2} A_{3 / 2}}=1+O\left(\Lambda_{\mathrm{QCD}} / m_{b}\right) \tag{4}
\end{equation*}
$$

where m_{b} is the b-quark mass and Λ_{QCD} is the QCD scale. The deviation of the ratio $A_{1 / 2} /\left(\sqrt{2} A_{3 / 2}\right)$ from unity is a measure of the departure from the heavy-quark limit. The QCD factorization implies that the relative phase δ of $A_{1 / 2}$ and $A_{3 / 2}$ is $O\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$. Final-state interactions (FSI) in the $I=3 / 2$ and $I=1 / 2$ channels can lead to a non-zero δ. A large value of δ will substantially suppress the destructive interference for the color-suppressed
decay $\bar{B}^{0} \rightarrow D^{(*) 0} \pi^{0}$, thereby increasing the associated branching fraction.

Recent experimental results on the color-suppressed decay $\bar{B}^{0} \rightarrow D^{(*) 0} \pi^{0}[7-9]$ provide evidence for a sizable relative strong interaction phase between color-favored and color-suppressed $\bar{B}^{0} \rightarrow D^{(*)} \pi$ decay amplitudes. It has been suggested [5] that improved measurements of the color-favored hadronic two-body decay of the B meson will lead to a better understanding of these QCD effects. Further experimental results on the color-favored decay $\bar{B} \rightarrow D \pi$ suggest the presence of final-state interactions in the $\bar{B} \rightarrow D \pi$ process [10]. This paper presents new measurements of the branching fractions of $B^{-} \rightarrow D^{(*) 0} \pi^{-}$and $\bar{B}^{0} \rightarrow D^{(*)+} \pi^{-}$(charge conjugation is implied throughout this paper) and of the relative phase δ.

This analysis uses $(65.2 \pm 0.7) \times 10^{6} B \bar{B}$ pairs collected at the $\Upsilon(4 S)$ resonance with the BABAR detector [11] at the PEP-II asymmetric-energy storage ring during the 2001-2002 data taking period. Charged tracks are detected by a 5-layer silicon vertex tracker and a 40-layer drift chamber. Hadrons are identified by measuring the ionization energy loss $\mathrm{d} E / \mathrm{d} x$ in the tracking system and the opening angle of the Cherenkov radiation in a ringimaging detector. Photons are identified by an electromagnetic calorimeter. These systems are mounted inside a $1.5-\mathrm{T}$ solenoidal superconducting magnet.

Kaon and pion candidates are selected from chargedparticle tracks using $\mathrm{d} E / \mathrm{d} x$ and the Cherenkov light signature. Each charged track, except the track used as the soft pion to reconstruct $D^{*+} \rightarrow D^{0} \pi^{+}$, is required to have at least 12 hits in the drift chamber and a transverse momentum greater than $100 \mathrm{MeV} / c . D^{0}$ and D^{+} candidates are reconstructed in the $K^{-} \pi^{+}$and $K^{-} \pi^{+} \pi^{+}$ channels, respectively. In each case, D meson candidates are required to have a mass within 3σ of the mean reconstructed mass value, where the mass resolution σ is approximately $7 \mathrm{MeV} / c^{2}$ for D^{0} and $6 \mathrm{MeV} / c^{2}$ for D^{+}. A vertex fit is performed on $D^{0}\left(D^{+}\right)$candidates with
the mass constrained to the nominal value [12]. A D^{0} candidate is combined with a low momentum π^{+}or π^{0} to form a D^{*+} or $D^{* 0}$ candidate, where the π^{0} candidate is formed from two photon candidates and must have an invariant mass between 120 and $145 \mathrm{MeV} / c^{2}$. Combinations with an invariant mass difference $\Delta m=$ $m_{D^{0} \pi}-m_{D^{0}}$ between 143 and $148 \mathrm{MeV} / c^{2}$ for D^{*+} and between 138 and $146 \mathrm{MeV} / c^{2}$ for $D^{* 0}$, corresponding to $\pm 3 \sigma$ about the Δm peak, are retained. Each B meson candidate is reconstructed using the selected D or D^{*} candidate and an additional charged track that is not consistent with the kaon hypothesis.

To reject jet-like continuum background events, the normalized second Fox-Wolfram moment R_{2} [13], computed with charged tracks and neutral clusters, is required to be less than 0.5 . We also require $\left|\cos \theta_{T}\right|$ to be less than 0.85 , where θ_{T} is the angle between the thrust axis of the B candidate and the thrust axis of the rest of the event in the $e^{+} e^{-}$center-of-mass (CM) frame.
B candidates are identified using the beam-energysubstituted mass $m_{\mathrm{ES}}=\sqrt{(\sqrt{s} / 2)^{2}-p^{* 2}}$ and energy difference $\Delta E=E^{*}-\sqrt{s} / 2$, where E^{*} and p^{*} are the energy and momentum of the reconstructed B candidate and \sqrt{s} is the total energy in the $e^{+} e^{-}$CM frame. B signal candidates have $m_{\mathrm{ES}} \sim m_{B}$, the B meson mass, and $\Delta E \simeq 0$, within their respective resolutions. The resolution in $\Delta E, \sigma_{\Delta E}$, for various B modes ranges from 15.7 to 18.1 MeV . We require that $|\Delta E-\langle\Delta E\rangle|<3 \sigma_{\Delta E}$. For events with more than one B candidate, a χ^{2} is defined with the D mass $m_{D}, \Delta m$ and their resolutions as

$$
\begin{equation*}
\chi^{2}=\left(\frac{m_{D}-\left\langle m_{D}\right\rangle}{\sigma_{m_{D}}}\right)^{2}+\left(\frac{\Delta m-\langle\Delta m\rangle}{\sigma_{\Delta m}}\right)^{2} \tag{5}
\end{equation*}
$$

and the candidate with the smallest χ^{2} is chosen.
The event yield n for each mode of $\bar{B} \rightarrow D^{(*)} \pi^{-}$is extracted by fitting the m_{ES} distribution of the selected B candidates with an unbinned extended maximum likelihood fit. The m_{ES} distribution is fit to the sum of a signal component, modeled as a Gaussian, and a background shape. The background shape is parameterized as the sum of a Gaussian, representing the peaking background events that peak in m_{ES}, and a phase space parameterization function [14] representing non-peaking combinatorial background and continuum events. The parameters describing the background shape, including the relative normalization of the peaking component, are determined by fitting Monte Carlo (MC) simulated samples, with the signal events removed. The total signal and background event yields, as well as the shape parameters describing signal events, are free parameters in the fit. The fitted m_{ES} distributions for each of the B meson decay modes are presented in Fig. 1. The peaking background yield n_{pb} is about $(2-4) \%$ of the observed B signal yield, as shown in Table I.

For each studied B decay mode of $\bar{B} \rightarrow D^{(*)} \pi$, the
branching fraction is calculated as:

$$
\begin{equation*}
\mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \pi\right)=\frac{n}{2 f N_{B \bar{B}^{\varepsilon}} \mathcal{B}\left(D^{(*)}\right)} \tag{6}
\end{equation*}
$$

Here $N_{B \bar{B}}$ is the total number of $B \bar{B}$ pairs; ε is the efficiency determined from signal Monte Carlo events; f represents f_{+-}or f_{00}, the charged or neutral B meson production ratios at the $\Upsilon(4 S)$, which we assume to be $f_{+-}=f_{00}=0.5$; and $\mathcal{B}\left(D^{(*)}\right)$ is the branching fraction of D or D^{*} decaying to its reconstructed final state [12]. The branching fractions we obtain are reported in Table I.

The final states $D^{(*)} \pi$ selected by this analysis are, in general, accompanied by some small amount of final state radiation (FSR). We model final state radiation in our experiment with PHOTOS [15], which predicts that $6-7 \%$ of our selected events, varying slightly with decay mode, are accompanied by an average FSR energy of about 17 MeV . Approximately two-thirds of this energy is produced in the initial B decay, while the remainder is generated in the $D^{(*)}$ decay.

We summarize systematic uncertainties on the measurements from various sources in Table II. $\Delta N_{B \bar{B}}$ is the uncertainty on the total number of $B \bar{B}$ pairs in data. The error on the efficicency, $\Delta \varepsilon$, is due to signal Monte Carlo sample statistics. The uncertainty from combinatoric background is estimated as the difference in the B yields obtained when fixing and floating the non-peaking background parameters in the m_{ES} fit. The uncertainty from peaking background is estimated as the B yield change by varying the peaking background parameters and the ratio of peaking background to non-peaking background within their errors in the m_{ES} fit. The uncertainties due to the differences in $D^{(*)}$ masses and ΔE between data and Monte Carlo samples are estimated by comparing the efficiencies using their resolutions and means from data and Monte Carlo samples in the event selection. The uncertainty due to D vertexing is estimated by comparing vertexing perfomance in data and Monte Carlo samples. The uncertainties in tracking, particle identification, and π^{0} reconstruction efficiencies are due to potential residual inaccuracies in the Monte Carlo simulation, after correcting for known differences. The dominant uncertainty is from the $D^{(*)}$ branching fractions $\mathcal{B}\left(D^{(*)}\right)$ and the tracking efficiency.

With the branching fractions of the four color-favored decay modes $\bar{B}^{0} \rightarrow D^{(*)+} \pi^{-}$and $B^{-} \rightarrow D^{(*) 0} \pi^{-}$, as well as the two color-suppressed modes $\bar{B}^{0} \rightarrow D^{(*) 0} \pi^{0}$, one can calculate $\cos \delta$. Following Ref. [16] (equations have been modified to use the notation from Ref. [5]), $\cos \delta$ for $\bar{B} \rightarrow D \pi$ (similarly for $\bar{B} \rightarrow D^{*} \pi$) can be expressed as

$$
\begin{gather*}
\cos \delta=\frac{3 \Gamma\left(D^{+} \pi^{-}\right)+\Gamma\left(D^{0} \pi^{-}\right)-6 \Gamma\left(D^{0} \pi^{0}\right)}{6 \sqrt{2}\left|A_{1 / 2} A_{3 / 2}\right|} \tag{7}\\
\left|A_{3 / 2}\right|^{2}=\frac{1}{3} \Gamma\left(D^{0} \pi^{-}\right) \tag{8}
\end{gather*}
$$

FIG. 1: Fit of m_{ES} distributions for the $B \rightarrow D^{(*)} \pi$ candidates in data: (a) $\bar{B}^{0} \rightarrow D^{+} \pi^{-}$, (b) $\bar{B}^{0} \rightarrow D^{*+} \pi^{-}$, (c) $B^{-} \rightarrow D^{0} \pi^{-}$, (d) $B^{-} \rightarrow D^{* 0} \pi^{-}$. The fit is shown as a solid line and is described in the text. The background component (including peaking background) is shown as a dashed line.

TABLE I: Yield of signal (n) and peaking background $\left(n_{\mathrm{pb}}\right)$, efficiency (ε), and branching fraction (\mathcal{B}) for each $\bar{B} \rightarrow D^{(*)} \pi$ decay mode.

Mode	n	n_{pb}	$\varepsilon(\%)$	$\mathcal{B}\left(\times 10^{-3}\right)$
$\bar{B}^{0} \rightarrow D^{+} \pi^{-}$	3593 ± 63	114 ± 14	22.8 ± 0.2	$2.55 \pm 0.05 \pm 0.16$
$\bar{B}^{0} \rightarrow D^{*+} \pi^{-}$	1411 ± 39	28 ± 6	30.2 ± 0.2	$2.79 \pm 0.08 \pm 0.17$
$B^{-} \rightarrow D^{0} \pi^{-}$	4606 ± 70	89 ± 14	37.9 ± 0.2	$4.90 \pm 0.07 \pm 0.22$
$B^{-} \rightarrow D^{* 0} \pi^{-}$	1297 ± 39	51 ± 8	15.5 ± 0.1	$5.52 \pm 0.17 \pm 0.42$

$$
\begin{equation*}
\left|A_{1 / 2}\right|^{2}=\Gamma\left(D^{+} \pi^{-}\right)+\Gamma\left(D^{0} \pi^{0}\right)-\frac{1}{3} \Gamma\left(D^{0} \pi^{-}\right) \tag{9}
\end{equation*}
$$

Using the measured branching fractions in this analysis, the ratio of the B lifetimes $\tau\left(B^{-}\right) / \tau\left(\bar{B}^{0}\right)=1.071 \pm 0.009$ [12], and the branching fractions $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{0} \pi^{0}\right)=$ $(0.291 \pm 0.028) \times 10^{-4}$ and $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{* 0} \pi^{0}\right)=(0.27 \pm$ $0.05) \times 10^{-4}[12]$, we calculate $\cos \delta$ and $\left|A_{1 / 2} /\left(\sqrt{2} A_{3 / 2}\right)\right|$ for $\bar{B} \rightarrow D \pi$ and $\bar{B} \rightarrow D^{*} \pi$ decays.

To estimate the systematic error on $\cos \delta$ for $\bar{B} \rightarrow D \pi$ (and, similarly, $\bar{B} \rightarrow D^{*} \pi$), we use a Monte Carlo technique [10]. We simulate 10^{6} experiments, varying the measured branching fractions, the used color-suppressed decay branching fraction, and $\tau\left(B^{-}\right) / \tau\left(\bar{B}^{0}\right)$ about their central values according to Gaussian distributions where
their errors are taken as the sigmas of the Gaussian distributions, to calculate the $\cos \delta$. The correlation of the systematic errors between the two color-favored decay modes in the $\cos \delta$ calculation is taken into account. We assume the errors are uncorrelated between the colorfavored and color-suppressed modes. The statistical error on $\cos \delta$ is estimated in a similar fashion, with only the statistical errors on the branching fractions of colorfavored modes are used in the procedure. The resulting normalized distribution of $\cos \delta$, ie., the estimated likelihood function of $\cos \delta$, is obtained. Figure 2 shows the likelihood function of $\cos \delta$ from the described experiments in which both the statistical and systematic errors are taken into account.

TABLE II: Relative systematic errors in the branching fractions of $\bar{B} \rightarrow D^{(*)} \pi$ decays from different sources.

Systematic error	$\bar{B}^{0} \rightarrow D^{+} \pi^{-}$	$\bar{B}^{0} \rightarrow D^{*+} \pi^{-}$	$B^{-} \rightarrow D^{0} \pi^{-}$	$B^{-} \rightarrow D^{* 0} \pi^{-}$
$\Delta N_{B \bar{B}}$	1.1%	1.1%	1.1%	1.1%
$\mathcal{B}\left(D^{(*)}\right)$	3.6%	2.0%	1.8%	5.0%
Δf	1.6%	1.6%	1.6%	1.6%
$\Delta \varepsilon$	1.0%	0.5%	0.5%	0.7%
Non-peaking background shape	2.8%	0.5%	1.9%	1.3%
Peaking background shape	0.4%	0.4%	0.3%	0.6%
Data/MC difference of $m_{D}, \Delta m$	0.2%	1.3%	0.4%	2.9%
Data/MC difference of ΔE	0.5%	0.2%	0.6%	0.7%
D^{-}and D^{0} vertexing	0.2%	0.1%	0.1%	0.1%
Particle identification efficiency	2.0%	2.0%	1.5%	1.5%
Tracking efficiency	3.2%	4.9%	2.4%	2.4%
π^{0} reconstruction efficiency	-	-	-	3.0%
Total	6.3%	6.2%	4.4%	7.6%

FIG. 2: Likelihood function (arbitrary unit in vertical axis) of $\cos \delta$ obtained from the ensemble of 10^{6} Monte Carlo experiments described in the text for process (a) $\bar{B} \rightarrow D \pi$ and (b) $\bar{B} \rightarrow D^{*} \pi$. The shaded area in the plots is 68.27% of the total area.

FIG. 3: Likelihood function (arbitrary unit in vertical axis) of $A_{R} \equiv\left|A_{1 / 2} / \sqrt{2} A_{3 / 2}\right|$ obtained from the ensemble of 10^{6} Monte Carlo experiments described in the text for processes (a) $\bar{B} \rightarrow D \pi$ and (b) $\bar{B} \rightarrow D^{*} \pi$. The shaded area in the plots is 68.27% of the total area.

We define $\pm 1 \sigma$ confidence interval of $\cos \delta$ as the integral of its likelihood function over the region around the nominal value of $\cos \delta$, which is calculated from the central values of the branching fractions, to 68.27% (half below and half above the nominal value) of the total area.

The results are

$$
\begin{equation*}
\cos \delta=0.872_{-0.007-0.029}^{+0.008+0.031} \tag{10}
\end{equation*}
$$

for the $\bar{B} \rightarrow D \pi$ system and

$$
\begin{equation*}
\cos \delta=0.924_{-0.017-0.054}^{+0.019+0.063} \tag{11}
\end{equation*}
$$

for the $\bar{B} \rightarrow D^{*} \pi$ system, where the first error is statistical and the second is systematic. These results correspond to $|\delta|=29.2^{\circ}{ }_{-0.9}+0.8^{\circ}+3.3^{\circ}$ and $|\delta|=22.5^{\circ}{ }_{-3.1^{\circ}}{ }^{\circ}+6.9^{\circ}{ }^{\circ}$, for the $\bar{B} \rightarrow D \pi$ system and the $\bar{B} \rightarrow D^{*} \pi$ system, respectively. By comparing the likelihood function integral of $\cos \delta$ in region $[0,1]$ with the full range integral, we exclude $\cos \delta \geq 1$ at a probability of 99.9% for the $\bar{B} \rightarrow D \pi$ system and 85.7% for the $\bar{B} \rightarrow D^{*} \pi$ system.

Similarly, we obtain

$$
\begin{equation*}
\left|\frac{A_{1 / 2}}{\sqrt{2} A_{3 / 2}}\right|=0.655_{-0.014-0.042}^{+0.015+0.042} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{A_{1 / 2}}{\sqrt{2} A_{3 / 2}}\right|=0.624_{-0.026-0.063}^{+0.027+0.065} \tag{13}
\end{equation*}
$$

for the $\bar{B} \rightarrow D \pi$ and $\bar{B} \rightarrow D^{*} \pi$ system, respectively, where the first error is statistical and the second is systematic. The likelihood function from the simulated experiments, with both statistical and systematic errors are taken into account, is shown in Fig. 3.

In summary, we have measured the branching fractions for the color-favored $\bar{B}^{0} \rightarrow D^{(*)+} \pi^{-}$and $B^{-} \rightarrow D^{(*) 0} \pi^{-}$ decays. Using these measurements together with the current world averages for $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{0} \pi^{0}\right)$ and $\mathcal{B}\left(\bar{B}^{0} \rightarrow\right.$ $D^{* 0} \pi^{0}$), we extract the cosines of the relative strong
phase δ in the $D \pi$ and $D^{*} \pi$ systems, and the ratios of the $I=3 / 2$ and $I=1 / 2$ isospin amplitudes. Our results for the $\bar{B} \rightarrow D^{(*)} \pi$ branching fractions, except for $B^{-} \rightarrow D^{* 0} \pi^{-}$, are consistent with the current world average values [12] but have a better precision. The branching fraction of $B^{-} \rightarrow D^{* 0} \pi^{-}$from this measurement is greater than the world average by about 2σ. Our results for $\cos \delta$ differ from unity by about 4.3σ for $\bar{B} \rightarrow D \pi$ decays and 1.1σ for $\bar{B} \rightarrow D^{*} \pi$ decays. The result of $\cos \delta$ for $\bar{B} \rightarrow D \pi$ decays is consistent with the result in Refs. $[9,10]$, and under the isospin symmetry it suggests the presence of final-state interactions in $\bar{B} \rightarrow D \pi$ decays.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

[^2]${ }^{\dagger}$ Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
\ddagger Also with Università della Basilicata, Potenza, Italy
[1] M. Beneke et al., Nucl. Phys. B 591, 313 (2000).
[2] M. Neubert and B. Stech, in Heavy Flavours, edited by A. J. Buras and M. Lindner, 2nd ed. (World Scientific, Singapore); hep-ph/9705292.
[3] C. W. Bauer, D. Pirjol, and I. W. Stewart, Phys. Rev. Lett. 87, 201806 (2001).
[4] C. W. Bauer, D. Pirjol, and I. W. Stewart, Phys. Rev. D 65, 054022 (2002).
[5] M. Neubert and A. A. Petrov, Phys. Lett. B 519, 50 (2001).
[6] M. Beneke, G. Buchalla, M. Neubert, C. T. Sachrajda, Nucl. Phys. B 591, 313 (2000) 313.
[7] T. E. Coan et al. (CLEO Collaboration), Phys. Rev. Lett. 88, 062001 (2002).
[8] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 88, 052002 (2002).
[9] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 69, 032004 (2004).
[10] S. Ahmed et al. (CLEO Collaboration), Phys. Rev. D 66, 031101 (2002).
[11] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Meth. A 479, 1 (2002).
[12] Particle Data Group, W.-M. Yao et al., J. Phys. G: Nucl. Part. Phys. 33, 1 (2006).
[13] G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[14] H. Albrecht et al. (ARGUS Collaboration), Z. Phys. C 48, 543 (1990).
[15] P. Golonka and Z. Was, Eur. Phys. J. C 45, 97 (2006).
[16] J. L. Rosner, Phys. Rev. D 60, 074029 (1999).

[^0]: ${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
 ${ }^{2}$ Universitat de Barcelona, Facultat de Fisica Dept. ECM, E-08028 Barcelona, Spain
 ${ }^{3}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy ${ }^{4}$ Institute of High Energy Physics, Beijing 100039, China
 ${ }^{5}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
 ${ }^{6}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
 ${ }^{7}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
 ${ }^{8}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
 ${ }^{9}$ University of Bristol, Bristol BS8 1TL, United Kingdom
 ${ }^{10}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
 ${ }^{11}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
 ${ }^{12}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
 ${ }^{13}$ University of California at Irvine, Irvine, California 92697, USA
 ${ }^{14}$ University of California at Los Angeles, Los Angeles, California 90024, USA
 ${ }^{15}$ University of California at Riverside, Riverside, California 92521, USA

[^1]: ${ }^{16}$ University of California at San Diego, La Jolla, California 92093, USA
 ${ }^{17}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
 ${ }^{18}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
 ${ }^{19}$ California Institute of Technology, Pasadena, California 91125, USA
 ${ }^{20}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
 ${ }^{21}$ University of Colorado, Boulder, Colorado 80309, USA
 ${ }^{22}$ Colorado State University, Fort Collins, Colorado 80523, USA
 ${ }^{23}$ Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
 ${ }^{24}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
 ${ }^{25}$ Ecole Polytechnique, Laboratoire Leprince-Ringuet, F-91128 Palaiseau, France
 ${ }^{26}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
 ${ }^{27}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
 ${ }^{28}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
 ${ }^{29}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
 ${ }^{30}$ Harvard University, Cambridge, Massachusetts 02138, USA
 ${ }^{31}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
 ${ }^{32}$ Imperial College London, London, SW7 2AZ, United Kingdom
 ${ }^{33}$ University of Iowa, Iowa City, Iowa 52242, USA
 ${ }^{34}$ Iowa State University, Ames, Iowa 50011-3160, USA
 ${ }^{35}$ Johns Hopkins University, Baltimore, Maryland 21218, USA
 ${ }^{36}$ Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
 ${ }^{37}$ Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université Paris-Sud 11,
 Centre Scientifique d’Orsay, B.P. 34, F-91898 ORSAY Cedex, France
 ${ }^{38}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
 ${ }^{39}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
 ${ }^{40}$ Queen Mary, University of London, E1 4NS, United Kingdom
 ${ }^{41}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
 ${ }^{42}$ University of Louisville, Louisville, Kentucky 40292, USA
 ${ }^{43}$ University of Manchester, Manchester M13 9PL, United Kingdom
 44 University of Maryland, College Park, Maryland 20742, USA
 ${ }^{45}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
 ${ }^{46}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA ${ }^{47}$ McGill University, Montréal, Québec, Canada H3A $2 T 8$
 ${ }^{48}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
 ${ }^{49}$ University of Mississippi, University, Mississippi 38677, USA
 ${ }^{50}$ Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
 ${ }^{51}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
 ${ }^{52}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
 ${ }^{53}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
 ${ }^{54}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
 ${ }^{55}$ Ohio State University, Columbus, Ohio 43210, USA
 ${ }^{56}$ University of Oregon, Eugene, Oregon 97403, USA
 ${ }^{57}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
 ${ }^{58}$ Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
 ${ }^{59}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
 ${ }^{60}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
 ${ }^{61}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
 ${ }^{62}$ Prairie View A 8 M University, Prairie View, Texas 77446, USA
 ${ }^{63}$ Princeton University, Princeton, New Jersey 08544, USA
 ${ }^{64}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
 ${ }^{65}$ Universität Rostock, D-18051 Rostock, Germany
 ${ }^{66}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
 ${ }^{67}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
 ${ }^{68}$ University of South Carolina, Columbia, South Carolina 29208, USA
 ${ }^{69}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
 ${ }^{70}$ Stanford University, Stanford, California 94305-4060, USA
 ${ }^{{ }^{11}}$ State University of New York, Albany, New York 12222, USA
 ${ }^{72}$ University of Tennessee, Knoxville, Tennessee 37996, USA
 ${ }^{73}$ University of Texas at Austin, Austin, Texas 78712, USA
 ${ }^{{ }^{4}}$ University of Texas at Dallas, Richardson, Texas 75083, USA
 ${ }^{75}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
 ${ }^{76}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
 ${ }^{77}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
 ${ }^{78}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6

[^2]: * Also at Laboratoire de Physique Corpusculaire, Clermont-Ferrand, France

