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We noticed an error in the description of the distribution of solar photons at an arbitrary

distance from the Sun, equations (3) and (4). The correct expression is
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≤ cos φ ≤ 1, (2)

i.e. Qν(r, φ) is independent of φ within the solid angle covered by the Sun. Applying the

correct angular distribution does not give results that are noticeably different from those

obtained with the delta-function (pure radial) photon distribution. Indeed, it should be the

case since in the energy range under consideration γe � 1 and the ambient photon angular

distribution can be approximated by the delta-function.

We also discovered a numerical error in the code which affects the results below ∼1

GeV, especially in case of small θ. Figures 3 and 4 show the corrected integral and differ-

ential intensities. Table 1 shows the corrected all-sky average integral intensities. The 68%
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containment radius of the EGRET point spread function is ∼6◦ at 100 MeV. For θ < 6◦,

the corrected integral flux is Fγ(> 100 MeV) ∼ (2.0− 4.3)× 10−7 cm−2 s−1, where the given

range corresponds to different modulation levels (Φ0 = 500 − 1000 MV).
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Fig. 3.— Integral intensity above 100 MeV and 1 GeV. Black line, no modulation; red lines,

potential Φ1; blue lines, potential Φ2. Dashed lines, Φ0 = 500 MV; dotted lines, Φ0 = 1000

MV.
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Fig. 4.— Differential intensities for selected θ. Line-sets (top to bottom): 0.3◦, 1◦, 5◦, 10◦,

45◦, and 180◦. Solid line: no modulation; dashed line: Φ0 = 500 MV; dotted line: Φ0 = 1000

MV. Data points: diffuse extragalactic γ-ray flux (Strong at al. 2004).
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Table 1. All-sky average integral intensity

E Φ0 = 0 500 MV 1000 MV

>10 MeV 7.1 6.5 6.0

>100 MeV 1.3 1.2 1.1

>1 GeV 0.14 0.13 0.11

Note. — Units 10−6 cm−2 s−1 sr−1.
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