Search for CPT and Lorentz Violation in $B^{0}-\bar{B}^{0}$ Oscillations with Inclusive Dilepton Events

The BABAR Collaboration

July 29, 2006

Abstract

We report preliminary results of a search for $C P T$ and Lorentz violation in $B^{0}-\bar{B}^{0}$ oscillations using an inclusive dilepton sample collected by the BABAR experiment at the PEP-II B Factory. Using a sample of 232 million $B \bar{B}$ pairs, we search for time-dependent variations in the complex $C P T$ parameter $\mathbf{z}=\mathrm{z}_{0}+\mathrm{z}_{1} \cos (\Omega \hat{t}+\phi)$ where Ω is the Earth's sidereal frequency and \hat{t} is sidereal time. We measure $\operatorname{Im} z_{0}=(-14.1 \pm 7.3$ (stat.) ± 2.4 (syst.) $) \times 10^{-3}, \Delta \Gamma \times \operatorname{Re} z_{0}=(-7.2 \pm 4.1$ (stat.) \pm $2.1($ syst. $)) \times 10^{-3} \mathrm{ps}^{-1}, \operatorname{Im} z_{1}=(-24.0 \pm 10.7$ (stat.) ± 5.9 (syst.) $) \times 10^{-3}$, and $\Delta \Gamma \times \operatorname{Re} z_{1}=(-18.8 \pm$ 5.5 (stat.) ± 4.0 (syst.) $) \times 10^{-3} \mathrm{ps}^{-1}$, where $\Delta \Gamma$ is the difference between the decay rates of the neutral B mass eigenstates. The statistical correlation between the measurements of $\operatorname{Im} z_{0}$ and $\Delta \Gamma \times \operatorname{Re} z_{0}$ is 76%; between $\operatorname{Im} z_{1}$ and $\Delta \Gamma \times \operatorname{Re} \mathbf{z}_{1}$ it is 79%. These results are used to evaluate expressions involving coefficients for Lorentz and $C P T$ violation in the general Lorentz-violating standard-model extension. In a complementary approach, we examine the spectral power of periodic variations in z over a wide range of frequencies and find no significant signal.

Submitted to the $33^{\text {rd }}$ International Conference on High-Energy Physics, ICHEP 06, 26 July-2 August 2006, Moscow, Russia.

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309
Work supported in part by Department of Energy contract DE-AC02-76SF00515.

The BABAR Collaboration,
B. Aubert, R. Barate, M. Bona, D. Boutigny, F. Couderc, Y. Karyotakis, J. P. Lees, V. Poireau, V. Tisserand, A. Zghiche

Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
E. Grauges

Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
A. Palano

Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
J. C. Chen, N. D. Qi, G. Rong, P. Wang, Y. S. Zhu

Institute of High Energy Physics, Beijing 100039, China
G. Eigen, I. Ofte, B. Stugu

University of Bergen, Institute of Physics, N-5007 Bergen, Norway
G. S. Abrams, M. Battaglia, D. N. Brown, J. Button-Shafer, R. N. Cahn, E. Charles, M. S. Gill, Y. Groysman, R. G. Jacobsen, J. A. Kadyk, L. T. Kerth, Yu. G. Kolomensky, G. Kukartsev, G. Lynch, L. M. Mir, T. J. Orimoto, M. Pripstein, N. A. Roe, M. T. Ronan, W. A. Wenzel Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA P. del Amo Sanchez, M. Barrett, K. E. Ford, A. J. Hart, T. J. Harrison, C. M. Hawkes, S. E. Morgan, A. T. Watson

University of Birmingham, Birmingham, B15 2TT, United Kingdom
T. Held, H. Koch, B. Lewandowski, M. Pelizaeus, K. Peters, T. Schroeder, M. Steinke

Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
J. T. Boyd, J. P. Burke, W. N. Cottingham, D. Walker

University of Bristol, Bristol BS8 1TL, United Kingdom
D. J. Asgeirsson, T. Cuhadar-Donszelmann, B. G. Fulsom, C. Hearty, N. S. Knecht, T. S. Mattison, J. A. McKenna

University of British Columbia, Vancouver, British Columbia, Canada V6T 1 Z1
A. Khan, P. Kyberd, M. Saleem, D. J. Sherwood, L. Teodorescu

Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
V. E. Blinov, A. D. Bukin, V. P. Druzhinin, V. B. Golubev, A. P. Onuchin, S. I. Serednyakov, Yu. I. Skovpen, E. P. Solodov, K. Yu Todyshev
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
D. S. Best, M. Bondioli, M. Bruinsma, M. Chao, S. Curry, I. Eschrich, D. Kirkby, A. J. Lankford, P. Lund, M. Mandelkern, R. K. Mommsen, W. Roethel, D. P. Stoker

University of California at Irvine, Irvine, California 92697, USA
S. Abachi, C. Buchanan

University of California at Los Angeles, Los Angeles, California 90024, USA
S. D. Foulkes, J. W. Gary, O. Long, B. C. Shen, K. Wang, L. Zhang University of California at Riverside, Riverside, California 92521, USA
H. K. Hadavand, E. J. Hill, H. P. Paar, S. Rahatlou, V. Sharma University of California at San Diego, La Jolla, California 92093, USA
J. W. Berryhill, C. Campagnari, A. Cunha, B. Dahmes, T. M. Hong, D. Kovalskyi, J. D. Richman University of California at Santa Barbara, Santa Barbara, California 93106, USA
T. W. Beck, A. M. Eisner, C. J. Flacco, C. A. Heusch, J. Kroseberg, W. S. Lockman, G. Nesom, T. Schalk, B. A. Schumm, A. Seiden, P. Spradlin, D. C. Williams, M. G. Wilson

University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
J. Albert, E. Chen, A. Dvoretskii, F. Fang, D. G. Hitlin, I. Narsky, T. Piatenko, F. C. Porter, A. Ryd, A. Samuel

California Institute of Technology, Pasadena, California 91125, USA
G. Mancinelli, B. T. Meadows, K. Mishra, M. D. Sokoloff

University of Cincinnati, Cincinnati, Ohio 45221, USA
F. Blanc, P. C. Bloom, S. Chen, W. T. Ford, J. F. Hirschauer, A. Kreisel, M. Nagel, U. Nauenberg, A. Olivas, W. O. Ruddick, J. G. Smith, K. A. Ulmer, S. R. Wagner, J. Zhang University of Colorado, Boulder, Colorado 80309, USA
A. Chen, E. A. Eckhart, A. Soffer, W. H. Toki, R. J. Wilson, F. Winklmeier, Q. Zeng Colorado State University, Fort Collins, Colorado 80523, USA
D. D. Altenburg, E. Feltresi, A. Hauke, H. Jasper, J. Merkel, A. Petzold, B. Spaan Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
T. Brandt, V. Klose, H. M. Lacker, W. F. Mader, R. Nogowski, J. Schubert, K. R. Schubert, R. Schwierz, J. E. Sundermann, A. Volk

Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
D. Bernard, G. R. Bonneaud, E. Latour, Ch. Thiebaux, M. Verderi

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
P. J. Clark, W. Gradl, F. Muheim, S. Playfer, A. I. Robertson, Y. Xie University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
M. Andreotti, D. Bettoni, C. Bozzi, R. Calabrese, G. Cibinetto, E. Luppi, M. Negrini, A. Petrella, L. Piemontese, E. Prencipe

Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
F. Anulli, R. Baldini-Ferroli, A. Calcaterra, R. de Sangro, G. Finocchiaro, S. Pacetti, P. Patteri, I. M. Peruzzi, ${ }^{1}$ M. Piccolo, M. Rama, A. Zallo

Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy

[^0]A. Buzzo, R. Capra, R. Contri, M. Lo Vetere, M. M. Macri, M. R. Monge, S. Passaggio, C. Patrignani, E. Robutti, A. Santroni, S. Tosi

Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
G. Brandenburg, K. S. Chaisanguanthum, M. Morii, J. Wu

Harvard University, Cambridge, Massachusetts 02138, USA
R. S. Dubitzky, J. Marks, S. Schenk, U. Uwer

Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
D. J. Bard, W. Bhimji, D. A. Bowerman, P. D. Dauncey, U. Egede, R. L. Flack, J. A. Nash, M. B. Nikolich, W. Panduro Vazquez Imperial College London, London, SW7 2AZ, United Kingdom
P. K. Behera, X. Chai, M. J. Charles, U. Mallik, N. T. Meyer, V. Ziegler

University of Iowa, Iowa City, Iowa 52242, USA
J. Cochran, H. B. Crawley, L. Dong, V. Eyges, W. T. Meyer, S. Prell, E. I. Rosenberg, A. E. Rubin Iowa State University, Ames, Iowa 50011-3160, USA
A. V. Gritsan

Johns Hopkins University, Baltimore, Maryland 21218, USA
A. G. Denig, M. Fritsch, G. Schott

Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
N. Arnaud, M. Davier, G. Grosdidier, A. Höcker, F. Le Diberder, V. Lepeltier, A. M. Lutz, A. Oyanguren, S. Pruvot, S. Rodier, P. Roudeau, M. H. Schune, A. Stocchi, W. F. Wang, G. Wormser

Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d'Orsay, B.P. 34, F-91898 ORSAY Cedex, France
C. H. Cheng, D. J. Lange, D. M. Wright

Lawrence Livermore National Laboratory, Livermore, California 94550, USA
C. A. Chavez, I. J. Forster, J. R. Fry, E. Gabathuler, R. Gamet, K. A. George, D. E. Hutchcroft, D. J. Payne, K. C. Schofield, C. Touramanis

University of Liverpool, Liverpool L69 7ZE, United Kingdom
A. J. Bevan, F. Di Lodovico, W. Menges, R. Sacco

Queen Mary, University of London, E1 4NS, United Kingdom
G. Cowan, H. U. Flaecher, D. A. Hopkins, P. S. Jackson, T. R. McMahon, S. Ricciardi, F. Salvatore, A. C. Wren

University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
D. N. Brown, C. L. Davis

University of Louisville, Louisville, Kentucky 40292, USA
J. Allison, N. R. Barlow, R. J. Barlow, Y. M. Chia, C. L. Edgar, G. D. Lafferty, M. T. Naisbit, J. C. Williams, J. I. Yi

University of Manchester, Manchester M13 9PL, United Kingdom
C. Chen, W. D. Hulsbergen, A. Jawahery, C. K. Lae, D. A. Roberts, G. Simi University of Maryland, College Park, Maryland 20742, USA
G. Blaylock, C. Dallapiccola, S. S. Hertzbach, X. Li, T. B. Moore, S. Saremi, H. Staengle University of Massachusetts, Amherst, Massachusetts 01003, USA
R. Cowan, G. Sciolla, S. J. Sekula, M. Spitznagel, F. Taylor, R. K. Yamamoto Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
H. Kim, S. E. Mclachlin, P. M. Patel, S. H. Robertson

McGill University, Montréal, Québec, Canada H3A 2T8
A. Lazzaro, V. Lombardo, F. Palombo

Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
J. M. Bauer, L. Cremaldi, V. Eschenburg, R. Godang, R. Kroeger, D. A. Sanders, D. J. Summers, H. W. Zhao

University of Mississippi, University, Mississippi 38677, USA
S. Brunet, D. Côté, M. Simard, P. Taras, F. B. Viaud

Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
H. Nicholson

Mount Holyoke College, South Hadley, Massachusetts 01075, USA
N. Cavallo, ${ }^{2}$ G. De Nardo, F. Fabozzi, ${ }^{3}$ C. Gatto, L. Lista, D. Monorchio, P. Paolucci, D. Piccolo, C. Sciacca

Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
M. A. Baak, G. Raven, H. L. Snoek

NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
C. P. Jessop, J. M. LoSecco

University of Notre Dame, Notre Dame, Indiana 46556, USA
T. Allmendinger, G. Benelli, L. A. Corwin, K. K. Gan, K. Honscheid, D. Hufnagel, P. D. Jackson, H. Kagan, R. Kass, A. M. Rahimi, J. J. Regensburger, R. Ter-Antonyan, Q. K. Wong Ohio State University, Columbus, Ohio 43210, USA
N. L. Blount, J. Brau, R. Frey, O. Igonkina, J. A. Kolb, M. Lu, R. Rahmat, N. B. Sinev, D. Strom, J. Strube, E. Torrence University of Oregon, Eugene, Oregon 97403, USA

[^1]A. Gaz, M. Margoni, M. Morandin, A. Pompili, M. Posocco, M. Rotondo, F. Simonetto, R. Stroili, C. Voci Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
M. Benayoun, H. Briand, J. Chauveau, P. David, L. Del Buono, Ch. de la Vaissière, O. Hamon, B. L. Hartfiel, M. J. J. John, Ph. Leruste, J. Malclès, J. Ocariz, L. Roos, G. Therin Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
L. Gladney, J. Panetta

University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
M. Biasini, R. Covarelli

Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
C. Angelini, G. Batignani, S. Bettarini, F. Bucci, G. Calderini, M. Carpinelli, R. Cenci, F. Forti, M. A. Giorgi, A. Lusiani, G. Marchiori, M. A. Mazur, M. Morganti, N. Neri, E. Paoloni, G. Rizzo, J. J. Walsh

Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
M. Haire, D. Judd, D. E. Wagoner

Prairie View A ξ M University, Prairie View, Texas 77446, USA
J. Biesiada, N. Danielson, P. Elmer, Y. P. Lau, C. Lu, J. Olsen, A. J. S. Smith, A. V. Telnov Princeton University, Princeton, New Jersey 08544, USA
F. Bellini, G. Cavoto, A. D'Orazio, D. del Re, E. Di Marco, R. Faccini, F. Ferrarotto, F. Ferroni, M. Gaspero, L. Li Gioi, M. A. Mazzoni, S. Morganti, G. Piredda, F. Polci, F. Safai Tehrani, C. Voena

Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
M. Ebert, H. Schröder, R. Waldi

Universität Rostock, D-18051 Rostock, Germany
T. Adye, N. De Groot, B. Franek, E. O. Olaiya, F. F. Wilson

Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
R. Aleksan, S. Emery, A. Gaidot, S. F. Ganzhur, G. Hamel de Monchenault, W. Kozanecki, M. Legendre, G. Vasseur, Ch. Yèche, M. Zito

DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
X. R. Chen, H. Liu, W. Park, M. V. Purohit, J. R. Wilson

University of South Carolina, Columbia, South Carolina 29208, USA
M. T. Allen, D. Aston, R. Bartoldus, P. Bechtle, N. Berger, R. Claus, J. P. Coleman, M. R. Convery, M. Cristinziani, J. C. Dingfelder, J. Dorfan, G. P. Dubois-Felsmann, D. Dujmic, W. Dunwoodie, R. C. Field, T. Glanzman, S. J. Gowdy, M. T. Graham, P. Grenier, ${ }^{4}$ V. Halyo, C. Hast, T. Hryn'ova, W. R. Innes, M. H. Kelsey, P. Kim, D. W. G. S. Leith, S. Li, S. Luitz, V. Luth, H. L. Lynch, D. B. MacFarlane, H. Marsiske, R. Messner, D. R. Muller, C. P. O’Grady, V. E. Ozcan, A. Perazzo, M. Perl, T. Pulliam, B. N. Ratcliff, A. Roodman, A. A. Salnikov, R. H. Schindler, J. Schwiening, A. Snyder, J. Stelzer, D. Su, M. K. Sullivan, K. Suzuki, S. K. Swain, J. M. Thompson, J. Va'vra, N. van

[^2]Bakel, M. Weaver, A. J. R. Weinstein, W. J. Wisniewski, M. Wittgen, D. H. Wright, A. K. Yarritu, K. Yi, C. C. Young Stanford Linear Accelerator Center, Stanford, California 94309, USA

P. R. Burchat, A. J. Edwards, S. A. Majewski, B. A. Petersen, C. Roat, L. Wilden Stanford University, Stanford, California 94305-4060, USA

S. Ahmed, M. S. Alam, R. Bula, J. A. Ernst, V. Jain, B. Pan, M. A. Saeed, F. R. Wappler, S. B. Zain State University of New York, Albany, New York 12222, USA
W. Bugg, M. Krishnamurthy, S. M. Spanier

University of Tennessee, Knoxville, Tennessee 37996, USA
R. Eckmann, J. L. Ritchie, A. Satpathy, C. J. Schilling, R. F. Schwitters

University of Texas at Austin, Austin, Texas 78712, USA
J. M. Izen, X. C. Lou, S. Ye

University of Texas at Dallas, Richardson, Texas 75083, USA
F. Bianchi, F. Gallo, D. Gamba

Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
M. Bomben, L. Bosisio, C. Cartaro, F. Cossutti, G. Della Ricca, S. Dittongo, L. Lanceri, L. Vitale

Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
V. Azzolini, N. Lopez-March, F. Martinez-Vidal

IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
Sw. Banerjee, B. Bhuyan, C. M. Brown, D. Fortin, K. Hamano, R. Kowalewski, I. M. Nugent, J. M. Roney, R. J. Sobie

University of Victoria, Victoria, British Columbia, Canada V8W 3P6
J. J. Back, P. F. Harrison, T. E. Latham, G. B. Mohanty, M. Pappagallo

Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
H. R. Band, X. Chen, B. Cheng, S. Dasu, M. Datta, K. T. Flood, J. J. Hollar, P. E. Kutter, B. Mellado, A. Mihalyi, Y. Pan, M. Pierini, R. Prepost, S. L. Wu, Z. Yu

University of Wisconsin, Madison, Wisconsin 53706, USA

H. Neal

Yale University, New Haven, Connecticut 06511, USA

1 INTRODUCTION

It has been shown [1] that "If CPT invariance is violated in an interacting quantum field theory, then that theory also violates Lorentz invariance." The general Lorentz-violating standard-model extension (SME) [2] has been used to show that the parameter for $C P T$ violation in neutral meson oscillations depends on the 4 -velocity of the meson [3]. In studies of $\Upsilon(4 S) \rightarrow B \bar{B}$ decays at asymmetric-energy $e^{+} e^{-}$colliders, any observed $C P T$ asymmetry should vary with sidereal time as the $\Upsilon(4 S)$ boost direction rotates together with the Earth [4], completing one revolution with respect to the Universe in one sidereal day (≈ 0.99727 solar day). We report a search for such effects using inclusive dilepton events recorded by the BABAR detector at the PEP-II collider.

The physical states of the $B^{0}-\bar{B}^{0}$ system are eigenstates of a complex 2×2 effective Hamiltonian and may be written as

$$
\begin{align*}
\left|B_{L}\right\rangle & =p \sqrt{1-\mathrm{z}}\left|B^{0}\right\rangle+q \sqrt{1+\mathrm{z}}\left|\bar{B}^{0}\right\rangle, \\
\left|B_{H}\right\rangle & =p \sqrt{1+\mathrm{z}}\left|B^{0}\right\rangle-q \sqrt{1-\mathrm{z}}\left|\bar{B}^{0}\right\rangle, \tag{1}
\end{align*}
$$

where L and H indicate "light" and "heavy." The complex parameter z vanishes if $C P T$ is preserved. T invariance implies $|q / p|=1$, and $C P$ invariance requires $|q / p|=1$ and $\mathbf{z}=0$.

The leading-order $C P T$-violating contributions in the SME imply z depends on the meson 4 velocity $\beta^{\mu}=\gamma(1, \vec{\beta})$ in the observer frame as [5]

$$
\begin{equation*}
\mathbf{z} \approx \frac{\beta^{\mu} \Delta a_{\mu}}{\Delta m-i \Delta \Gamma / 2} . \tag{2}
\end{equation*}
$$

Here $\beta^{\mu} \Delta a_{\mu}$ is the real part of the difference between the diagonal elements of the effective Hamiltonian, and the magnitude of the decay rate difference $\Delta \Gamma=\Gamma_{H}-\Gamma_{L}$ is known to be small compared to the $B^{0}-\bar{B}^{0}$ oscillation frequency $\Delta m=m_{H}-m_{L}$. The sidereal time dependence of z arises from the rotation of $\vec{\beta}$ relative to the constant vector $\Delta \vec{a}$. The Δa_{μ} contain flavor-dependent $C P T$ and Lorentz-violating coupling coefficients for the valence quarks in the B^{0} meson. Analogous, but distinct, Δa_{μ} apply to oscillations of other neutral mesons. Limits on the Δa_{μ} specific to $K^{0} \bar{K}^{0}$ oscillations [6] and on the Δa_{μ} specific to $D^{0} \bar{D}^{0}$ oscillations [7] have been reported by the KTeV and FOCUS collaborations, respectively. KTeV has also reported constraints on sidereal-time variation of the $C P T$ violation parameter $\phi_{+-}[8]$.

We approximate the 4 -velocity of each B meson by the $\Upsilon(4 S) 4$-velocity so that z is common to each B in a pair. We choose the meson 3 -velocity to lie along $-\hat{z}$ in the rotating laboratory frame shown in Fig. 1. The non-rotating frame containing the constant vector $\Delta \vec{a}$ has \hat{Z} along the Earth's rotation axis, corresponding to declination 90° in celestial equatorial coordinates. \hat{X} and \hat{Y}, each in the equatorial plane, lie at right ascension 0° and 90°, respectively. At sidereal time $\hat{t}=0, \hat{z}$ lies in the $\hat{X}-\hat{Z}$ plane and \hat{y} is coincident with \hat{Y}. The $C P T$ parameter z may then be expressed as

$$
\begin{equation*}
\mathrm{z} \equiv \mathrm{z}(\hat{t})=\frac{\gamma}{\Delta m-i \Delta \Gamma / 2}\left[\Delta a_{0}-\beta \Delta a_{Z} \cos \chi-\beta \sin \chi\left(\Delta a_{Y} \sin \Omega \hat{t}+\Delta a_{X} \cos \Omega \hat{t}\right)\right], \tag{3}
\end{equation*}
$$

where $\cos \chi=\hat{z} \cdot \hat{Z}$ and $\Omega=2 \pi / 24 \mathrm{rad} \cdot$ sidereal-hour ${ }^{-1}$ is the Earth's sidereal frequency.
We use the latitude $\left(37.4^{\circ} \mathrm{N}\right)$ and longitude $\left(122.2^{\circ} \mathrm{W}\right)$ of the BABAR detector, together with the Lorentz boost of the $\Upsilon(4 S)\left(\beta \gamma=0.55\right.$ directed 37.8° east of south), to determine $\cos \chi=0.63$

Figure 1: Basis $(\hat{x}, \hat{y}, \hat{z})$ for the rotating laboratory frame, and basis $(\hat{X}, \hat{Y}, \hat{Z})$ for the fixed nonrotating frame. The laboratory frame precesses around the Earth's rotation axis \hat{Z} at the sidereal frequency Ω. The angle between \hat{Z} and the direction \hat{z} opposite to the $\Upsilon(4 S)$ boost direction at PEP-II is $\chi=51^{\circ}$.
and $\hat{t}=\left(\hat{t}_{G}+7.3\right)$ sidereal-hours, where \hat{t}_{G} is Greenwich Mean Sidereal Time (GMST) for each event; hence

$$
\begin{equation*}
\mathrm{z}(\hat{t})=\frac{\left[1.14 \Delta a_{0}-0.35 \Delta a_{Z}-0.43\left(\Delta a_{Y} \sin \Omega \hat{t}+\Delta a_{X} \cos \Omega \hat{t}\right)\right]}{\Delta m-i \Delta \Gamma / 2} . \tag{4}
\end{equation*}
$$

We convert the "timestamp" that records when the event occurred to the Julian date (J) and calculate GMST as specified by the U.S. Naval Observatory [9]:

$$
\begin{equation*}
\hat{t}_{G}=\bmod (18.697374558+24.06570982441908 \mathrm{D}, 24) \tag{5}
\end{equation*}
$$

where $\mathrm{D}=\mathrm{J}-2451545.0$ is the number of Julian days since $12^{\mathrm{h}}: 00$ Universal Time on January 1, 2000.

The clock used to set the event timestamp has a rate governed by the PEP-II 59.5 MHz master oscillator and is resynchronized with U.S. time standards via Network Time Protocol at intervals of less than four months. During such intervals the event timestamps are conservatively estimated to accumulate absolute errors of less than 30 seconds per month. The sidereal phase of each timestamp is therefore determined to better than 0.2%.

Since sidereal time gains 12 hours every six months relative to solar time, possible day/night variations in detector response tend to cancel over sidereal time for long data-taking periods. The data used in this analysis were accumulated over a period of more than four years.

Inclusive dilepton events, where both B mesons decay semileptonically ($b \rightarrow X \ell \nu$, with $\ell=e$ or μ), comprise 4% of all $\Upsilon(4 S) \rightarrow B \bar{B}$ decays and provide a very large data sample for studies of $C P T$ violation in mixing. In direct semileptonic neutral B decays, the flavor $B^{0}\left(\bar{B}^{0}\right)$ is tagged by the charge of the daughter lepton $\ell^{+}\left(\ell^{-}\right)$.

At the $\Upsilon(4 S)$ resonance, neutral B mesons are produced in a coherent P-wave state. The B mesons remain in orthogonal flavor states until one decays, after which the flavor of the other B meson continues to evolve in time. Neglecting second order terms in z, the decay rates for the three semileptonic decay configurations ($\ell^{+} \ell^{+}, \ell^{-} \ell^{-}, \ell^{+} \ell^{-}$) are given by

$$
\begin{aligned}
& N^{++} \propto e^{-\Gamma|\Delta t|}|p / q|^{2}\{\cosh (\Delta \Gamma \Delta t / 2)-\cos (\Delta m \Delta t)\} \\
& N^{--} \propto e^{-\Gamma|\Delta t|}|q / p|^{2}\{\cosh (\Delta \Gamma \Delta t / 2)-\cos (\Delta m \Delta t)\} \\
& N^{+-} \propto e^{-\Gamma|\Delta t|}\{\cosh (\Delta \Gamma \Delta t / 2)-2 \operatorname{Re} \mathbf{z} \sinh (\Delta \Gamma \Delta t / 2)+\cos (\Delta m \Delta t)+2 \operatorname{Im} z \sin (\Delta m \Delta t)\},(6)
\end{aligned}
$$

where Γ is the average neutral B decay rate, and Δt is the difference between the proper decay times of the two B mesons. The sign of Δt has a physical meaning only for opposite-sign dileptons and is given by $\Delta t=t^{+}-t^{-}$, where $t^{+}\left(t^{-}\right)$corresponds to $\ell^{+}\left(\ell^{-}\right)$, respectively.

The opposite-sign dilepton $C P T$ asymmetry $A_{C P T}$, between events with $\Delta t>0$ and $\Delta t<0$, compares the oscillation probabilities $P\left(B^{0} \rightarrow B^{0}\right)$ and $P\left(\bar{B}^{0} \rightarrow \bar{B}^{0}\right)$ and is sensitive to $C P T$ violation through the parameter z :

$$
\begin{align*}
A_{C P T}(|\Delta t|) & =\frac{P\left(B^{0} \rightarrow B^{0}\right)-P\left(\bar{B}^{0} \rightarrow \bar{B}^{0}\right)}{P\left(B^{0} \rightarrow B^{0}\right)+P\left(\bar{B}^{0} \rightarrow \bar{B}^{0}\right)}=\frac{N^{+-}(\Delta t>0)-N^{+-}(\Delta t<0)}{N^{+-}(\Delta t>0)+N^{+-}(\Delta t<0)} \\
& \simeq 2 \frac{-\operatorname{Re} z \sinh (\Delta \Gamma \Delta t / 2)+\operatorname{Im} z \sin (\Delta m \Delta t)}{\cosh (\Delta \Gamma \Delta t / 2)+\cos (\Delta m \Delta t)} . \tag{7}
\end{align*}
$$

The experimental bound on $|\Delta \Gamma|[10]$ is sufficiently small for the approximation $\operatorname{Re} z \sinh (\Delta \Gamma \Delta t / 2) \simeq$ $\Delta \Gamma \times \operatorname{Rez} \times(\Delta \mathrm{t} / 2)$ to be valid over the range $-15<\Delta t<15 \mathrm{ps}$ used in this analysis, and we measure the product $\Delta \Gamma \times \operatorname{Re} z$ instead of $\operatorname{Re} z$ alone.

We present measurements of $\operatorname{Im} z$ and $\Delta \Gamma \times \operatorname{Re} z$ using a simultaneous two-dimensional likelihood fit to the observed Δt and sidereal time (\hat{t}) distributions of opposite-sign and same-sign dilepton events. Inclusion of the same-sign events allows a better determination of the fraction of non-signal events (called "obc" in Sect. 3) in which the lepton from one B meson is not a direct daughter. We search for variations in z of the form

$$
\begin{equation*}
\mathrm{z}=\mathrm{z}_{0}+\mathrm{z}_{1} \cos (\Omega \hat{t}+\phi) \tag{8}
\end{equation*}
$$

with a period of one sidereal day, and extract values for the $C P T$ - and Lorentz-violating coupling coefficients Δa_{μ} in the SME from the measured quantities $\operatorname{Im} z_{0}, \operatorname{Im} z_{1}, \Delta \Gamma \times \operatorname{Re} z_{0}$, and $\Delta \Gamma \times \operatorname{Re} z_{1}$. This extends our previous sidereal-time-independent analysis that measured $\operatorname{Im} z_{0}, \Delta \Gamma \times \operatorname{Re} z_{0}$, and $|q / p|$ with the same events [11]. In the decay rates, we use $|\Delta \Gamma|=6 \times 10^{-3} \mathrm{ps}^{-1}$ in the $\cosh (\Delta \Gamma \Delta t / 2)$ term and $|q / p|=1$, consistent with the values reported in Ref. [10] and Ref. [11], respectively. In a complementary approach, we use the periodogram method [12], developed for studies of variable stars, to detect directly any periodic variations in z over a wide range of frequencies and to measure their spectral power $\mathrm{P}(\nu)$.

2 THE BABAR DETECTOR AND DATASET

This analysis is based on about 232 million $\Upsilon(4 S) \rightarrow B \bar{B}$ decays collected during 1999-2004 with the BABAR detector at the PEP-II asymmetric-energy $e^{+} e^{-}$storage ring. An additional $16 \mathrm{fb}^{-1}$ of "off-resonance" data recorded 40 MeV below the $\Upsilon(4 S)$ is used to model continuum background.

The BABAR detector is described in detail elsewhere [13]. This analysis uses the tracking system composed of a five-layer silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH), the

Cherenkov radiation detector (DIRC) for charged $\pi-K$ discrimination, the $\mathrm{CsI}(\mathrm{Tl})$ calorimeter (EMC) for electron identification, and the 18-layer flux return (IFR) located outside the 1.5-T solenoid coil and instrumented with resistive-plate chambers for muon identification and hadron rejection. A detailed Monte Carlo program based on GEANT4 [14] is used to simulate the response and performance of the BABAR detector.

3 ANALYSIS METHOD AND LIKELIHOOD FIT

The event selection is similar to that described in Ref. [15]. Non- $B \bar{B}$ background, mainly due to $e^{+} e^{-} \rightarrow q \bar{q}(q=u, d, s, c)$ continuum events, is suppressed by applying requirements on the shape and the topology of the event.

Lepton candidate tracks must have at least 12 hits in the DCH , at least one z-coordinate measurement in the SVT, and momentum between 0.8 and $2.3 \mathrm{GeV} / c$ in the $\Upsilon(4 S)$ rest frame. Electrons are selected by requirements on the ratio of the energy deposited in the EMC to the momentum measured in the DCH. Muons are identified through the energy released in the EMC, as well as the strip multiplicity, track continuity, and penetration depth in the IFR. Lepton candidates are rejected if their signal in the DIRC is consistent with that of a kaon or a proton. The electron and muon selection efficiencies are about 85% and 55%, with pion misidentification probabilities around 0.2% and 3%, respectively.

Electrons from photon conversions are identified and rejected with a negligible loss of efficiency for signal events. Leptons from J / ψ and $\psi(2 S)$ decays are identified by pairing them with other oppositely-charged candidates of the same lepton species, selected with looser criteria. The event is rejected if the invariant mass of any such lepton pair satisfies $3.037<m_{\ell^{+} \ell^{-}}<3.137 \mathrm{GeV} / c^{2}$ or $3.646<m_{\ell^{+} \ell^{-}}<3.726 \mathrm{GeV} / c^{2}$. Remaining events with at least two leptons are retained, and the two highest momentum leptons in the $\Upsilon(4 S)$ rest frame are used as the dilepton candidates.

Separation between direct leptons (" $b \rightarrow \ell$ ") and background cascade leptons from the " $b \rightarrow$ $c \rightarrow \ell$ " decay chain is achieved with a neural network that combines five discriminating variables: the momenta of the two lepton candidates, the angle between the momentum directions of the two leptons, and the total visible energy and missing momentum in the event, all computed in the $\Upsilon(4 S)$ rest frame. Of the original sample of 232 million $B \bar{B}$ pairs, 1.4 million pass the selection.

In the inclusive approach used here, the z coordinate of the B decay point is approximated by the z coordinate of the lepton candidate's point of closest approach in the transverse plane to our best estimate of the (x, y) decay point of the $\Upsilon(4 S)$. In the transverse plane, both the intersection point of the lepton tracks and the beam-spot position provide information about the $\Upsilon(4 S)$ decay point. We combine this information in a χ^{2}-fit that optimizes our estimate of the $\Upsilon(4 S)$ decay point in the transverse plane using the transverse distances to the two lepton tracks and the transverse distance to the beam-spot position. The proper time difference Δt between the two B meson decays is taken as $\Delta t=\Delta z /\langle\beta \gamma\rangle c$, where Δz is the difference between the z coordinates of the B decay points, with the same sign convention as for Δt, and $\langle\beta \gamma\rangle=0.55$ is the nominal Lorentz boost. For same-sign dileptons, the sign of Δt is chosen randomly.

A large control sample of $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}(\gamma)$ events, with true $\Delta z=0$, was used to check for any sidereal-time-dependent bias in the Δz measurement that could mimic a signal for Lorentz violation. The measured amplitude for such a bias at the sidereal frequency is $(0.015 \pm 0.025) \mu \mathrm{m}$, consistent with no variation around the mean value $\langle\Delta z\rangle=(0.030 \pm 0.018) \mu \mathrm{m}$. The corresponding amplitude for a sidereal-time-dependent bias in Δt for $B \bar{B}$ events is $(9 \pm 15) \times 10^{-5} \mathrm{ps}$. Similar amplitudes are found for possible day/night variations in the Δz and Δt measurements.

We model the contributions to our sample from $B \bar{B}$ decays using five categories of events, i, each represented by a probability density function (PDF) in Δt and sidereal time \hat{t}, denoted by $\mathcal{P}_{i}^{n, c}$. Their shapes are determined using the $B^{0} \bar{B}^{0}(n)$ and $B^{+} B^{-}(c)$ Monte Carlo simulation separately, with the approach described in Ref. [16].

The five categories of dilepton $B \bar{B}$ decays, with contributions estimated from Monte Carlo simulation, are the following. Pure signal events with two direct leptons (sig), comprising 81% of the selected $B \bar{B}$ events, give information about the $C P T$ parameter z. "Opposite B cascade" (obc) events, where the direct lepton and the cascade lepton come from different B decays, contribute about 9%. "Same B cascade" ($s b c$) events, in which the direct lepton and the cascade lepton stem from the same B decay, contribute around 4%. About 3% of the dilepton events originate from the decay chain " $b \rightarrow \tau^{-} \rightarrow \ell^{-}$" $(1 d 1 \tau)$, which tags the B flavor correctly. The remaining $B \bar{B}$ events (other) consist mainly of one direct lepton and one lepton from the decay of a charmonium resonance from the other B decay.

The signal event PDFs, $\mathcal{P}_{s i g}^{n, c}$, are the convolution of an oscillatory term containing the siderealtime dependent $C P T$ parameter (Eq. 6) for neutral B decays (or an exponential function for charged B decays) with a resolution function that is the sum of three Gaussians (core, tail, and outlier) with means fixed to zero [17]. The widths of the narrower core and tail Gaussians are free parameters in the fit to data; the width of the outlier Gaussian is fixed to 8 ps . The fractions of all three Gaussians are determined by the fit: the tail and outlier fractions are free parameters, and the sum of the three fractions is constrained to unity.

The obc event PDFs, $\mathcal{P}_{o b c}^{n, c}$, are modeled by the convolution of $(\Delta t, \hat{t})$-dependent terms, similar in form to those for signal, with a resolution function that takes into account the effect of the charmed meson lifetimes. Since both short-lived D^{0} and D_{s}^{+}, and long-lived D^{+}mesons are involved in cascade decays, the resolution function for the long-lived and short-lived components is the convolution of a double-sided exponential with the sum of three Gaussians. To allow for possible outliers not present in the Monte Carlo simulation, the fraction of the outlier Gaussian is a free parameter in the fit to data. The parameterization of the $s b c$ event PDFs, $\mathcal{P}_{s b c}^{n, c}$, account for the lifetimes of charmed mesons in a similar way.

The PDFs for $1 d 1 \tau$ events, $\mathcal{P}_{1 d 1 \tau}^{n, c}$, are similar to those for the signal events. The resolution function takes into account the τ lifetime and is chosen to be the convolution of two doublesided exponentials with two Gaussians. The PDFs for the remaining $B \bar{B}$ events, $\mathcal{P}_{o t h e r}^{n, c}$, are the convolution of an exponential function with an effective lifetime and two Gaussians.

The fractions $\left(f_{s b c}^{n, c}, f_{1 d 1 \tau}^{n, c}\right.$ and $\left.f_{o t h e r}^{n, c}\right)$ of $s b c, 1 d 1 \tau$ and other events are determined directly from the $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$Monte Carlo simulations. The fraction f_{+-}of $B^{+} B^{-}$events and the fraction $f_{o b c}^{n}$ of $B^{0} \bar{B}^{0} o b c$ events are free parameters in the fit to data. The ratio $f_{o b c}^{c} / f_{o b c}^{n}$ is constrained to the estimate obtained from Monte Carlo samples.

Non- $B \bar{B}$ events are estimated, using off-resonance data, to comprise $f_{\text {cont }}=(3.1 \pm 0.1) \%$ of the dilepton candidates. The PDF for this component is modeled using off-resonance dilepton candidates selected with looser criteria and on-resonance events that fail the continuum-rejection criteria.

The $C P T$ violation parameter z is extracted from a binned maximum likelihood fit to the events that pass the dilepton selection. The likelihood \mathcal{L} contains the ($\Delta t, \hat{t})$-dependent PDFs described previously and combines 24 sidereal-time bins.

The likelihood for each sidereal-time bin is given by

$$
\begin{aligned}
\mathcal{L}(\Delta t) & =f_{\text {cont }} \mathcal{P}_{\text {cont }}+\left(1-f_{\text {cont }}\right)\left\{f_{+-} \mathcal{P}_{B^{+} B^{-}}+\left(1-f_{+-}\right) \mathcal{P}_{B^{0} \bar{B}^{0}}\right\}, \text { where } \\
\mathcal{P}_{B^{0} \bar{B}^{0}} & =\left(1-f_{\text {sig }}^{n}\right) \mathcal{P}_{\text {casc }}^{n}+f_{\text {sig }}^{n} \mathcal{P}_{\text {sig }}^{n},
\end{aligned}
$$

$$
\begin{align*}
\mathcal{P}_{B^{+} B^{-}} & =\left(1-f_{\text {sig }}^{c}\right) \mathcal{P}_{\text {casc }}^{c}+f_{\text {sig }}^{c} \mathcal{P}_{s i g}^{c}, \\
\mathcal{P}_{\text {casc }}^{n, c} & =f_{\text {other }}^{n, c} \mathcal{P}_{\text {other }}^{n, c}+f_{1 d 1 \tau}^{n,} \mathcal{P}_{1 d 1 \tau}^{n, c}+f_{s b c}^{n, c} \mathcal{P}_{s b c}^{n, c}+f_{o b c}^{n, c} \mathcal{P}_{o b c}^{n, c} . \tag{9}
\end{align*}
$$

Here we omit small charge asymmetries $\left(\sim 10^{-3}\right)$ induced by charge-dependent lepton reconstruction and identification efficiencies. While affecting the same-sign decay rates, these asymmetries cancel at first order for opposite-sign dilepton events. Our previous sidereal-time-independent analysis [11] found these asymmetries to be a source of systematic uncertainty only for $|q / p|$.

The likelihood fit gives $\operatorname{Im} z_{0}=(-14.1 \pm 7.3) \times 10^{-3}, \Delta \Gamma \times \operatorname{Re} z_{0}=(-7.2 \pm 4.1) \times 10^{-3} \mathrm{ps}^{-1}$, $\operatorname{Im} z_{1}=(-24.0 \pm 10.7) \times 10^{-3}$, and $\Delta \Gamma \times \operatorname{Re} z_{1}=(-18.8 \pm 5.5) \times 10^{-3} \mathrm{ps}^{-1}$. The statistical correlation between the measurements of $\operatorname{Im} z_{0}$ and $\Delta \Gamma \times \operatorname{Re} z_{0}$ is 76%; between the measurements of $\operatorname{Im} z_{1}$ and $\Delta \Gamma \times \operatorname{Re} z_{1}$ it is 79%. The fitted fractions of $B^{+} B^{-}$and obc events are $f_{+-}=(59.1 \pm 0.3) \%$ and $f_{o b c}^{n}=(10.7 \pm 0.1) \%$, respectively.

Figure 2 shows the asymmetry $A_{C P T}$, defined in Eq. 7, as a function of sidereal time. The curve is a projection of the two-dimensional asymmetry onto the sidereal-time axis. To exhibit better the measured asymmetry, the projection is performed by integrating over $|\Delta t|>3$ ps thereby omitting highly-populated bins near $|\Delta t|=0$ where any asymmetry is predicted to be small and is diluted by Δt resolution effects.

Figure 2: The asymmetry $A_{C P T}$, integrated over $|\Delta t|>3 \mathrm{ps}$, as a function of Greenwich Mean Sidereal Time in seconds folded over a period of 24 sidereal hours. The curve is a projection from the two-dimensional likelihood fit onto the sidereal time axis.

4 SYSTEMATIC STUDIES

There are several sources of systematic uncertainty in these measurements. To determine their magnitude, we vary each source of systematic effect by its known or estimated uncertainty, and take the resulting deviation in each of the measured parameters as its error.

The widths of the core and tail Gaussians of the resolution function for the $o b c$ and $s b c$ categories as well as the pseudo-lifetime for the $1 d 1 \tau$ and other categories are varied separately by 10%. This
variation is motivated by comparing the fitted parameters of the signal resolution function obtained from $B \bar{B}$ Monte Carlo samples and from data. The fractions of the short-lived and long-lived charmed meson components for $o b c$ and $s b c$ are varied by 10%. Modeling of the PDFs is the main source of systematic uncertainty in $\operatorname{Im} z_{0}$.

We have also varied the parameters $\Delta m, \tau_{B^{0}}$ and $\tau_{B^{ \pm}}$independently within their known uncertainties [18]. For $\Delta \Gamma$, we have allowed for 3σ deviations from the value reported in Ref. [10] by varying $|\Delta \Gamma|$ over the range $0-0.1 \mathrm{ps}^{-1}$. The lifetimes $\tau_{B^{0}}$ and $\tau_{B^{ \pm}}$are the dominant sources of systematic uncertainty in $\operatorname{Im} z_{1}$ and $\Delta \Gamma \times \operatorname{Re} z_{1}$. The dominant systematic uncertainty in $\Delta \Gamma \times \operatorname{Re} z_{0}$ is imperfect knowledge of the absolute z scale of the detector and residual uncertainties in the SVT local alignment. A possible sidereal-time-dependent bias in the Δt measurement with amplitude $24 \times 10^{-5} \mathrm{ps}$, derived from the amplitude $(9 \pm 15) \times 10^{-5} \mathrm{ps}$ found with $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}(\gamma)$ events, contributes a negligible systematic uncertainty.

Table 1: Summary of systematic uncertainties for $\operatorname{Im} z_{0}, \Delta \Gamma \times \operatorname{Re} \mathbf{z}_{0}, \operatorname{Im} \mathbf{z}_{1}$, and $\Delta \Gamma \times \operatorname{Re} \mathbf{z}_{1}$.

Systematic Effects	$\sigma\left(\operatorname{Im} \mathbf{z}_{0}\right)$ $\left(\times 10^{-3}\right)$	$\sigma\left(\Delta \Gamma \times \operatorname{Re} \mathbf{z}_{0}\right)$ $\left(\times 10^{-3} \mathrm{ps}^{-1}\right)$	$\sigma\left(\operatorname{Im} \mathrm{z}_{1}\right)$ $\left(\times 10^{-3}\right)$	$\sigma\left(\Delta \Gamma \times \operatorname{Re} \mathbf{z}_{1}\right)$ $\left(\times 10^{-3} \mathrm{ps}^{-1}\right)$
PDF modeling	± 2.0	± 1.0	± 2.5	± 1.2
Bkgd component fractions	± 0.1	± 0.1	± 0.2	± 0.2
$\Delta \Gamma, \Delta m, \tau_{B^{0}}, \tau_{B^{ \pm}}$	± 1.3	± 1.0	± 4.9	± 3.6
SVT alignment	± 0.6	± 1.5	± 2.0	± 1.1
Total	± 2.4	± 2.1	± 5.9	± 4.0

For each parameter, the total systematic uncertainty is the sum in quadrature of the estimated systematic uncertainties from each source, as summarized in Table 1.

$5 \quad C P T$ VIOLATION PARAMETER FREQUENCY ANALYSIS

To perform a more general search for periodic variations in the $C P T$ violation parameter z over a wide frequency range, we adopt the periodogram method [12] used in astronomy to study the periodicity of variable stars such as Cepheids. For each test frequency ν, the method determines the spectral power $\mathrm{P}(\nu)$, defined by

$$
\begin{equation*}
\mathrm{P}(\nu) \equiv \frac{1}{N \sigma_{w}^{2}}\left|\sum_{j=1}^{N} w_{j} e^{2 i \pi \nu T_{j}}\right|^{2}, \tag{10}
\end{equation*}
$$

from N data points measured at times T_{j} and having weights w_{j} with variance σ_{w}^{2}. In our case T_{j} is the Universal Time of event j. In the absence of an oscillatory signal, the probability that the largest $\mathrm{P}(\nu)$ exceeds a value S is given by

$$
\begin{equation*}
\operatorname{Pr}\left\{\mathrm{P}_{\max }(\nu)>S ; M\right\}=1-\left(1-e^{-S}\right)^{M}, \tag{11}
\end{equation*}
$$

where M is the number of independent frequencies tested.
Our search uses 20994 test frequencies from 0.26 year $^{-1}$ to 2.1 day $^{-1}$ in units of (solar time) ${ }^{-1}$, with steps of 10^{-4} day $^{-1}$. To guard against underestimating the spectral power of a signal, we have

Figure 3: Periodograms for opposite-sign dileptons showing spectral power $\mathrm{P}(\nu)$ for weights $w_{j} \propto$ Δt_{j} (top), $w_{j} \propto \sin \left(\Delta m \Delta t_{j}\right)$ (center), and $w_{j} \propto \Delta m \Delta t_{j}-\sin \left(\Delta m \Delta t_{j}\right)$ (bottom) providing sensitivity to $\Delta \Gamma \times \operatorname{Re} z_{1}$, to $\operatorname{Im} z_{1}$, and to $\operatorname{Im} z_{1}$ subject to the SME constraint $\Delta \Gamma \times \operatorname{Rez}=2 \Delta m \operatorname{Im} \mathbf{z}$, respectively.
oversampled the frequency range by a factor of about 2.2. The number of independent frequencies is about 9500 . Twenty-seven test frequencies lie between the Earth's sidereal and solar rotation frequencies. Each weight w_{j} depends on the decay time difference Δt_{j} reconstructed for event j occuring at time T_{j}. Periodic variations in z affect the decay rate N^{+-}through the terms $\operatorname{Im} z \sin (\Delta m \Delta t)$ and $\operatorname{Re} \mathbf{z} \sinh (\Delta \Gamma \Delta t / 2) \simeq \Delta \Gamma \times \operatorname{Re} z(\Delta t / 2)$ in Eq. 6. Sensitivity to variations in $\Delta \Gamma \times \operatorname{Re} z$ and $\operatorname{Im} z$ is attained by employing weights $w_{j} \propto \Delta t_{j}$ and $w_{j} \propto \sin \left(\Delta m \Delta t_{j}\right)$, respectively. In the context of the SME, the imaginary part of Eq. 2 implies $\Delta \Gamma \times \operatorname{Rez}=2 \Delta m \operatorname{Im} z$, and hence in Eq. 6 we have $\operatorname{Imz} \sin (\Delta m \Delta t)-\operatorname{Rez} \sinh (\Delta \Gamma \Delta t / 2) \simeq \operatorname{Im} \mathbf{z}[\sin (\Delta m \Delta t)-\Delta m \Delta t]$. Accordingly, we also search for periodic variations in $\operatorname{Im} z$ using weights $w_{j} \propto \Delta m \Delta t_{j}-\sin \left(\Delta m \Delta t_{j}\right)$.

Figure 3 shows the spectral powers $\mathrm{P}(\nu)$ measured in the opposite-sign dilepton data sample using the weights $\Delta t_{j}, \sin \left(\Delta m \Delta t_{j}\right)$, and $\Delta m \Delta t_{j}-\sin \left(\Delta m \Delta t_{j}\right)$. The largest spectral power obtained for each of these weights corresponds to statistical fluctuation probabilities of $62 \%, 36 \%$, and 76%, respectively, consistent with no periodic variation in the CPT violation parameter over the frequency range 0.26 year $^{-1}$ to 2.1 day $^{-1}$. At the Earth's sidereal frequency (≈ 1.0027 day $^{-1}$), $\mathrm{P}(\nu)=3.73,0.71$, and 6.24 for the three weight types. At the Earth's solar-day frequency, the corresponding $\mathrm{P}(\nu)=1.50,0.97$, and 1.47 .

To check the validity of these results, we performed several tests of the periodogram method using events from data and from Monte Carlo simulation. Test periodograms showed large spectral powers at expected frequencies for (i) a generic dilepton Monte Carlo sample assigned event times T_{j} with a 0.5 sidereal-day ${ }^{-1}$ frequency modulation, and (ii) unweighted dilepton data events, which give sensitivity to variations in the overall event rate - generally higher during night and weekend shifts, corresponding to frequencies of 1 day $^{-1}$ and 1 week $^{-1}$. Test periodograms for same-sign dilepton data events, which are not sensitive to $C P T$ violation, showed no significant spectral power. The largest $\mathrm{P}(\nu)$ value, obtained with Δt_{j} weights, corresponds to a statistical fluctuation probability of 7%. Test periodograms for opposite-sign dilepton data events, with the sign of Δt randomized to remove any measurable $C P T$ violation, also showed no significant spectral power. We used these periodograms to check whether the distribution of $\mathrm{P}(\nu)$ values has a probability density $\propto \exp \{-k \cdot \mathrm{P}(\nu)\}$ with $k=1$, consistent with Eq. 11. A fit to the $\mathrm{P}(\nu)$ values yields $k=1.006 \pm 0.001$ with $\chi^{2}=68.2$ for 53 degrees of freedom.

6 RESULTS

Figure 4 shows confidence level contours for the parameters $\operatorname{Im} z_{1}$ and $\Delta \Gamma \times \operatorname{Re} \mathbf{z}_{1}$ including both statistical and systematic errors. A significance of 2.2σ is found for periodic variations in the $C P T$ violation parameter z at the sidereal frequency, characteristic of Lorentz violation.

In the framework of the SME, the quantities $\operatorname{Im} z_{0}, \operatorname{Im} z_{1}, \Delta \Gamma \times \operatorname{Re} z_{0}$, and $\Delta \Gamma \times \operatorname{Re} z_{1}$ are related by Eq. 4 to the Δa_{μ} containing $C P T$ - and Lorentz-violating coupling coefficients. With $|\Delta \Gamma| \ll \Delta m$, and using the SME constraint $\Delta \Gamma \times \operatorname{Rez}=2 \Delta m \operatorname{Im} z$ implied by Eq. 2, we obtain

$$
\left.\begin{array}{rl}
1.14 \Delta a_{0}-0.35 \Delta a_{Z} & \approx(\Delta m / \Delta \Gamma) \Delta \Gamma \times \operatorname{Re} \mathbf{z}_{0} \tag{12}
\end{array}=2 \Delta m(\Delta m / \Delta \Gamma) \operatorname{Im} \mathbf{z}_{0}, ~ 子 ~ . ~\left(\Delta a_{Y}\right)^{2}\right] \approx\left[(\Delta m / \Delta \Gamma) \Delta \Gamma \times \operatorname{Re} \mathbf{z}_{1}\right]^{2}=4\left[\Delta m(\Delta m / \Delta \Gamma) \operatorname{Im} \mathbf{z}_{1}\right]^{2} .
$$

Taking into account error correlations between $\Delta \Gamma \times \operatorname{Re} z_{0}$ and $\operatorname{Im} z_{0}$, and between $\Delta \Gamma \times \operatorname{Re} z_{1}$ and $\operatorname{Im} z_{1}$, we find

$$
\Delta a_{0}-0.30 \Delta a_{Z} \quad \approx-(5.2 \pm 4.0)(\Delta m / \Delta \Gamma) \times 10^{-15} \mathrm{GeV}
$$

Figure 4: Confidence level contours for the parameters $\operatorname{Im} z_{1}$ and $\Delta \Gamma \times \operatorname{Re} z_{1}$ including both statistical and systematic errors. The correlation between the measurements of $\operatorname{Im} z_{1}$ and $\Delta \Gamma \times \operatorname{Re} z_{1}$ is 79%. The line contours indicate $1 \sigma, 2 \sigma$, and 3σ significance. The star at $\operatorname{Im} \mathbf{z}_{1}=\Delta \Gamma \times \operatorname{Re} \mathbf{z}_{1}=0$ indicates the condition for no sidereal-time dependence in z.

$$
\sqrt{\left(\Delta a_{X}\right)^{2}+\left(\Delta a_{Y}\right)^{2}} \approx(37 \pm 16)|\Delta m / \Delta \Gamma| \times 10^{-15} \mathrm{GeV}
$$

Here we use $\Delta m=(0.507 \pm 0.004) \mathrm{ps}^{-1}=(3.34 \pm 0.03) \times 10^{-13} \mathrm{GeV}$ [19], and note that lattice QCD calculations give $\Delta m / \Delta \Gamma \sim-200$ in the standard model [20].

7 CONCLUSIONS

We have used data containing 232 million $B \bar{B}$ pairs to perform a simultaneous likelihood fit of same-sign and opposite-sign dilepton events that includes both the decay time difference Δt and the sidereal time \hat{t} of each event. We have measured the $C P T$ violation parameter of form $\mathrm{z}=$ $\mathrm{z}_{0}+\mathrm{z}_{1} \cos (\Omega \hat{t}+\phi)$ and find

$$
\begin{aligned}
\operatorname{Im} z_{0} & =(-14.1 \pm 7.3 \text { (stat.) } \pm 2.4 \text { (syst.) }) \times 10^{-3}, \\
\Delta \Gamma \times \operatorname{Re} z_{0} & =\left(-7.2 \pm 4.1 \text { (stat.) } \pm 2.1 \text { (syst.)) } \times 10^{-3} \mathrm{ps}^{-1},\right. \\
\operatorname{Im} z_{1} & =(-24.0 \pm 10.7 \text { (stat.) } \pm 5.9 \text { (syst.) }) \times 10^{-3}, \\
\Delta \Gamma \times \operatorname{Re} z_{1} & =(-18.8 \pm 5.5 \text { (stat.) } \pm 4.0 \text { (syst.) }) \times 10^{-3} \mathrm{ps}^{-1} .
\end{aligned}
$$

A significance of 2.2σ, compatible with no sidereal-time dependence, is found for periodic variations in z at the sidereal frequency that are characteristic of Lorentz violation. The complementary periodogram method provides no strong evidence for Lorentz and $C P T$ violation, or for any periodicity
in \mathbf{z} over the frequency range 0.26 year $^{-1}$ to 2.1 day $^{-1}$. The results of the likelihood fit are used to constrain the quantities Δa_{μ} containing CPT- and Lorentz-violating coupling coefficients for neutral B oscillations in the general Lorentz-violating standard-model extension.

8 ACKNOWLEDGMENTS

The authors wish to thank V. Alan Kostelecký for his advice on interpreting the measured quantities in the standard-model extension and for providing Fig. 1, and Alain Milsztajn for his help with the periodogram analysis. We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), Institute of High Energy Physics (China), the Commissariat à l'Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Science and Technology of the Russian Federation, Ministerio de Educación y Ciencia (Spain), and the Particle Physics and Astronomy Research Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation.

References

[1] O. W. Greenberg, Phys. Rev. Lett. 89, 231602 (2002).
[2] D. Colladay and V. A. Kostelecký, Phys. Rev. D 55, 6760 (1997); Phys. Rev. D 58, 116002 (1998); V. A. Kostelecký, Phys. Rev. D 69, 105009 (2004).
[3] V. Alan Kostelecký, Phys. Rev. Lett. 80, 1818 (1998).
[4] V. Alan Kostelecký, Phys. Rev. D 64, 076001 (2001).
[5] Ref. [3] uses the " $w \xi$ " formalism. In our notation $\mathbf{z}=-\xi$ and $|q / p|=w$.
[6] KTeV Collaboration, H. Nguyen, in V. A. Kostelecký, ed., CPT and Lorentz Symmetry II, World Scientific, Singapore, 2002.
[7] FOCUS Collaboration, J. M. Link et al., Phys. Lett. B 556, 7 (2003).
[8] KTeV Collaboration, Y. B. Hsiung, Nucl. Phys. B (Proc. Suppl.) 86, 312 (2000).
[9] http://aa.usno.navy.mil/faq/docs/GAST.html gives equations for GMST adapted from Appendix A of USNO Circular No. 163 (1981).
[10] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 70, 012007 (2004).
[11] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 96, 251802 (2006).
[12] N. R. Lomb, Astrophys. Space Sci., 39, 447 (1976); J. D. Scargle, Astrophys. J, 263, 835 (1982).
[13] BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Methods A479, 1 (2002).
[14] S. Agostinelli et al., Nucl. Instrum. Methods A506, 250 (2003).
[15] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 88, 231801 (2002).
[16] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 88, 221803 (2002).
[17] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 66, 032003 (2002).
[18] Heavy Flavor Averaging Group, K. Anikeev et al., hep-ex/0505100.
[19] 2006 Review of Particle Physics, W.-M. Yao et al., Journal of Physics G 33, 1 (2006).
[20] O. Schneider, " $B^{0}-\bar{B}^{0}$ Mixing" in W.-M. Yao et al., Journal of Physics G 33, 1 (2006).

[^0]: ${ }^{1}$ Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy

[^1]: ${ }^{2}$ Also with Università della Basilicata, Potenza, Italy
 ${ }^{3}$ Also with Università della Basilicata, Potenza, Italy

[^2]: ${ }^{4}$ Also at Laboratoire de Physique Corpusculaire, Clermont-Ferrand, France

