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Abstract

We develop some properties of the non-BPS attractive STU black hole. Our principle
result is the construction of exact solutions for the moduli, the metric and the vectors
in terms of appropriate harmonic functions. In addition, we find a spherically-symmetric
attractor carrying p0 (D6 brane) and qa (D2 brane) charges by solving the non-BPS
attractor equation (which we present in a particularly compact form) and by minimizing
an effective black hole potential. Finally, we make an argument for the existence of multi-
center attractors and conjecture that if such solutions exist they may provide a resolution
to the existence of apparently unstable non-BPS “attractors.”
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1 Introduction

The black hole attractor story (which began with BPS states – [1], [2], [3]) has experienced a
recent flurry of activity with regards to the existence of non-BPS attractors ([4], [5]). Other
interesting recent developments include the development of the attractor mechanism for flux
vacua ([6], [7]), the features of N = 8 attractors ([8], [9]) and several additional properties of
both BPS and non-BPS attractors ([10], [11], [12], [13] and [14]).

In particular, it seems that many of the interesting properties and features of attractive
BPS configurations are shared by non-BPS ones, so long as the black hole in question remains
extremal. For example the non-BPS attractor equation was proposed in [6] and developed in
[15].

Such recent developments lead one to speculate on what other attractive features may apply
to non-BPS extremal black holes. However, as we try to explore this situation, an immediate
problem arises. The first order BPS equations afford considerable simplifications that are not
present for the more general non-BPS situation. As a result it is considerably more difficult to
make progress understanding the properties of non-BPS attractors. One way to sidestep this
calculational intractability is to consider a simple sub-class: The STU black holes. As outlined
in more detail below, STU black holes can be constructed from compactifications of type IIA
string theory whose moduli space is described by four homogeneous (or three inhomogeneous)
co-ordinates. In particular, our goal in this paper is to demonstrate that, for the STU black
hole, we can find exact expressions for the moduli fields, the metric and the vectors throughout
the spacetime.

It is well established that, along with giving the attractive values of moduli, the BPS
attractor equation can also be used to give an exact expression for the moduli fields everywhere,
by taking the attractive values and replacing charges with appropriate harmonic functions
(details can be found in [16] , [17], [18] and [19]). While proving the equivalent statement for
non-BPS black holes is difficult, it can checked explicitly in the STU case, where we will discover
that the exact expressions for the moduli and the metric are given by a similar prescription as
for the BPS attractors.

This paper is organized as follows. In section 2, we review the non-BPS attractor equation
for STU black holes and find a new non-SUSY solution for a black hole carrying charges
Γ = (0, qa, p

0, 0) (corresponding to wrapped D2 and D6 branes, and manifestly dual to the
already known D0-D4 system). Next, in section 3, we perform the calculation advertised above,
and confirm that the non-BPS attractor has its moduli described by appropriate combinations
of harmonic functions. Finally, we speculate on the existence of multi-centered non-BPS black
holes. We argue that not only are such solutions plausible, but also that they will exhibit a
similar split attractor flow to the analogous BPS situation and also allow us to resolve apparently
unstable “attractors” (for example, non-BPS STU extremal black holes with charges Γ =
(q0, qa, p

0, pa), which have fixed values of the moduli at the horizon, but are unstable to small
perturbations).
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2 STU Black Holes and the Attractor Equation

We present here a brief review of the STU black hole and attractor behavior – further details
can be found in [4], [9], [15] and [20]. To start, we give an overview of the general framework
and then specialize to the STU black hole.

Consider type IIA string theory compactified on a large volume Calabi-Yau threefold. The
four dimensional low energy theory is an N = 2 supergravity with h1,1 vector multiplets and
h2,1 hypermultiplets. In the absence of hypermultiplets, the bosonic part of the action of the
four dimensional theory (in units with GN = 1) is described by

S =
1

16π

∫

d4x
√

|g|
(

− R
2

+Gab̄∂z
a · ∂z̄b̄ + Im(NΛΣ)FΛ · FΣ + Re(NΛΣ)FΛ · (∗F)Σ

)

. (2.1)

In the above, index a runs over 1 to h1,1 and index Λ runs through 0 to h1,1. The fermionic
part (the gravitino and the chiral gaugino) can be constructed via the supersymmetry trans-
formations:

δψAµ = DµǫA + εABT
−
µνγ

νǫB , (2.2)

δλaA = iγ · ∂zaǫA +
i

2
εABF−a · γǫB . (2.3)

ǫA is the fermionic parameter of the transformation and εAB is the SO(2) Ricci tensor. In
above transformation laws, T− and F−a are the two-form graviphoton and vetor multiplet field
strengths respectively. The integrals of these two two-forms on some two cycles give us the
central charge of the supersymmetry algebra and its moduli space covariant derivative:

Z = −1

2

∫

S2

T− , D̄āZ̄ = −1

2

∫

S2

F−bGbā . (2.4)

The STU models correspond to the subset of the above theories with h1,1 = 3 and the
internal space a T 6. Our analysis is restricted to the behavior of the vector multiplets, with
the moduli space of the theory thus described by the four homogenous coordinates XΛ. These
coordinates combine to give the STU prepotential:

F (X) =
X1X2X3

X0
. (2.5)

The Kähler potential and superpotential of the theory can be readily constructed from (2.5).

Working with the inhomogeneous coordinates zΛ = XΛ

X0 = (1, za) (a ∈ {1, 2, 3}) the Kähler
potential is:

K = − ln
(

−i(z1 − z̄1)(z2 − z̄2)(z3 − z̄3)
)

. (2.6)

The metric and connection on the moduli space then follow immediately:

Gab̄ = − δab

(za − z̄a)2
, Gab̄ = −δab(za − z̄a)2 , Γa

aa = − 2

za − z̄a
(no sum on a) . (2.7)

4



Let’s initially assume a static, spherically-symmetric spacetime, with a metric of the form:

ds2 = −e2U(r)dt2 + e−2U(r)dxidxi (2.8)

In this background it is straightforward to define electric and magnetic charges (details can be
found in appendix A of [15]) which give rise to a superpotential of the form

W = qΛX
Λ − pΛ∂ΛF , (2.9)

where qΛ and pΛ are electric and magnetic charges respectively. The set of charges (q0, qa, p
0, pa)

corresponds to the charges of (D0, D2, D6, D4) branes wrapped on (0, 2, 6, 4) cycles.

An effective potential for the moduli (in this spherically-symmetric, static spacetime )is
given by:

VBH = |DZ|2 + |Z|2 = Gab̄(DaZ)D̄b̄Z̄ + ZZ̄ . (2.10)

Z the central charge of the supersymmetry algebra and, in our case, is given by Z = eK/2W . If
the black hole in this solution is extremal (i.e. has zero temperature) then it will be an attractor
for the moduli – the values of the za will be fixed at the horizon, independently of their values
at infinity ([4], [15]).

The horizon values of the moduli can be obtained by minimizing the above effective poten-
tial – either directly or through the attractor equation described below. Note, however, that
the extremal point of VBH must be a minimum, else the attractor will be unstable to, say,
perturbations away from staticity. For BPS attractors this condition is always satisfied, for
non-BPS ones, however, we have to check the second derivatives of VBH explicitly.

2.1 The Attractor Equation

In this section, we derive an identity using the symplectic properties of N = 2 supergravity.
Then, by imposing the minimization condition of the black hole potential on the identity we
construct an algebraic relationship between the charges and the attractive values of the moduli.

If we define the covariantly holomorphic period vector Π = (LΛ MΛ), then the symplectic
structure of N = 2 supergravity relates the upper and lower components of the period vector
via the vector coupling in the following way:

MΛ = NΛΣL
Σ , DaMΛ = N̄ΛΣDaL

Σ . (2.11)

Now, we form a matrix by forming the tensor product of the period vector covariant derivative
with its complex conjugate

Gab̄DaΠ ⊗ D̄b̄Π̄ = Gab̄

(

DaL
ΛD̄b̄L̄

Σ DaMΛD̄b̄L̄
Σ

DaL
ΛD̄b̄M̄Σ DaMΛD̄b̄M̄Σ

)

= Gab̄

(

DaL
ΛD̄b̄L̄

Σ N̄Λ∆DaL
∆D̄b̄L̄

Σ

NΣ∆DaL
ΛD̄b̄L̄

∆ N̄Λ∆NΣΓDaL
∆D̄b̄L̄

Γ

)

, (2.12)
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where in the second line we have used (2.11). If we use the following special geometry identity1

Gab̄DaL
ΛD̄b̄L̄

Σ = −1

2
Im(N−1)ΛΣ − L̄ΛLΣ , (2.13)

then we find another useful identity

Gab̄DaΠ ⊗ D̄b̄Π̄ = − i

2

(

0 1
−1 0

)

− 1

2
M− Π̄ ⊗ Π , (2.14)

where matrix M is defined as

M ≡
(

Im(N−1)ΛΣ Re(N )Λ∆Im(N−1)∆Σ

Im(N−1)Λ∆Re(N )∆Σ Im(N )ΛΣ + Re(N )Λ∆Im(N−1)∆ΓRe(N )ΓΣ

)

. (2.15)

In fact, (2.14) expresses the tensor product of the covariant derivative of the period vector
with its complex conjugate in terms of the tensor product of the period vector itself with its
conjugate via the vector couplings.

Now, assume that Γ is the set of magnetic and electric charges Γ = (pΛ qΛ). We define Γ̃
by a symplectic rotation:

Γ̃ =

(

0 1
−1 0

)

Γ ,

(

0 1
−1 0

)

∈ Sp (2(h1,1 + 1),Z) . (2.16)

Recalling (2.9), it can easily be seen that the central charge can be expressed as Z = Γ̃t · Π.
Using this form, we can compute Gab̄(DaZ)D̄b̄Π̄ using (2.14):

Gab̄(DaZ)D̄b̄Π̄ = Γ̃t ·
(

Gab̄DaΠ ⊗ D̄b̄Π̄
)

. (2.17)

Thus, we have the following expression:

2iZ̄Π + 2iGab̄(DaZ)D̄b̄Π̄ = Γ − iΓ̃t ·M . (2.18)

It has been shown in [15], [21], and [22], that the symplectic invariant I1 is given by:

I1 = |Z|2 + |DZ|2 = −1

2
Γ̃t ·M · Γ̃ . (2.19)

Finally, we differentiate the above expression with respect to the charges and substitute for
(2.18):

Γ + i
∂I1

∂Γ̃
= 2iZ̄Π + 2iGab̄(DaZ)D̄b̄Π̄ . (2.20)

So far, everything we have said is generically true and independent of the detailed model.
However, if we restrict ourselves to STU models, then the symplectic invariant I1 is a function
of charges. It is given by I1 =

√

|W(Γ)|, in which W is given by:

W(Γ) = 4((p1q1)(p
2q2)+ (p1q1)(p

3q3)+ (p2q2)(p
3q3))− (pΛqΛ)2 − 4p0q1q2q3 +4q0p

1p2p3 . (2.21)

1 This identity can be proved by considering the inner product 〈DaΠ, D̄b̄Π̄〉 = −iGab̄ and using (2.11).
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In [16], Berhrndt et al. demonstrated that W(Γ) is an [SL(2,Z)]3 invariant which uniquely
determines the form of the STU metric and further −W has been established as the Cayley
hyperdeterminant by Duff in [23]. The fact we must use the absolute value of W in order that
this expression be valid for non-BPS attractors was discussed in [12] – here it was observed that
W(Γ) is positive for BPS attractors and negative for non-BPS ones.

Recalling that at an attractor point the effective black hole potential will be minimized (see
[4], [15]) we note that extremization of (2.10) gives:

2Z̄DâZ + i|ǫâb̂ĉ|ηb̂ ˆ̄dηĉˆ̄e(D̄ ˆ̄d
Z̄)(D̄ˆ̄eZ̄) = 0 . (2.22)

Hatted indices are for the tangent space and ηâˆ̄b is a flat Euclidean metric. In [9] this equation
was studied by embedding the N = 2 supergravity into an N = 8 one. Following the same
method we define Y0 ≡ iZ, and Ya ≡ D̄ˆ̄aZ̄; this gives us the solution:

Y0 = ρei(π−3φ) , Ya = ρeiφ . (2.23)

If we choose φ = 0, then (2.20) can be rewritten in the following form:

Γ + i
∂I1

∂Γ̃
= 2ρ(Π + i

3
∑

â=1

D̄ˆ̄aΠ̄) . (2.24)

Now, if we divide (2.24) by its zeroth component, then we follow [9] and obtain:

pΛ + i ∂I1
∂qΛ

p0 + i∂I1
∂q0

=
LΛ + i

∑3
â=1 D̄ˆ̄aL̄

Λ

L0 + i
∑3

â=1 D̄ˆ̄aL̄
0

(2.25)

qΛ − i ∂I1
∂pΛ

q0 − i ∂I1
∂p0

=
MΛ + i

∑3
â=1 D̄ˆ̄aM̄Λ

M0 + i
∑3

â=1 D̄ˆ̄aM̄0

. (2.26)

In fact, these equations are dual to each other and either set is sufficient to completely determine
the moduli at the horizon.

We now illustrate that an even simpler form of these equations can be found, as the r.h.s
simplifies significantly. Consider (2.25), since (with the vielbein ea

b̂
given by ea

b̂
= iδa

b (z
a − z̄a)):

Db̂L
c = ea

b̂
DaL

c = eK/2ea
b̂
(δc

a + (∂aK)zc) , (2.27)

we can readily establish:

Lc + i

3
∑

â=1

D̄ˆ̄aL̄
c = −2eK/2z̄c , L0 + i

3
∑

â=1

D̄ˆ̄aL̄
0 = −2eK/2 . (2.28)

As expected the above is independent of charges, and the values of the moduli at the horizon
for any Γ are thus given by:

zΛ(Γ) =
pΛ − i

∂I1(Γ)
∂qΛ

p0 − i
∂I1(Γ)

∂q0

. (2.29)
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This appears to be the simplest form of the non-BPS attractor equation for the STU model.

For the BPS case Ya vanishes and so a similar procedure to that used above will result in
an attractor equation of the form of (2.24), but with the r.h.s. containing only the first term.
Dividing such an expression by its zeroth component we would obtain:

zΛ(Γ) =
pΛ + i

∂I1(Γ)
∂qΛ

p0 + i
∂I1(Γ)

∂q0

. (2.30)

Of course, this is not simply the complex conjugate of (2.29), as in the BPS case W > 0, whilst
for the non-BPS case W < 0 (recall I1 =

√

|W|).

2.2 Solutions to the Attractor Equation

It is relatively straightforward to obtain solutions to the above attractor equation when we
restrict ourselves to a system with only D0 and D4 branes (q0 and pa charges). This attractor
was found in [5] by minimizing VBH – in fact, the solution here is not restricted to STU, i.e.
there may be any number of the moduli. We consider here, though, the complementary solution
with D6 and D2 branes (p0 and qa charges). The superpotential is then given by:

W (z1, z2, z3) = qaz
a + p0z1z2z3 . (2.31)

It is also straightforward to write down the symplectic invariant I1:

I1 =
√

±4p0q1q2q3 . (2.32)

A positive sign under the square root corresponds to the non-BPS attractor and a negative one
to the BPS one, since, as discussed above, W(Γ) is generally positive for charges corresponding
to BPS solutions and negative for those corresponding to non-BPS ones (it is evident from the
form of the solutions below that p0q1q2q3 < 0 for BPS attractors p0q1q2q3 > 0 otherwise).

From (2.32) it is trivial to use (2.30) to obtain the BPS attractive moduli values as:

z1 = −i
√

−q2q3
p0q1

, z2 = −i
√

−q1q3
p0q2

, z3 = −i
√

−q1q2
p0q3

. (2.33)

The non-BPS (from (2.29)) results have a similar form:

z1 = −i
√

q2q3

p0q1
, z2 = −i

√

q1q3

p0q2
, z3 = −i

√

q1q2

p0q3
. (2.34)

These results have been confirmed by minimizing VBH and by using the form of the attractor
equation given in [15] – these details of those calculations can be found in appendices A.1 and
A.2. It’s worth noting at this juncture that care must be taken with these solutions to ensure
that their signs are such that eK is positive. This point is discussed in somewhat more detail in
the appendix. We also observe that (2.29) and (2.30) can be used to find the attractor values
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of the moduli for the D0-D4 system addressed in [5] and [15]. As expected the BPS answers
are:

z1 = −i
√

q0p1

p2p3
, z2 = −i

√

q0p2

p3p1
, z3 = −i

√

q0p3

p1p2
. (2.35)

And the non-BPS:

z1 = −i
√

−q0p
1

p2p3
, z2 = −i

√

−q0p
2

p3p1
, z3 = −i

√

−q0p
3

p1p2
. (2.36)

As mentioned above, for a non-BPS attractor we are required to confirm that the extremal
point of the potential does correspond to a minima. It turns out that this is a somewhat subtle
and involved calculation. The details can be found in appendix A.3, but the short-answer to
the question of stability is (as in the D0-D4 case discussed in [5]): “It’s stable.”

Before moving on to a discussion of the complete solutions for the moduli fields we summarize
our knowledge of STU black hole attractors:

• All extremal STU black holes can exhibit attractor behavior, with the values of the moduli
at the horizon found by extremizing the effective potential VBH .

• Only those systems with extremum of the potential a minimum will form stable attrac-
tors. These systems include those with Γ = (q0, 0, 0, p

a) and those with Γ = (0, qa, p
0, 0).

Unstable “attractors” include those with all four types of charge, Γ = (q0, qa, p
0, pa); this

result was established in [5] (see appendix A.3 for details).

We shall return to the issue of stability when we consider multi-centered non-BPS black holes
in section 4. Now, however, we move on to the general solution for the moduli.

3 The Exact Non-BPS Solution

We now demonstrate explicitly the construction of exact solutions for the fields in the non-BPS
attractor. We begin with a general discussion, and then write down and prove the form of the
solutions.

3.1 Harmonic Functions and U-Duality

So far, we have calculated the value of moduli at the horizon of the supersymmetric and non-
supersymmetric STU black holes via the attractor mechanism. It turns out, however, that we
can do better than that – we can find solutions to the equations of motion for the moduli,
allowing us to obtain their values everywhere. This has already been done for the BPS case
(details can be found in [16], [17], [18] and [25]), and we will proceed in an analogous fashion.
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We work with the single-center spherically-symmetric, static metric ansatz:

ds2 = −e2Udt2 + e−2Udxidxi . (3.1)

The basic idea is that one takes the horizon (r = rh) values of the moduli, za(qΛ, p
Λ) and

replaces the charges with harmonic functions:

zΛ(H(x)) =
HΛ − i

∂I1(H)
∂HΛ

H0 − i
∂I1(H)

∂H0

. (3.2)

The metric is found through:
e−2U = I1(H) (3.3)

The harmonic functions H are:

H(τ) =
(

HΛ, HΛ

)

=
(

ΓΛ,ΓΛ

)

τ +
(

hΛ, hΛ

)

, τ =
1

|r − rh|
. (3.4)

I1 is the symplectic invariant defined above and there is a constraint on h: 〈h,Γ〉 = 0. H arises
from the solution to the vector equations of motion where the vector fields can be represented
by the doublet (FΛ, GΛ). These fields are not independent:

GΛ = ReNΛΣ(z, z̄)FΛ − ImNΛΣ(z, z̄) ∗ FΛ (3.5)

The equations of motion then require a vector field potential given by (AΛ,BΛ) where FΛ = dAΛ

and GΛ = dBΛ. The vector fields are related to the harmonic functions by:

FΛ
mn =

1

2
ǫmnp∂pH

Λ , GΛmn =
1

2
ǫmnp∂pHΛ . (3.6)

The timelike components of F and G are fixed in terms of the spatial ones through (3.5).

That this result holds in the BPS case has been established explicitly; there is, however, no
such proof for non-BPS black holes. Instead, we shall apply the above algorithm to generate
an ansatz which can be checked explicitly using the STU equations of motion. Before we do
so, though, we offer an argument as to why one might expect the above prescription to work.

There exists a manifest [SL(2,Z)]3 symmetry of the equations of motion which mixes the
Maxwell equations and Bianchi identities:

(

AΛ(~x)
BΛ(~x)

)′

=

(

A B

C D

) (

AΛ(~x)
BΛ(~x)

)

(3.7)

Here

(

A B

C D

)

is a global OSp(8,Z) matrix such that ATC − CTA = BTD − DTB = 0

and ATD−CTB = 1. Only a subgroup of this symmetry, corresponding to [SL(2,Z)]3 duality
symmetry, is unbroken at the level of solutions to the equations of motion. The details of the
embedding of [SL(2,Z)]3 into OSp(8,Z) are given in [20] and [24]. Simultaneously with the
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duality transformations of the vector potential doublet the 3 moduli also undergo a standard
fractional transformation of the type:

(zi(~x))′ =
a zi(~x) + b

c zi(~x) + d
. (3.8)

This transformation of the moduli follows from the consistency of equation (3.5) and leaves the
metric invariant

(gµν(~x))
′ = gµν(~x) , (3.9)

allowing us to generate from one solution all the others related through duality. Clearly, such a
symmetry places strong constraints on the form of the moduli fields. Further, our explorations
of functional forms have been unable to find any solutions with the appropriate symmetry other
than those given by (3.2), when we simultaneously impose the obvious criteria that the moduli
give the correct horizon values, remain bounded everywhere and have derivatives that do the
same while also vanishing at the horizon (see [15] for the origins of these restrictions).

3.2 The Proof

We shall begin by establishing that the appropriate ansatz solves the D2-D6 brane system and
then find the general (almost – see below for details) solution through a symmetry argument.

3.2.1 The D2-D6 System

The four dimensional stationary, spherically-symmetric effective Lagrangian of the Maxwell-
Einstein action (derived from (2.1)) is:

L(U(τ), za(τ), z̄ā(τ)) =
(

U̇2 +Gab̄ż
a ˙̄zb̄ + e2UVBH

)

. (3.10)

τ is the inverse of the radial coordinate (such that the horizon is at τ = −∞ and the derivatives
denote differentiation with respect to τ . The gravitational and scalar equations of motion
derived from the above Lagrangian (3.10) are

Ü = e2UVBH , (3.11)

z̈a + Γa
bcż

bżc = e2UGab̄∂b̄VBH . (3.12)

In addition, there is also a constraint on the system:

U̇2 +Gab̄ż
a ˙̄zb̄ − e2UVBH = c2 , (3.13)

where c2 = 2ST = 0 for extremal black holes.
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As described above, to generate solutions to these equations we take the horizon values of
the moduli, (2.34), and replace the charges with appropriate harmonic functions:

e−2U = 2
√

H0H1H2H3

z1 = −i
√

H2H3

H0H1

z2 = −i
√

H1H3

H0H2

z3 = −i
√

H1H2

H0H3

. (3.14)

Substitution followed by explicit calculation of the terms in the gravitational equation of motion
gives:

Üe−2U = VBH =
1

2

[ q2
1

(H1)3/2

√

H0H2H3 +
q2
2

(H2)3/2

√

H0H1H3

+
q2
3

(H3)3/2

√

H0H1H2 +
(p0)2

(H0)3/2

√

H1H2H3

]

. (3.15)

In a somewhat more involved calculation we can also verify that the ansatz solves the scalar
equations of motion. Picking the 1 direction, we have:

z̈1 + Γ1
11(ż

1)2 = e2UG11̄∂1̄VBH

= e2U+KG11̄
(

G22̄(D̄1̄D̄2̄W̄ )D2W +G33̄(D̄1̄D̄3̄W̄ )D3W + 2(D̄1̄W̄ )W
)

.(3.16)

Once again substitution and tedium give the result we desire:

z̈1 + Γ1
11(ż

1)2 = e2UG11̄∂1̄VBH

=
i

2

(

H2H3

H0H1

)−3/2
[

q2
2(H

0H1H3)
2 + q2

3(H
0H1H2)

2

−q2
1(H

0H2H3)
2 − (p0)2(H1H2H3)

2
]

. (3.17)

Finally, we check the constraint:

U̇2 +Gab̄ż
a ˙̄zb̄ = e2UVBH =

1

4

[

q2
1

H2
1

+
q2
2

H2
2

+
q2
3

H2
3

+
(p0)2

(H0)2

]

. (3.18)

3.2.2 The Generic System: (D0,D2,D4,D6)

To generalize the previous result, we need to establish that the prescription of the previous
section, i.e. the substitution of harmonic functions for the electric and magnetic charges in the
values of moduli at the horizon, solves the equations of motion when the moduli and metric
are given by the expressions above:

zΛ(H(x)) =
HΛ − i

∂I1(H)
∂HΛ

H0 − i
∂I1(H)

∂H0

, e−2U =
√

|W(H)| . (3.19)
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Given the hugely increased complexity of I1 when all charges are present (not to mention VBH)
an explicit calculation would painful. Accordingly, we’re going to do something else.

The symplectic invariance of special geometry ensures that the Lagrangian of our theory
has an Sp(8,Z) symmetry, which reduces to [SL(2,Z)]3 at the level of the equations of motion.
This symmetry group can be used to generate solutions for generic charges by rotating the
expressions for the moduli in the D2-D6 system (eq. (3.14)) obtained above. To do this we
take the following element of [SL(2,Z)]3:

(

a b

c d

)

⊗
(

1 0
0 1

)

⊗
(

1 0
0 1

)

, (3.20)

in which ad − bc = 1. Under this transformation, the charges and harmonic functions of the
D2-D6 system transform in the following way

























p̃0

p̃1

p̃2

p̃3

q̃0
q̃1
q̃2
q̃3

























=

























dp0

bp0

cq3
cq2
−bq1
dq1
aq2
aq3

























,



























H̃0

H̃1

H̃2

H̃3

H̃0

H̃1

H̃2

H̃3



























=

























dH0

bH0

cH3

cH2

−bH1

dH1

aH2

aH3

























. (3.21)

Further, we know that under transformation (3.20), the moduli coordinates transform as

z1 7→ z̃1 =
az1 + b

cz1 + d
, z2 7→ z̃2 = z2 , z3 7→ z̃3 = z3 . (3.22)

The solution of equations of motion for the case of generic charges2 can be swiftly obtained
from (3.22).

To check whether (3.19) (with a set of generic charges) coincides with (3.22) it is sufficient
to establish that (3.22) will solve the equations of motion. To do this we first we observe, as
proved in [16], that the hyper-determinant W is invariant under (3.20). In our particular case
this is simple to see from:

W(H) 7→ W̃(H̃) = −4(ad− bc)2H0H1H2H3 = W(H) . (3.23)

Next, using (3.19), we obtain the modulus along the first direction of the moduli space for the
generic case as

z̃1 =
H̃1

√

|W| + i(H̃1(H̃2H̃2 + H̃3H̃3 − H̃0H̃0 − H̃1H̃1) − 2H̃0H̃2H̃3)

H̃0
√

|W| + i(2H̃1H̃2H̃3 − H̃0(H̃ΛH̃Λ))
. (3.24)

2 We observe that the charges (and relevant harmonic function) are not completely independent and we
have these two relations among them: p̃3q̃3 = p̃2q̃2 and p̃1q̃1 = −p̃0q̃0. If we also make nontrivial SL(2, Z)
transformations on the second and third moduli this dependence disappears. On the other hand, the above
analysis shows that this procedure can be applied for successive transformations. Therefore, we do not lose the
generality of the argument.

13



This can be reexpressed in terms of the harmonic functions of the D2-D6 system:

z̃1 =
b
√
H0H1H2H3 − iaH2H3

d
√
H0H1H2H3 − icH2H3

=
a(−i

√

H2H3

H0H1
) + b

c(−i
√

H2H3

H0H1
) + d

=
az1 + b

cz1 + d
, (3.25)

where we have used the fact ad−bc = 1 repeatedly. This is in complete agreement with (3.22). A
similar check confirms that z̃2 = z2 and z̃3 = z3, as required. Hence, we can conclude that (3.19)
gives the complete solutions to the equations of motion for stationary, spherically-symmetric
non-BPS attractors. There is one small caveat, what we have actually done is produce a general
solution from a restricted subset of D2-D6 attractors with h0 = h1 = h2 = h3 = 0; while we
believe that this simplification will not effect out result (it amounts to adding a constant
electric/magnetic potential, something which clearly does not affect the vector equations of
motion), we have been unable to check the equations of motion for the unconstrained D2-D6
case.

4 Split Non-BPS Attractors

So far we’ve managed to establish that many of the properties of STU non-BPS attractors are
analogous to those of their BPS counterparts. In particular, along with the basic attractor
behavior established in [4], we have also demonstrated explicitly (at least for the STU model)
that complete expressions for the moduli can be formed from the attractor values, by replacing
charges with harmonic functions. Given this success, it seems opportune to push a little further.

It has been shown in [16]-[18] and [25]-[27] that static, spherically-symmetric black holes are
not the only BPS attractors one can find. Rather the attractor mechanism can be expanded to
stationary spacetimes (dropping the requirement of spherical symmetry) with the metric:

ds2 = −e2U(x
(

dt+ ωidx
i
)2

+ e−2U(x)dxidxi (4.1)

The most general situation described by this geometry is one consisting of multi-centered,
charged black holes. Each black hole sits at a point ~xa and carries a set of charges Γa. The
vector fields are then fully described by a set of harmonic functions (a fact that doesn’t rely on
the BPS properties of the black holes, or the number of centers):

H(~x) = (HΛ, HΛ) = h +

n
∑

s=1

Γs

|~x− ~xs|
. (4.2)

Bates and Denef have demonstrated (in [25]) that for the BPS case these harmonic functions
can be used to construct exact solutions in an analogous fashion to the single center black holes.
ωi is defined through the harmonic functions:

ωi = 〈H, dH〉 . (4.3)
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As before there is an integrability condition:

n
∑

i=1

〈Γj,Γi〉
|~xj − ~xi|

+ 〈Γj,h〉 = 0 (4.4)

The above fixes the distance |~xj − ~xi| unless the charges are mutually local, with 〈Γi,Γj〉 = 0
– this is the case when ωi = 0. We also have a similar constraint on h as for the single center
attractor: 〈h,Γ〉 = 0, where Γ =

∑

i Γi. In this setup the BPS solutions are given by:

zΣ(H(~x)) =
HΣ + i

∂I1(H)
∂HΣ

H0 + i
∂I1(H)

∂H0

,

e−2U = I1(H) . (4.5)

Where we define the symplectic invariant I1 as before:

I1(H) = |Z(H)|2 + |DZ(H)|2 =
√

|W(H)| ≥ 0 , (4.6)

For the non-BPS STU model we thus conjecture that, again analogous to the single center
black hole, solutions are given by:

zΣ(H(~x)) =
HΣ − i

∂I1(H)
∂HΣ

H0 − i
∂I1(H)

∂H0

,

e−2U = I1(H) (4.7)

Of course, here W(H) < 0. Our principle motivation here, once again, is the underlying
duality symmetry and the constraining restrictions it must place on the form of any solution.
In theory, we can check this solution in an entirely similar fashion to the spherically-symmetric
cases discussed above. However, the process is somewhat more involved, and as yet it has not
proved possible to carry out the required calculations.

There are, though, good reasons to believe that multi-centered, non-BPS, extremal black
hole attractors exist; and that the behavior of the moduli fields is described by (4.7). As
discussed in [4] and [15] the attractiveness of black holes is a result of their extremality. Specif-
ically, extremal black holes have a near horizon geometry described by a Bertotti-Robinson
(AdS2×S2) product space with an infinite throat. It is this infinite throat that leads to attrac-
tor behavior and it should thus be clear that if extremal multi-centered stationary solutions
can be found, then each black hole will have the same near-horizon behavior as it would do
in isolation. Accordingly, we should expect each horizon to be an attractor. Furthermore, it
is apparent that solutions for za of the form (4.7) will reduce to the single-center ones in the
near-horizon limit – suggesting that they may well be the appropriate global expressions for the
moduli. The missing piece in this argument, and the reason one would want to check equations
of motion explicitly, is that we cannot be certain that stationary, multi-centered solutions exist
for extremal, non-BPS black holes.

Before moving on to a discussion of our results, there is one last observation that we should
make. Denef has observed in [26] that for a multi-center (charges Γa) BPS black hole the
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behavior far from all centers should be that of a spherically symmetric solution with charge
Γ =

∑

a Γa, leading to a split attractor flow. The same should hold true for non-BPS case,
though here we could have an interesting additional effect. Whilst BPS extremal black holes
are always stable, non-BPS ones are not – so although systems with Γ1 = (q0, 0, 0, p

a) and those
with Γ2 = (0, qa, p

0, 0) give stable attractors, systems with Γ = Γ1 + Γ2 = (q0, qa, p
0, pa) do not.

Thus we might expect that apparently unstable “attractors” correspond to stable multi-centered
configurations when examined at appropriately short distances from the horizon3.

5 Discussion

In the preceding sections we have discussed some of issues arising in non-BPS STU attractors.
In particular we have found that the system consisting of p0 and qa charges can give rise to a
stable non-BPS attractor – a result that was obtained using both the attractor equation (in
two different forms) and through the minimization of an effective black hole potential. Further
we have demonstrated that one can construct exact expressions for the moduli, the metric and
the vector fields using harmonic functions through a prescription analogous to that used for
BPS black holes.

Additionally, we have argued for the existence of stationary non-BPS attractors, with an
associated split attractor flow. This allows us to make the following conjecture regarding
unstable STU non-BPS “attractors”:

Conjecture. The apparent unstable nature of non-BPS STU “attractors” can be explained

through the existence of a stable multi-center solution that is only resolved at sufficiently short

distances. It is only far away from both centers that the gradient flow of the system appears

repulsive.

We hope to present a proof of this conjecture in future work.

Finally, we note that while everything we have discussed only applies to STU black holes,
we see no reason in principle why the behavior we have found and the arguments we have made
for both exact solutions and multi-center attractors will not apply to more general extremal
non-BPS black holes.
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3There is some additional subtlety here – since the gradient flow will have to switch direction when the flow
splits we should expect the line of marginal stability ([27], [26]), where the split takes place, to have somewhat
different properties to that in the BPS case.
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A Further Details of the D2 −D6 system

In this appendix we discuss various details of the D2-D6 system – developing the solution
established above by confirming it through some alternate methods and analyzing its stability.

A.1 Minimizing the Effective Potential

Although we calculated the values of moduli at the black hole horizon by using the attractor
equation we can, instead, directly extremize the effective potential; i.e. solve ∂aVBH = 0:

∂aVBH = eK
(

Gbc̄(DaDbW )D̄c̄W̄ + 2(DaW )W̄
)

. (A.1)

Since the superpotential only includes odd powers of the coordinates for the system of D2-D6
brane, we assume that the ansatz of the minimization of the black hole potential equation is
purely imaginary z̄a = −za (see [4]). Now, we want to compute the ingredients of (A.1). The
first covariant derivative of the superpotential is:

DaW = (∂a + ∂aK)W = −W (z1, · · · , z̄a, · · · , z3)

za − z̄a
. (A.2)

Note that in the above expression, z̄a is substituted in the argument of the superpotential for
za. With the ansatz z̄a = −za, (A.2) then gives:

D1W = −W (z̄1, z2, z3)

z1 − z̄1
=
W − 2(q2z

2 + q3z
3)

2z1
, (A.3)

D2W = −W (z1, z̄2, z3)

z2 − z̄2
=
W − 2(q1z

1 + q3z
3)

2z2
, (A.4)

D3W = −W (z1, z2, z̄3)

z3 − z̄3
=
W − 2(q1z

1 + q2z
2)

2z3
. (A.5)

When we drop the arguments of the superpotential they should be understood to be z1, z2 and
z3. Before we consider the non-SUSY solutions, we find the supersymmetric ones, DaW = 0:

z1 = i

√

−q2q3
p0q1

, z2 = i

√

−q1q3
p0q2

, z3 = i

√

−q1q2
p0q3

, (A.6)

and also

z1 = −i
√

−q2q3
p0q1

, z2 = −i
√

−q1q3
p0q2

, z3 = −i
√

−q1q2
p0q3

. (A.7)

As briefly discussed above, we should examine these solutions to see whether they respect the
positivity of the Kähler potential – a necessary condition to ensure positive kinetic terms in the
action. A simple check shows that the first SUSY solution (A.6) violates the positivity of the
Kähler potential and therefore, it is ruled out. Thus only the latter (A.7) is acceptable. We
should also notice that these solutions will only exist when p0q1q2q3 < 0.
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The next object to calculate is the second covariant derivative of W :

DaDbW = (∂a + ∂aK)DbW − Γc
abDcW . (A.8)

For our particular STU model:

DaDbW = (1 − δab)
W (z1, · · · , z̄a, z̄b, · · · )

(za − z̄a)(zb − z̄b)
. (A.9)

Notice that z̄a and z̄b substitute za and zb in the argument of W . For the za = −z̄a ansatz of
our D2-D6 brane system, the above reduces to:

DaDbW = (1 − δab)
W − 2(qaz

a + qbz
b)

4zazb
(no sum on a and b) . (A.10)

Now, we are ready to form the equation ofan explicit expression for the minimization of the
potential ∂aVBH = 0. Using (2.7), (A.3), and (A.10), we find the following set of equations:

(

W − 2(q1z
1 + q2z

2)
)(

W − 2(q1z
1 + q3z

3)
)

+W
(

W − 2(q2z
2 + q3z

3)
)

= 0 , (A.11)
(

W − 2(q1z
1 + q2z

2)
)(

W − 2(q2z
2 + q3z

3)
)

+W
(

W − 2(q1z
1 + q3z

3)
)

= 0 , (A.12)
(

W − 2(q1z
1 + q3z

3)
)(

W − 2(q2z
2 + q3z

3)
)

+W
(

W − 2(q1z
1 + q2z

2)
)

= 0 . (A.13)

It is clear that (A.7) satisfy these equations. Now, we want to find the non-SUSY solutions
(DaW 6= 0). If we divide the above expressions by one another, we obtain:

(

W − 2(q1z
1 + q2z

2)
)2

=
(

W − 2(q2z
2 + q3z

3)
)2

=
(

W − 2(q1z
1 + q3z

3)
)2

. (A.14)

The complete solutions to these relations are:

z1 = ±i
√

q2q3

p0q1
, z2 = ±i

√

q1q3

p0q2
, z3 = ±i

√

q1q2

p0q3
, (A.15)

If we consider all these possibilities for (A.14), then we find eight sets, which can be categorized
into two groups:

A : {(+,+,+), (+,−,−), (−,+,−), (−,−,+)} , (A.16)

B : {(−,−,−), (−,+,+), (+,−,+), (+,+,−)} . (A.17)

In above, each parenthesis shows the sign of (z1, z2, z3) respectively. It turns out that the
elements of group A violate the positivity of eK and therefore this group is unacceptable.
However, no such problem exists for group B, and therefore its elements provide acceptable
non-SUSY solutions. Furthermore, the last three elements of group B are physically equivalent
solutions in which the sign of two fields are the same, but opposite to the third. It’s worth
noting that that the attractor equation gave us only the (−,−,−) solution; however, this point
has little effect on the rest of out argument.

Finally, we note that for all non-SUSY solutions, we must have p0q1q2q3 > 0. This in turn
means that we cannot simultaneously have both SUSY and non-SUSY solutions.
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A.2 An Alternate Attractor Equation

In this section, we find the values of the moduli at the horizon of the black hole by solving the
attractor equation in the form given in [15]:

Γ = 2Im
[

ZΠ̄ − (D̄āD̄b̄Z̄)GācGb̄dDcZ

2Z
DdΠ

]

. (A.18)

As before Γ is the set of magnetic and electric charges Γ =
(

pΛ, qΛ
)

and Π is the covariantly
holomorphic period vector:

Π = eK/2









1
za

F0

Fa









. (A.19)

We have already calculated most of these ingredients, with our only remaining task to calculate
the covariant derivative of Π:

DdΠ = eK/2









∂dK

δa
d + (∂dK)za

∂dF0 + (∂dK)F0

∂dFa + (∂dK)Fa









. (A.20)

It is straightforward to calculate the two terms of the attractor equation for our ansatz z̄a = −za.
These are:

2Im(ZΠ̄) =
W

4z1z2z3

























1
0
0
0
0

z2z3

z1z3

z1z2

























, 2Im
[(D̄āD̄b̄Z̄)GācGb̄dDcZ

2Z
DdΠ

]

= − 1

4z1z2z3

1

W

























Y0

0
0
0
0

Y1z
2z3

Y2z
1z3

Y3z
1z2

























.

(A.21)

We have defined Y0, Y1, Y2, and Y3 to be:

Y0 ≡ W (z̄1, z2, z3)W (z1, z̄2, z3) +W (z̄1, z2, z3)W (z1, z2, z̄3) +W (z1, z̄2, z3)W (z1, z2, z̄3)

Y1 ≡ W (z̄1, z2, z3)W (z1, z̄2, z3) +W (z̄1, z2, z3)W (z1, z2, z̄3) −W (z1, z̄2, z3)W (z1, z2, z̄3)

Y2 ≡ W (z̄1, z2, z3)W (z1, z̄2, z3) +W (z1, z̄2, z3)W (z1, z2, z̄3) −W (z̄1, z2, z3)W (z1, z2, z̄3)

Y3 ≡ W (z̄1, z2, z3)W (z1, z2, z̄3) +W (z1, z̄2, z3)W (z1, z2, z̄3) −W (z̄1, z2, z3)W (z1, z̄2, z3) .

(A.22)

Forming the attractor equation (A.18), we find the following:

W 2 − Y0 = 4p0Wz1z2z3 (A.23)

W 2 + Ya = 4qaWza (no sum on a) . (A.24)
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As is clear, we have four equations, but only three of them are independent. This can be easily
seen if we add the four to one another and use Y1 + Y2 + Y3 = Y0. To solve these equations we
first note that Y1 − 4q1Wz1 = Y2 − 4q2Wz2 = Y3 − 4q3Wz3 and observe this leads to:

q1z
1 = ±q2z2 = ±q3z3 . (A.25)

If we take q1z
1 = q2z

2 = q3z
3 we find:

(

z1 − p0q1

q2q3
(z1)3

) (

z1 +
p0q1

q2q3
(z1)3

)

= 0 . (A.26)

We immediately realize that the first parenthesis produces the supersymmetric solution:

z1 = ±i
√

−q2q3
p0q1

, (A.27)

The second parenthesis of (A.26) then gives us the non-supersymmetric attractor:

z1 = ±i
√

q2q3

p0q1
. (A.28)

As we see, different choices of (A.25) produce all the different SUSY and non-SUSY solutions
that we found in the previous section. Recalling that the positivity of eK requires we choose a
specific set of signs for the above solutions leads to (A.7) for the supersymmetric solution and
elements of group B (see A.16) for the non-supersymmetric ones.

A.3 Stability

In the previous section, we found both SUSY and non-SUSY attractors. The former are always
stable, since the second derivative of the black hole potential is proportional to the Kähler
metric. However, for non-SUSY solutions, we need to check stability explicitly. In order to do
this, we need to find the full mass matrix.

First, note that at the extremum of the potential we have ∂a∂bVBH = DaDbVBH ; therefore,
we can use the covariant rather than ordinary derivative. Then the holomorphic-holomorphic
and holomorphic-antiholomorphic parts of the mass matrix are given by

DaDbVBH = eK
(

Gcd̄(DaDbDcW )D̄d̄W̄ + 3(DaDbW )W̄
)

, (A.29)

D̄āDbVBH = eK
(

−Rd
bācG

cē(DdW )D̄ēW̄ +Gcd̄(DbDcW )(D̄āD̄d̄W̄ )

+GābG
cd̄(DcW )D̄d̄W̄ + 3(D̄āW̄ )DbW + 2GābWW̄

)

, (A.30)

where Rd
bāc is the Riemann curvature tensor of the moduli space. We begin with the holomorphic-

holomorphic piece. This requires us to compute the third covariant derivative of the superpo-
tential:

DaDbDcW = −|ǫabc|
W (z̄1, z̄2, z̄3)

(za − z̄a)(zb − z̄b)(zc − z̄c)
, (no sum on a, b, and c) . (A.31)

20



Using this result and defining Bab ≡ DaDbVBH |horizon we have:

B =
1

2
p0

√

p0q1q2q3





0 1
q3

1
q2

1
q3

0 1
q1

1
q2

1
q1

0



 . (A.32)

To find the antiholomorphic-holomorphic piece of the mass matrix, we need the Riemann cur-
vature of the moduli space:

Ra
aāa = − 2

(za − z̄a)2
, (no sum on a) . (A.33)

All other components of the Riemann curvature tensor vanish. Taking this result we can crawl

through a long computation to obtain Aab = D̄āDbVBH

∣

∣

∣

horizon
as:

A =
1

2
p0

√

p0q1q2q3







2q1

q2q3

1
q3

1
q2

1
q3

2q2

q1q3

1
q1

1
q2

1
q1

2q3

q1q2






. (A.34)

Hence, the full mass matrix of the black hole potential is given by:

M =

(

A B̄

B Ā

)

=
1

2
p0

√

p0q1q2q3



















2q1

q2q3

1
q3

1
q2

0 1
q3

1
q2

1
q3

2q2

q1q3

1
q1

1
q3

0 1
q1

1
q2

1
q1

2q3

q1q2

1
q2

1
q1

0

0 1
q3

1
q2

2q1

q2q3

1
q3

1
q2

1
q3

0 1
q1

1
q3

2q2

q1q3

1
q1

1
q2

1
q1

0 1
q2

1
q1

2q3

q1q2



















. (A.35)

Note that this will give rise to a term in the effective potential which takes the following form:

z†Mz where, z =
(

z1, z2, z3, z̄1, z̄2, z̄3
)

. (A.36)

To explore the stability of the non-SUSY solutions we need to diagonalize the mass matrix.
This is straightforward and the eigenvalues are given by:

{

0, 0,
√

p0q1q2q3
p0q1

q2q3
,
√

p0q1q2q3
p0q2

q1q3
,
√

p0q1q2q3
p0q3

q1q2
,
√

p0q1q2q3

(p0q1

q2q3
+
p0q2

q1q3
+
p0q3

q1q2

)

}

.(A.37)

There are two flat directions, with the rest of the eigenvalues positive. For the former we find
that the associated eigenvectors are:

(

−q3
q1
, 0, 1,−q3

q1
, 0, 1

)

and

(

−q2
q1
, 1, 0,−q2

q1
, 1, 0

)

. (A.38)

Both of these (as is clear from (A.36)) are in a real direction – moving along potential in the
direction of the eigenvectors sends za → za + δxa, where δxa is real.
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In order to explore the stability of our extrema with respect to the flat directions, we need to
examine higher order derivatives. Recall that we initially proceeded with covariant derivatives
instead of ordinary derivatives (since DDVBH = d2VBH at extremal points of VBH). But this
is no longer true at higher orders, so one needs to revert to the flat derivative. Unfortunately,
this becomes rather unpleasant, as we forced to break the covariant form, hence we choose to
proceed in a calculationally more tractable fashion: We expand the black hole potential around
the non-supersymmetric solutions and then concentrate on the behavior of cubic and quartic
terms of the expansion. If the coefficients of the cubic terms are non-vanishing, then we can
conclude that the non-supersymmetric solution is unstable. However, if the coefficients vanish,
then we need to consider the quartic terms. If these terms are positive for flat directions,
independent of the values of the parameter of the expansion, then the non-supersymmetric
solution is indeed stable.

First, using (2.7) and (A.3), we notice that we can rewrite the black hole potential in the
following way

VBH = eK
(

|W (z̄1, z2, z3)|2 + |W (z1, z̄2, z3)|2 + |W (z1, z2, z̄3)|2 + |W (z1, z2, z3)|2
)

. (A.39)

Now, we want to expand the above potential around the non-supersymmetric solution (A.15)
as

z1 = −i
√

q2q3

p0q1
+ ǫ1 , z2 = −i

√

q1q3

p0q2
+ ǫ2 , z3 = −i

√

q1q2

p0q3
+ ǫ3 , (A.40)

where ǫa is a real parameter of the expansion. Why only real? Well we are, of course, only
concerned with the quartic expansion in the flat directions, and we have already established that,
for our first non-supersymmetric solution, these are real. Accordingly VBH has the following
expansion

VBH(za) = VBH(za
0) + O((ǫa)2) + O((ǫa)3) + O((ǫa)4) + · · · , (A.41)

where za
0 is the value of moduli for non-supersymmetric solution. The information in O((ǫa)2)

is encoded in the mass matrix which has already been calculated and we need to know about
higher order terms along flat directions. Explicit computation shows that the cubic terms
vanish4 O((ǫa)3) = 0. Thus we must examine the quartic terms:

O((ǫa)4) = 4eK(za

0
)p0

(q1q2

q3
(ǫ1ǫ2)2 +

q2q3

q1
(ǫ2ǫ3)2 +

q1q3

q2
(ǫ1ǫ3)2

+q1(ǫ
1)2ǫ2ǫ3 + q2ǫ

1(ǫ2)2ǫ3 + q3ǫ
1ǫ2(ǫ3)2

)

= 2eK(za

0
)p0

(q1q2

q3
(ǫ1ǫ2)2 +

q2q3

q1
(ǫ2ǫ3)2 +

q1q3

q2
(ǫ1ǫ3)2

)

+2eK(za

0
)p0

(

√

q1q2

q3
ǫ1ǫ2 +

√

q2q3

q1
ǫ2ǫ3 +

√

q1q3

q2
ǫ1ǫ3

)2

. (A.42)

4 This result is no longer true in the presence of D4 branes. In fact, the details of the calculations show
that if all existing terms in the superpotential either have even or odd powers of the moduli coordinates, then
the cubic term O((ǫa)3) (which is the leading term in perturbation) vanishes. But in general case when the
superpotential has a mixture of even and odd powers, then the cubic term does not vanish and therefore, the
extremum is an inflection point rather than a minimum.
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As we see, no matter how the parameters of expansion change, O((ǫa)4) is always positive (since
it is purely real). This implies that the non-SUSY solution (A.15) is indeed stable. Finally,
we mention that it can be (and has been) checked that the other non-SUSY solution (−,+,+)
also gives a positive mass matrix.
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