
THE ACCELERATOR MARKUP LANGUAGE AND THE UNIVERSAL
ACCELERATOR PARSER ∗

D. Sagan, M. Forster, Cornell University, Ithaca, NY, 14850, USA
D. A. Bates, LBNL, Berkeley, California, 94720, USA

A. Wolski, University of Liverpool and the Cockcroft Institute, UK
F. Schmidt, CERN, Geneva, Switzerland
N. J. Walker, DESY, Hamburg, Germany

T. Larrieu, Y. Roblin, Jefferson Lab, Newport News, Virginia, USA
T. Pelaia, ORNL, Oak Ridge, Tennessee, USA

P. Tenenbaum, M. Woodley, SLAC, Menlo Park, California, USA
S. Reiche, UCLA, Los Angeles, California, USA

Abstract

A major obstacle to collaboration on accelerator projects
has been the sharing of lattice description files between
modeling codes. To address this problem, a lattice descrip-
tion format called Accelerator Markup Language (AML)
has been created. AML is based upon the standard eXten-
sible Markup Language (XML) format; this provides the
flexibility for AML to be easily extended to satisfy chang-
ing requirements. In conjunction with AML, a software
library, called the Universal Accelerator Parser (UAP), is
being developed to speed the integration of AML into any
program. The UAP is structured to make it relatively
straightforward (by giving appropriate specifications) to
read and write lattice files in any format. This will allow
programs that use the UAP code to read a variety of dif-
ferent file formats. Additionally, this will greatly simplify
conversion of files from one format to another. Currently,
besides AML, the UAP supports the MAD lattice format.

INTRODUCTION

New particle accelerator facilities are increasing in scale
and complexity. This increase brings an ever greater need
for global collaboration, and for accurate modeling of pro-
posed designs to ensure technical performance and to man-
age costs. Various labs around the world have developed
excellent accelerator modeling codes that could be used for
such analysis. Using a variety of codes to analyze a sin-
gle machine brings benefits because different codes tend to
be optimized for different purposes. Additionally, cross-
checking results between different codes is often essential
for validating the results. However, different codes gen-
erally require input files in different formats, and this is a
significant obstacle to collaboration. At present, there is no
generally accepted lattice format that is sufficiently com-
prehensive to meet the needs of the community.

To address this problem, a lattice description format

∗Work supported by the National Science Foundation and by the US
Department of Energy under contract numbers DE-AC02-05CH11231
and DE-AC02-76SF00515.

called Accelerator Markup Language (AML) has been cre-
ated. AML is based upon the standard eXtensible Markup
Language (XML) which provides the necessary flexibil-
ity for AML to be easily extended to changing require-
ments. Moreover, the extensibility of XML enables AML
files to be used beyond lattice descriptions to include such
information as the control system configuration, blueprint
and other documentation, magnet history information, etc.
In short, AML could be used as the basis for a complete
database of an accelerator laboratory complex.

In conjunction with AML, a set of routines is being de-
veloped to simplify and speed the integration of AML into
any program. These routines, collectively known as the
Universal Accelerator Parser (UAP), will also provide the
means to specify additional lattice file formats. This will
allow programs that use the UAP code to read a variety of
different file formats. Currently the UAP supports, besides
AML, the MAD lattice format. The UAP will addition-
ally be able to convert lattice files between any formats for
which appropriate specifications are given.

ACCELERATOR MARKUP LANGUAGE

AML is an application of XML for describing accelera-
tors. That is, XML defines, in a general way, the format for
representing data in a file or within a program, and AML
defines exactly what kind of data is actually present.

XML represents data in a hierarchical fashion. With
AML, the root (top level) node in the hierarchy is the
<laboratory> element, which contains not only the ac-
tual accelerator machine or machines but the entire labora-
tory complex. An example snippet is shown in Figure 1.
The <laboratory> node contains the children (subnodes)
that appear between the opening <laboratory> line and
the ending </laboratory> line. In this example, there
are two children; <doc> and <machine>. Nodes can con-
tain text and/or subnodes. The <doc> node contains text
but no children. The <machine> node contains the chil-
dren <beam> and <element>, etc. In an actual accelerator
there would be multiple <element> children defining all
the different elements in the accelerator. The AML specifi-

October 2006
SLAC-PUB-11918

Contributed to European Particle Accelerator Conference (EPAC 06), Edinburgh, Scotland, 26-30 Jun 2006

<laboratory name = "Wilson Lab">
<doc author = "NJW" date = "2005/01/22">
This is a bit of documentation

</doc>
<machine name = "CESR">
<beam>
<energy value = "3.5e9" />

</beam>
<element name = "Q02W">
<length value = "1.3" />

</element>
... etc ...

</machine>
</laboratory>

Figure 1: Brief example AML file.

cation defines the legal building blocks of an AML file. For
example, the AML rules state that a <doc> node may be a
child of a <laboratory> node. These rules are stored in
an XML Schema file which can be used to validate an AML
file. The AML specification allows multiple <machine>
children to appear within the <laboratory> node, which
enables an AML file to describe an entire accelerator com-
plex, consisting of many different beamlines.

The fundamental advantage to using XML as the basis
for describing accelerators lies in the fact that any XML ap-
plication can be extended to include new information. For
example, suppose that at a particular laboratory it is nec-
essary to add information about blueprint numbers to the
AML file for some machine elements. The AML Schema
file can easily be extended so that <element> nodes are al-
lowed to have a <blueprint> child. Significantly, such an
addition will not break, say, an existing program that com-
putes the Twiss parameters in the lattice, since the software
routines within the program for reading in the AML file do
not change with the addition of the <blueprint> child.
Only the Schema file changes. In short, AML can be used
as the basis for a database of information on all aspects of
the accelerator.

AML defines a set of machine elements as shown in
Table 1. Besides the standard set of elements — bends,
quadrupoles, etc. — there are a number of additional ele-
ments, such as an <i_beam> element that models support
structures. Machine element attributes and other parame-
ters are grouped into sets. For example, an element may
have a <multipole> attribute, that contains information
on all the magnetic multipole components in the element.

Machine elements can “inherit” attributes from another
element. Additionally, orientation errors can be specified
separately from the design values. Consider the following
example:

<element name = "Q03W" inherit = "Q0">
<quadrupole>
<orientation>
<tilt value = "SKEW" />

</orientation>

<beambeam> <match>
<bend> <monitor>
<bend_sol_quad> <multipole>
<custom> <octupole>
<drift> <patch>
<collimator> <quadrupole>
<elseparator> <rfcavity>
<knob> <sextupole>
<i_beam> <solenoid>
<instrument> <sol_quad>
<kicker> <taylor>
<lcavity> <wiggler>
<marker>

Table 1: Element types in AML.

</quadrupole>
<orientation>
<x_offset value = "0.02" />

</orientation>
</element>

Here, the Q03W quadrupole inherits the attributes of the
Q0 quadrupole. The <orientation> element within the
<quadrupole> element defines the design values. The
<orientation> element that is a child of the <element>
node specifies an error offset of 0.02 meters.

AML uses SI (Systéme International) units for element
attributes and other parameters. The only exception is that
the unit of energy is eV. There is a standard set of defined
mathematical and physical constants (π, c, etc.) and in-
trinsic functions (sin cos, etc.) Named constants may be
defined whose values are declared using arithmetic expres-
sions.

To specify the sequence of elements in a lattice, AML
defines the <sector> node. Sectors may contain other
sectors and/or elements, and can be defined with an ar-
gument list similar to a MAD line. The elements within
a <sector> may be specified as a contiguous list of ele-
ments, or they may be placed by reference to some fiducial
point similar to a MAD “sequence”.

<sector name = "this_sect">
<sector ref = "sect1" />
<element ref = "Q01W" />
<element ref = "d001" />
<element ref = "DETa" at = "3.4"

at_origin = "BEGINNING">
<ref_point element = "Q01W"

origin = "MIDDLE" />
</element>
...

</sector>
In this example the Q02 element is “superimposed” on

the line with the beginning point of the element 3.4 meters
from the middle of the reference Q01W element.

Along with defining the syntax for describing an accel-

Proceedings of EPAC 2006, Edinburgh, Scotland WEPCH150

05 Beam Dynamics and Electromagnetic Fields
D05 Code Developments and Simulation Techniques

2279

Input Representation Structure

AML Representation Structure

AML Flat Lattice Structure

Parsing

Translation

Evaluation & Expansion

MAD Input File

Figure 2: UAP stages.

erator, the AML standard defines enough of the physics so
that the meaning of the various quantities that appear in
an AML file are well defined. For example, AML defines
what the sextupole <k2> strength actually means. It is im-
portant to note that the AML standard does not try to go be-
yond this and, in particular, AML says nothing about how
physics calculations are to be made. It is up to an individual
programmer to decide, for example, how to track a particle
through the lattice.

UNIVERSAL ACCELERATOR PARSER

The Universal Accelerator Parser is a library for reading
and translating between AML and different accelerator lat-
tice formats. The UAP is written in C++ and compiles on
most Unix, Linux, and Windows platforms. A Java port
is maintained for platform independence. Software devel-
opers can easily integrate the library into existing code by
using the provided hooks. The library provides the follow-
ing services:

• An extensible framework for reading and translating
between different lattice formats including the AML
and MAD formats.

• Run-time modification and evaluation of parameters
and beamline definitions.

• Expression evaluation and beamline expansion.

The analysis of a MAD format lattice file is illustrated
in Figure 2. Starting from a MAD input file, the UAP soft-
ware will create an “Input Representation Structure” (IRS)
in computer memory. The IRS has a one-to-one corre-
spondence with the information in the input file (includ-
ing comments). From the IRS, the UAP provides software
to translate from MAD syntax to AML syntax creating an
“AML Representation Structure” (ARS) in memory. MAD
lines become AML sectors, etc. From the ARS, the UAP
provides software to evaluate all arithmetical expressions
and to expand all the sectors to create the “AML Flat Lat-
tice Structure” (AFLS). The AFLS provides an appropri-
ate structure for the execution of physics analysis routines

(such as those to perform tracking). Additionally, the UAP
library has software to reverse the process to translate from
an ARS to an IRS and from an IRS to generate a MAD
lattice file.

The analysis of an AML file is similar to that of a MAD
file, except that the IRS and ARS are identical structures
– there is thus no translation stage. To convert from one
file format to another (for example, from MAD to AML)
an ARS is first constructed from the input file and then the
ARS is used to create a file with the appropriate format.

To add a new file format to the UAP library, only the
appropriate parsing and translation rules and their reverse
counterparts must be created. The expression evaluation
and sector expansion software is independent of the input
file format. Once this software is created (which may be
done semi-automatically using specialist tools), the conver-
sion between this file format and existing formats known to
the UAP does not require any additional coding.

The UAP has been designed to strike a balance between
ease of use and extensibility. The library promotes rapid
development of applications through high-level Applica-
tion Programming Interfaces, as well as providing hooks
to extend the UAP for custom programs.

CONCLUSION

The Accelerator Markup Language together with the
Universal Accelerator Parser have been developed to facil-
itate the sharing of lattice descriptions among simulation
programs. AML, through its use of XML, can be easily ex-
tended to provide the basis for a database of information on
all aspects of an accelerator. The UAP, initially developed
to handle AML and MAD formats, can easily be extended
to handle additional formats. The use of a common library
among accelerator codes will greatly simplify and speed
the exchange of information.

A collaboration between a number of laboratories and
institutions around the world has lead to the development
of AML and UAP. The potential of AML/UAP to provide a
common library for exchanging lattice information comes
at the heels of large-scale collaborative projects, includ-
ing the International Linear Collider and the Large Hadron
Collider at CERN. These projects will increasingly rely on
remote methods of collaboration, particularly remote com-
puting. The AML/UAP stands at the forefront to handle
the challenges of collaborating across formats, codes, and
boundaries. All of the source code, AML documentation,
and examples are freely available on the World Wide Web.
The project homepage is at

http://www.lns.cornell.edu/~dcs/aml/.

ACKNOWLEDGMENT

Thanks must go to Richard Talman and Nikolay Malit-
sky for useful discussions.

WEPCH150 Proceedings of EPAC 2006, Edinburgh, Scotland

2280 05 Beam Dynamics and Electromagnetic Fields
D05 Code Developments and Simulation Techniques

