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Three-dimensional quasistatic model for high brightness beam dynamics simulation
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In this paper, we present a three-dimensional quasistatic model for high brightness beam dynamics
simulation in rf/dc photoinjectors, tf linacs, and similar devices on parallel computers. In this model,
electrostatic space-charge forces within a charged particle beam are calculated self-consistently at each
time step by solving the three-dimensional Poisson equation in the beam frame and then transforming
back to the laboratory frame. When the beam has a large energy spread, it is divided into a number of
energy bins or slices so that the space-charge forces are calculated from the contribution of each bin and
summed together. Image-charge effects from conducting photocathode are also included efficiently using
a shifted-Green function method. For a beam with large aspect ratio, e.g., during emission, an integrated
Green function method is used to solve the three-dimensional Poisson equation. Using this model, we
studied beam transport in one Linac Coherent Light Sources photoinjector design through the first
traveling wave linac with initial misalignment with respect to the accelerating axis.

L. INTRODUCTION

High brightness, low emittance electron beams pro-
duced from photoinjectors have important applications in
next generation light sources and linear colliders.
Simplified theoretical models have been used to provide
some guidelines for photoinjector design [1-3]. However,
systematic machine design and optimization still depend
heavily on the use of self-consistent computer simulations.
A number of computer models have been used in the past
years to simulate beam transport inside photoinjectors [4—
12]. As far as we know, a model which can efficiently and
accurately handle a three-dimensional beam with large
aspect ratio and large energy spread including possible
image-charge effects has not previously been available
on parallel computers. Although most photoinjector de-
signs assume azimuthal symmetry of the beam and the rf
accelerating structures, experimental measurements at the
exit of the injector have shown asymmetric structure within
the beam [13—15]. This could be due to inhomogeneous
emission of electrons from the photocathode. It could also
be due to misalignment between the laser spot on the
photocathode and the rf accelerating structure axis. The
asymmetric rf or solenoid field errors inside photoinjector
could also break the azimuthal symmetry of the beam and
present a fully three-dimensional problem. An accurate
three-dimensional model will help one to understand the
beam transport inside the photoinjector and to study the
error tolerance for these photoinjectors. In the process of
electron emission from the photocathode, the transverse
beam size is typically on the order of millimeters, whereas
the typical longitudinal beam size can be about tens to
hundreds of microns. At this stage, the beam has a very

large transverse-to-longitudinal aspect ratio. After the
beam has been accelerated to a few MeV, the longitudinal
beam size is on the same order as the transverse beam size.
This results in a large longitudinal-to-transverse aspect
ratio in the beam frame due to the relativistic effects. In
both cases, it requires accurate modeling of a three-
dimensional beam with large-aspect ratio. Meanwhile,
the demand of highly asymmetric beam for next generation
linear colliders will also require accurately modeling a
three-dimensional beam with large aspect ratio. In this
paper, we report on developing a three-dimensional quasi-
static particle-in-cell model to simulate the high brightness
beam transport through a rf structure (e.g., photoinjector)
using a shifted integrated Green function method for space-
charge calculation [16]. Using a shifted integrated Green
function, we can accurately and efficiently calculate the
three-dimensional space-charge forces of a beam with
large aspect ratio and the image-charge effects with arbi-
trary separation using a fast Fourier transform (FFT)
method. In some applications with long laser pulse and
high rf accelerating gradient, the electrons out of the photo-
cathode could have a large correlated energy spread. This
large energy spread in the laboratory frame is handled by
dividing the beam into multiple energy bins/slices and the
space-charge forces are calculated for each slice and are
summed together before being interpolated to individual
particles. Besides the efficient numerical algorithm for
calculation of the 3D space-charge forces, we have also
implemented this model on parallel computers using a
domain-decomposition method. This enables us to run a
simulation with both high resolution (e.g., a large number
of macroparticles) and fast return time.
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II. PHYSICAL MODEL AND COMPUTATIONAL
METHODS

The physical model assumed here is a relativistic quasi-
static charged particle beam subject to external accelera-
tion and focusing and space-charge forces from the beam
itself (here, the quasistatic means that the static electric
field is calculated in the beam frame and both electric and
transverse magnetic fields are included in the laboratory
frame). Radiation effects of the beam are not included.
Comparison studies with and without the radiation effects
suggest that the radiation effects should not be significant
for the current generation of photoinjectors [17,18]. The
simulation starts by generating a three-dimensional beam
bunch behind the photocathode according to the laser pulse
length and distribution. This bunch is then moved out of the
cathode within the given emission time. During the process
of emission, the space-charge forces of particles outside
the cathode are included together with external fields from
the rf cavity and solenoid magnet. Besides the rf/dc cavity
and solenoid magnet beam line elements, the model also
includes dipole, quadrupole, sextupole, octupole, and de-
capole magnets in the beam line element list. External
fields can be supplied in the form of discrete data on a
three-dimensional Cartesian coordinate mesh or a cylin-
drical coordinate mesh. They can also be supplied in the
form of Fourier expansion coefficients on the axis when the
fields have azimuthal symmetry. These elements can be
arranged with arbitrary longitudinal overlap so that a trav-
eling wave structure (including coupling cells) can be
modeled using two overlapped standing wave structures
and an input and an output standing wave structures [19].

The particles inside a photoinjector are advanced self-
consistently using a particle-in-cell approach. The general
equations of motion are
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where, r is spatial position vector, p is mechanic momen-
tum vector, y = 1/{/1 — B%, B> =3 B2, B; = v;/c with
i =1xY,2, cis the speed of light, m is the rest mass of
particle, ¢ is the charge of particle. The electric field, E,
and magnetic field, B, include the contributions from
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fields of intraparticle Coulomb interactions. For an rf linac,
the external electromagnetic fields in a cylindrically sym-
metric accelerating structure can be obtained from the field
distribution along the axis [20,21]. If the rf cavity does not
have a cylindrical symmetry, the fully three-dimensional
electromagnetic fields are read in from the external sup-
plied data files. The equations of motion are solved using a
second-order leap-frog algorithm: the particles are drifted
half time step; the particles are collected and deposited
onto a three-dimensional grid; the Poisson equation is
solved in the beam frame; the electric and magnetic fields
are obtained in the laboratory frame through the Lorentz
transformation; the particle momenta are updated using
both the space-charge fields and external fields for one
time step according to Eq. (2); the particles are drifted
another half time step. This procedure is repeated for many
time steps until the beam is out of the computational
domain.

To calculate the space-charge forces, we solve the three-
dimensional Poisson equation. The solution of Poisson’s
equation can be written as

1
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where G is Green’s function, p is the charge density
distribution function. For a high brightness beam inside a
photoinjector, the conducting pipe is normally much larger
than the size of the beam. In this case, an open boundary
condition except near the conducting photocathode can be
assumed for the solution of the Green’s function in above
equation. Here, the Green function is given by

1
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Now consider a simulation of an open system where the
computational domain containing the particles has a range
of (0, L,), (0, Ly), and (0, L,), and where each dimension
has been discretized using N,, N, and N, points. From
Eq. (3), the electric potentials on the grid can be approxi-
mated as

P X Y T Y 2 — )P X, Y 2k )

where x; = (i — 1)h,,y; = (j — 1)hy, and z; = (k — 1)h,. As discussed later, a more accurate approximation to Eq. (3) is
needed for a beam with large aspect ratio. This is possible by using an integrated Green function method. The computa-
tional cost of the above convolution by a direct numerical summation can be very expensive and scales as N, where N is
the number of grid points in each dimension. Fortunately, this convolution can be replaced by a cyclic convolution in a
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These equations make use of the symmetry of the Green
function in Eq. (4). From the above definition, one can
show that the cyclic convolution will give the same electric
potential as the convolution Eq. (5) within the original
domain, i.e.,
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The potential outside the original domain is incorrect but is
irrelevant to the physical domain. Since now both G, and
p. are periodic functions, the convolution for ¢, in Eq. (6)
can be computed efficiently using an FFT as described by
Hockney and Eastwood [22]. The computational cost of
this algorithm scales as N*log(N) instead of the N° in the
direct summation.

For a conducting photocathode, the space-charge forces
both from the image charge and from the beam itself are
included. To find the forces on the beam from the image

charge by the standard Green function method, we need to
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solve the Poisson equation with a computational domain

containing both the image charge and the beam. This can
be very inefficient since only the fields within the beam are
needed and the fields outside of the beam are not used. This
inefficiency can be avoided by using a shifted-Green func-
tion method [16]. The shifted-Green function method is
based on an observation that the potential ¢ (X, Y, Z) inside
the field domain, where x, — X = X = X, + Xigne, Yo —
Veett = Y = Ye + Yright> ¢ — Ut = Z= <e + Zright> can be
rewritten as ¢(x + x,, y + y,, 7 + z.), where —xj.q < x =
Xights ~Vieft =Y = T Vrights ~ et = Z = Zright- Here, X,
Y., and z,. are coordinates of the field domain center with
respect to the coordinate origin in the particle domain, x;.g,
Xrights Yieft> Yright> Zleft> A0d Zrjone are sizes of the field domain
measured with respect to its center in each dimension.
These sizes must also be large enough to cover the particle
domain which contains the image charged particles. In
these new coordinates, the original Green function in
Eq. (4) can be written as a shifted-Green function
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The electric potential in the field domain is written as
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where p is the image-charge density distribution. This convolution can be computed following the same procedure as the
standard Green function method except the use of a shifted-Green function. The new cyclic Green function for the shifted-
Green function on the doubled computational grid is given as
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The FFT used to calculate the cyclic convolution in
Hockney’s algorithm for standard Green function can be
used to calculate the potential in the field domain using the
new shifted-Green function. This avoids the requirement
that the particle domain and the field domain be contained
in one large computational domain. This leads to improved
numerical resolution for the charge densities and the re-
sulting electric fields than the conventional method, be-
cause the empty space between the charged bunches is not
included in the calculation. It is also far more efficient, in
terms of computational effort and storage, than the tradi-
tional approach of gridding the entire problem domain. To
test this algorithm, we have calculated the potential distri-
bution on the axis from the image charge of a round beam
as shown in Fig. 1. Here, the 1 nC electron charge has a 3D
waterbag distribution with 1 mm rms size (/8 mm radius)
and located 5 mm after the cathode. The numerical solution
of the electrical potential using the shifted-Green function
method is given in Fig. 2 together with the analytical
solution. It is seen that the numerical solution and the
analytical solution agree with each other very well.

The image charge of a beam can have significant effects
on the beam quality in photoinjectors. Using the Linac
Coherent Light Sources (LCLS) S-band rf gun [23], we
did simulations with and without the image space-charge
effects. Here, the initial distribution of electron bunch is a
cold 10 ps long uniform cylinder with 1 mm radius. The

cathode

FIG. 1. (Color) A schematic plot of an electron bunch in front of
the conducting photocathode together with its image charge.
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total charge in this bunch is 1 nC. The peak acceleration
field is 120 MV/m. Figure 3 shows the transverse and
longitudinal rms sizes of the bunch with and without the
image-charge effects of the conducting photocathode in the
simulation. It is seen that the beam without image charge
has a larger initial transverse size than the beam with image
charge. The space-charge forces from the image charge of
the beam have opposite directions compared with the
space-charge forces from the beam itself. This helps to
reduce the initial beam blowup driven by the space-charge
forces.

In the above algorithms, both the Green function and the
charge density distribution are discretized on the grid. For a
beam with an aspect ratio close to 1, this algorithm works
well. However, during the emission of electrons out of the
cathode, the beam can have a very large transverse-to-
longitudinal ratio. For example, the typical transverse
size is on the order of millimeters while the longitudinal
size can be about a few tens to hundreds of microns. Under
this situation, the direct use of the Green function at each
mesh point is not efficient since it requires a large number
of mesh points along the transverse direction in order to get
sufficient resolution for the Green function along that
direction. A two-dimensional integrated Green function
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FIG. 2. (Color) Image-charge electric potential on the axis for a
round beam from the shifted-Green function solution together
with the analytical solution.
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FIG. 3. (Color) Transverse (left) and longitudinal (right) rms sizes as a function of distance with and without the image-charge effects
from photocathode.

method has successfully been used in previous studies of the beam with large aspect ratio [16,24—26]. Here, we
generalize that method to three-dimensional space-charge force calculations. If we assume that the charge density function
is uniform within each cell centered at the grid point (x;, y;, z;), we can define an effective Green function as
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In the above algorithm, we assumed a uniform density
distribution within each cell. It is also possible to assume
a trilinear density distribution inside a cell. As a test of this
algorithm, we calculated the electric fields along the x axis
and z axis of a charged beam with uniform density distri-
bution. The numerical results from the integrated Green
function together with the solutions from the standard
Green function method and the analytical method are given

[
in Figs. 4 and 5 for two transverse-to-longitudinal aspect

ratios. Here, 128 X 128 X 128 computational grid points
have been used. In Fig. 4, the aspect ratio is 1, which
corresponds to a uniform spherical ball, all three solutions
agree with each other very well. In Fig. 5, the aspect ratio is
30, we can see that the integrated Green function method
and the analytical method agree with each other very well.
The standard Green function method gives significant dis-
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solutions of the integrated Green function method, the standard Green function method,

crepancy for the electric field along z axis, near the edge.
For a beam with a Gaussian distribution, the major dis-
crepancy of the electric field occurs around the core, which
is given in Fig. 6. These errors in the calculation of electric
field for a large aspect ratio beam using the standard Green
function method could significantly affect the accuracy of
the beam dynamics simulation inside the rf photoinjector.
Figure 7 shows a comparison of the transverse and longi-
tudinal rms size of an electron beam in the S-band photo-
injector using the standard Green function method and the
integrated Green function method in the space-charge
force calculation using the same number of grid points.
The longitudinal rms size from the standard Green function
method is significantly larger than that from the integrated
Green function method. This is due to an error observed in
solving the Poisson equation and calculating the electric
field in longitudinal direction using the standard Green
function method as shown in Figs. 5 and 6. The calculation

and the analytical method.

R T e s
0.0015 } 1
0.001 | E
0.0005 | 1
o op 1
-0.0005 } 1

-0.001 | E

-0.0015 E

-0.002

004 -0.003 -0.002 0.001 0 0001 0002 0.003 0.004

z

FIG. 6. (Color) Electric fields along z axis of a Gaussian beam
with aspect ratio 30 from solutions of the integrated Green
function method and the standard Green function method.



0.003 T T

bn J—
on

nieghated Green gl

0.0025 }

o
o
S
¥

0.0015 }

transverse rms size (m)

0.001 ./‘

0.0005 |

0 ) 04 06 08 1 ’

distance (m)

0.0014 T T T

nipghaied Green funelion —
0.0012}

0001 -

0.0004 |

0.0008

o
o
o
o
(o)

Iong|tudinal rms size (m)

0.0002 |

06 08 T 12
distance (m)

0 02 04

FIG. 7. (Color) Transverse (left) and longitudinal (right) rms sizes as a function of distance from the simulation using the standard and

integrated Green function method.

of the integrated Green function in Eq. (16) involves more
function operations than that of the standard Green func-
tion in Eq. (4). Hence it is also more time consuming than
the calculation of the standard Green function. However,
this does not affect the N log(N) scaling law of the original
three-dimensional FFT algorithm. Figure 8 shows the com-
puting time for solving the three-dimensional Poisson
equation as a function of grid point number using the
FFT based integrated Green function method. It is seen
that the computing time scales nearly linearly with the
number of grid points due to the small log(N) contribution.
Here, N is the number of grid points in one dimension. The
integrated Green function method for solving the Poisson
equation is slower than the standard Green function
method due to the fact that more computational operations
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FIG. 8. (Color) Computing time of solving the 3D Poisson
equation as a function of number of grid points using the FFT
based integrated Green function method.

is required to calculate the effective Green function in
Eq. (16). However, the cost of computing the Green func-
tion will get smaller as more processors are used and the
size of domain on each processor gets smaller. For some
applications where the size of computational domain is
fixed, the Green function is computed once at the begin-
ning. The time difference between the standard Green
method and the integrated Green function method will be
very small compared with the total computing time.

In photoinjectors, for a finite length input laser pulse, the
electron emitted from the photocathode at head of the
beam can have significantly different momentum from
the electron at the tail if the acceleration gradient is high.
In this case, to calculate the space-charge forces by solving
the Poisson equation in a single beam frame is not suffi-
cient since there is no single Lorentz transform available in
which the spread in longitudinal particle velocities is non-
relativistic [27]. If we divide the initial laser pulse into a
number of slices, each slice having a very short pulse
length, this results in a small velocity spread within each
slice. The Poisson equation can be solved in the beam
frame of each slice and the electromagnetic fields are
Lorentz transformed back to the laboratory frame for
each slice. The total space-charge fields at a given location
are then added up from the contribution of each slice.
Figure 9 shows the transverse and longitudinal rms sizes
of an electron beam with an initial 10 ps flat top laser pulse
and 1 nC charge in an S-band photoinjector. It is seen that
the simulation results converge between two and four
slices. The results using only one slice shows about
10%—-30% different beam sizes at the exit of the gun.
This suggests that for such a beam with 10 ps pulse length,
1 nC electron and 120 MV/m peak accelerating field,
more than two slices (i.e., energy bins) are needed in order
to obtain accurate simulation results.

The above three-dimensional quasistatic model has been
implemented in a parallel particle-in-cell code, IMPACT-T.
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The details of parallel implementation of the model is
based on a domain-decomposition method which has
been discussed in previous publication [28]. The perform-
ance of the model on parallel computer is measured and
given in Fig. 10. It shows the speedup as a function of
number of processors on an IBM-SP3 supercomputer lo-
cated at the National Energy Research Scientific
Computing Center. Here, speedup is defined as a ratio of
the computing time on one processor to the computing time
on a given number of processors. In the case of perfect
scalability, the speedup will be a linear function of the
number of processors. It can be seen that the code has a
pretty good scalability up to 64 processors. The decreasing
of parallel efficiency beyond that number of processor is
due to the increasing communication cost associated with
the particle movement across processors and the matrix

700 750 200 250
number of processors

0 50

FIG. 10. (Color) Speedup of the parallel implementation as a
function of processor number on an IBM SP3 supercomputer.

transpose used in the parallel FFT algorithm to solve the
Poisson equation.

II1. APPLICATIONS

As an application, we have studied the effects of initial
beam misalignment with respect to rf accelerating axis on
the beam emittance in one LCLS photoinjector design
using the three-dimensional model discussed in this paper.
The photoinjector in this study consists of a one-and-half
cell 2.856 GHz S-band gun, an 85 cell traveling wave
structure, and two solenoid magnets for initial emittance
compensation at low energy and transverse focusing [23].
The peak electric field on the cathode is 120 and 18 MV/m
inside the linac. The electrons out of the photocathode are
accelerated to 62 MeV at the end of the traveling wave
structure. The initial laser pulse is assumed to have a 10 ps
flat top longitudinal density distribution with zero energy
spread. The transverse density distribution is assumed to be
uniform within a round cross section with 1.2 mm radius
and 0.72 mm mrad thermal emittance. Figure 11 shows the
normalized transverse rms emittances as a function of
distance using one slice, two slice, four slice, and eight
slice model of the beam. The simulations were done using
about 10° macroparticles with 64 X 64 X 64 mesh points.
We have varied the number of macroparticles, the mesh
points and the time step size to ensure the convergence of
simulation results. It appears that four slices are needed to
model the beam for numerical convergence. The final
emittance at the end of 5.0 m is about 1.4 mm mrad from
the four slice model, which is larger than the 1.1 mm mrad
from the single slice model. This emittance could be
further reduced with some fine tuning of lattice parameters
such as magnetic focusing strength. The simulation took
about 4.5 h computing time on 64 IBM-SP3 processors
with 375 MHz clock speed without special machine opti-
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FIG. 11. (Color) Transverse normalized rms emittance as a
function of distance using one slice, two slice, four slice, and
eight slice model of the beam.

mization. The rms emittance is calculated using the me-
chanical momenta of individual particles in the laboratory
frame.

In real photoinjector operation, the center of laser spot
on the photocathode may not be exactly coincident with the
rf structure axis. This causes initial misalignment of photo
electron beam inside the rf gun. Figure 12 shows the
emittance growth at the end of the injector as a function
of initial misalignment of the beam. It can be seen that the
averaged transverse emittance grows quickly with the in-
crease of the initial misalignment errors. To keep the
averaged emittance growth below the 10% level, the initial
misalignment has to be controlled within 0.2¢. In these
simulations, the centroid offset was corrected by assumed
steering magnets so that at the entrance to traveling wave
linac structure, the bunch centroid is set back to zero
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FIG. 12. (Color) Emittance growth at the end of the injector as a
function of initial misalignment of the beam.

numerically. The effects of wakefields are not included in
these simulations.

IV. CONCLUSIONS

In this paper, we have presented a three-dimensional
quasistatic model for high brightness beam dynamics
simulation on parallel computers. It is unique in its use
of space-charge solvers based on an integrated Green
function to efficiently and accurately treat three-
dimensional beams with large aspect ratio, and a shifted-
Green function to efficiently treat image-charge effects of a
cathode. We have shown that the standard Green function
method is not accurate enough to handle the high bright-
ness beam especially during the emission when the
transverse-to-longitudinal aspect ratio is large. We have
also shown that the image space-charge effects from con-
ducting photocathode are important to the beam quality
inside photoinjector and can be efficiently treated using a
shifted-Green function method. The model presented in
this paper is also unique in its inclusion of energy binning
in the space-charge calculation to model beams with large
energy spread. We have shown that more than two energy
slices are needed to accurately simulate a 1 nC beam with
10 ps initial length and going through 120 MV /m rf accel-
erating gradient. The above numerical algorithms are im-
plemented in a parallel particle-in-cell code. More than
50% parallel efficiency has been achieved up to 64 process-
ors on an IBM-SP3 computer. Together, all these features
make it a powerful and versatile tool for modeling three-
dimensional beams from inhomogeneous emission, beams
subject to initial misalignment and applications related to
next generation linear colliders. As an application, we have
studied the beam transport in one LCLS photoinjector
design through the first traveling wave linac with initial
misalignment errors. It suggests that the misalignment
error should be controlled within 0.2 to keep the averaged
emittance growth below 10% even without including the
effects of wakefields.
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