
Work supported  in part by Department of Energy contract DE-AC02-76SF00515

Realistic Two-body Interactions
in Many-nucleon Systems:

Correlated Motion beyond Single-particle Behavior

K. D. Sviratcheva,1 J. P. Draayer,1 and J. P. Vary2

1Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
2Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA

and
Lawrence Livermore National Laboratory, Livermore, California 94551

and
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

(Dated: June 13, 2006)

In the framework of the theory of spectral distributions we perform an overall comparison of three
modern realistic interactions, CD-Bonn, CD-Bonn+3terms, and GXPF1 in a broad range of nuclei
in the upper fp shell and study their ability to account for the development of isovector pairing
correlations and collective rotational motion in many-particle nuclear systems. Our findings reveal
a close similarity between CD-Bonn and CD-Bonn+3terms, while both interactions possess features
different from the ones of GXPF1. The GXPF1 interaction is used to determine the strength
parameter of a quadrupole term that augments an isovector-pairing model interaction with Sp(4)
dynamical symmetry, which in turn is shown to yield a reasonable agreement with the experimental
low-lying energy spectra of 58Ni and 58Cu.

I. INTRODUCTION

Realistic NN potentials, whether derived from meson
exchange theory (e.g.,[1]) or chiral effective field theory
(e.g.,[2]), provide no clear indication until utilized by
shell-model calculations on how well they can reproduce
prominent features of nuclei such as pairing gaps in nu-
clear spectra or enhanced electric quadrupole transitions
in collective rotational bands. While the properties of a
shell-model many-body wavefunction are usually affected
by the adopted model, a direct examination of a realistic
interaction based on the spectral distribution theory [3, 4]
can bring forward a deeper understanding of the very na-
ture of the interaction and above all, its role in the devel-
opment of collective and correlated many-nucleon motion
[5–9]. In addition it can reveal its similarity, via correla-
tion coefficients, to other interactions including the pair-
ing and quadrupole-quadrupole interactions. Such anal-
ysis is independent of the averages of the interactions and
yields an overall comparison throughout a broad domain
of nuclei beyond what can be achieved by overlaps of
several nuclear states or matching a group of two-body
interaction matrix elements.

In the paper we compare three modern realistic inter-
actions, namely, the CD-Bonn [1], CD-Bonn+3terms [10]
and GXPF1 [11], as well as two model interactions with
pairing and quadrupole terms, which typically dominate
in nuclei. The present study, which is complementary to
a similar 1f7/2 analysis [12], focuses on the upper fp-shell
domain. Such a partitioning of the fp oscillator shell fol-
lows naturally from a splitting of these two regions by
a strong spin-orbit interaction. The rotational and pair-
ing characteristics of a realistic interaction can be probed
through its projection onto a microscopic model Hamil-
tonian that describes collective rotational excitations or

pairing correlations [6, 13–15]. If the model and real-
istic interactions are strongly correlated, then the latter
will reflect the characteristic properties of the quadrupole
(pairing) Hamiltonian, which in turn may be used as a
good approximation.

Within the framework of the harmonic oscillator shell-
model, the quadrupole and pairing two-body interac-
tions possess a clear algebraic structure. While in the
quadrupole limit the SU(3) symmetry [16] governs a
shape-determined dynamics, the like-particle and proton-
neutron (isovector) pairing correlations respect a Sp(4)
dynamical symmetry [17–19]. Specifically, we employ the
Sp(4) model interaction [20, 21], which has been found
to provide for a reasonable microscopic description of the
pairing-governed isobaric analog 0+ states in light and
medium mass nuclei [21, 22], such as neutron-deficient
and N ≈ Z nuclei along the nucleosynthesis rp-path and
unstable nuclei currently explored in radioactive beam
experiments [23, 24]. In addition, the Sp(4) model inter-
action has been shown to account quite well for the ob-
served detailed structure beyond mean-field effects such
as the N = Z anomalies, isovector pairing gaps and stag-
gering effects [22] and as well to strongly correlate, espe-
cially when the quadrupole term is introduced, with the
realistic interactions under consideration in the 1f7/2 or-
bit [12].

Several detailed reviews of the nuclear shell model and
its applications have been published recently [25–27] that
delve into related key physics issues that are explored
in the present work. However, the spectral distribution
analysis provided here is novel and sheds considerable
light on the features of new fp-shell interactions, some
of which have been developed since those reviews were
completed.
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II. THEORETICAL FRAMEWORK

A. Theory of Spectral Distributions

The theory of spectral distributions is an excellent ap-
proach for studying microscopic interactions [4, 28, 29]
and continues to be a powerful concept with recent appli-
cations in quantum chaos, nuclear reactions and nuclear
astrophysics including studies on nuclear level densities,
transition strength densities, and parity/time-reversal vi-
olation (for example, see [30–39]). The significance of
the method is related to the fact that low-order energy
moments over a certain domain of single-particle states,
such as the energy centroid of an interaction (its average
expectation value) and the deviation from that average,
yield valuable information about the interaction that is
of fundamental importance [6, 15, 29, 40–45] without the
need for carrying out large-dimensional matrix diagonal-
ization and with little to no limitations due to the di-
mensionality of the vector space.

Spectral distribution theory (see Appendix for ba-
sic mathematical definitions and notation introduction)
combines important features, the most significant of
which are as follows:

1. The theory provides a precise measure, namely,
the correlation coefficient, for the overall similar-
ity of two interactions. Literally the correlation
coefficient is a measure of the extent to which two
interactions “look like” (are correlated with) one
another. In this respect, correlation coefficients
can be used to extract information how well pair-
ing/rotational features are developed in realistic in-
teractions, which may differ substantially from an
individual comparison of pairing/quadrupole inter-
action strengths [12].

2. It gives an exact prescription for identifying the
pure zero- (centroid), one- and two-body parts of
an interaction under a given space partitioning.
Therefore, major properties follow:

(a) The correlation coefficients are independent of
the interaction centroids. (A direct compari-
son of two-body matrix elements provided by
NN potentials may be misleading, especially
when the averages of the interactions differ
considerably.)

(b) The pure one-body part extracted from the in-
teraction, the so-called induced single-particle
energies (Appendix Eq. 17), is the average
monopole interaction (compare to [11]) and as
such influences the evolution of the shell struc-
ture, shell gaps and binding energies [46].

(c) The pure two-body part is essential for studies
of detailed property-defining two-body inter-
actions beyond strong mean-field effects.

3. The correlation coefficient concept can be propa-
gated straightforwardly beyond the defining two-
nucleon system to derivative systems with larger
numbers of nucleons [4] and higher values of isospin
[5]. This, in addition to the two-nucleon informa-
tion provided by alternative approaches (e.g.,[47]),
yields valuable overall information, without a need
for carrying out extensive shell-model calculations,
about the universal properties of a two-body inter-
action in shaping many-particle nuclear systems.

Group theory underpins spectral distribution theory
[3–5, 7, 48]. The model space is partitioned according
to particular group symmetries and each subsequent sub-
group partitioning yields finer and more detailed spectral
estimates. Specifically, for n particles distributed over N
single-particle states, the spectral distribution averaged
over all n-particle states associated with the U(N = 4Ω)
group structure is called a scalar distribution (denoted by
“n” in the formulae) and the spectral distribution aver-
aged over the ensemble of all n-particle states of isospin T
associated with U(N = 2Ω)⊗U(2)T is called an isospin-
scalar distribution (denoted by “n, T”).

For a spectral distribution α (α is n or n, T ), the cor-
relation coefficient between two Hamiltonian operators,
H and H ′, is defined as

ζα
H,H′ =

〈(H† − 〈H†〉α)(H ′ − 〈H ′〉α)〉α
σHσH′

=
〈H†H ′〉α − 〈H†〉α〈H ′〉α

σHσH′
, (1)

where the “width” of the distribution is the positive
square root of the variance,

(σα
H)2 = 〈(H − 〈H〉α)2〉α = 〈H2〉α − (〈H〉α)2, (2)

and the steps for computing these quantities are outlined
in the Appendix. The average values, 〈H〉α, related to
the trace of an operator divided by the dimensionality
of the space, are given in terms of the ensemble consid-
ered. In the (isospin-)scalar case, the correlation will be
denoted by ζn (ζn,T ) or simply ζ (ζT ) for n = 2.

From a geometrical perspective, in spectral distribu-
tion theory every interaction is associated with a vector
and the correlation coefficient ζ (Eq. 1) defines the angle
(via a normalized scalar product) between two vectors of
length σ (Eq. 2). Hence, ζH,H′ gives the normalized pro-
jection of H onto the H ′ interaction (or H ′ onto H). In
addition, (ζH,H′)2 gives the percentage of H that reflects
the characteristic properties of the H ′ interaction.

B. Description of Interactions

Here we examine three modern realistic interactions
(which will be denoted as HR), particularly two CD-
Bonn interactions [1, 10] and GXPF1 [11]. CD-Bonn is
a charge-dependent one-boson-exchange nucleon-nucleon
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(NN) potential that is one of the most accurate in repro-
ducing the available proton-proton and neutron-proton
scattering data. We employ the two-body matrix el-
ements of the effective interaction derived from CD-
Bonn for 0~ω no-core shell model (NCSM) calculations
in the fp shell. In addition, the CD-Bonn+3terms in-
teraction introduces phenomenological isospin-dependent
central terms plus a tensor force with strengths and
ranges determined in no-core 0~ω shell model calcula-
tions to achieve an improved description of the A = 48
Ca, Sc and Ti isobars. The GXPF1 effective interaction
is obtained from a realistic G-matrix interaction based
on the Bonn-C potential [49] by adding empirical cor-
rections determined through systematic fitting to exper-
imental energy data in the fp shell.

The model interactions include a Sp(4) Hamiltonian
with isosvector pairing plus pn isoscalar force and an
extended pairing+quadrupole interaction. The general
rotationally invariant model Hamiltonian with Sp(4) dy-
namical symmetry for a system of n valence nucleons in a
4Ω-dimensional space that conserves the number of par-
ticles ([Hsp(4), N̂ ] = 0) and the third projection of the
isospin ([Hsp(4), T̂0] = 0) can be expressed through the
Sp(4) group generators,

Hsp(4) = −G
∑1

i=−1 Â†i Âi − FÂ†0Â0 − E
2Ω (T̂ 2 − 3N̂

4 )

−D(T̂ 2
0 − N̂

4 )− C N̂(N̂−1)
2 − εN̂ , (3)

with two-body antisymmetric JT -coupled matrix ele-
ments (Eq. 7) for isospin rank 0 and 2 of Hsp(4) and
{r ≤ (s, t); t ≤ u} orbits,

W
(0)JT
rstu ≡ W JT

rstu = < rsJTMT0|H(0)|tuJTMT0 >

= −G0

√
ΩrΩt

Ω
δ(JT ),(01)δrsδtu

− {−E0[(−)T + 1
2 ] + C}δrtδsu, (4)

W
(2)JT
rstu = < rsJTMT0|H(2)|tuJTMT0 >

=
√

2
3

(F
√

ΩrΩt

Ω
δJ0δrsδtu −Dδrtδsu)δT1, (5)

where G0 = G+ F
3 , E0 = ( E

2Ω + D
3 ), G, F, E, D and C are

interaction strength parameters and ε > 0 is the Fermi
level energy (see Table I in Ref.[21] for parameter esti-
mates). The sp(4) algebraic structure is exactly the one
needed in nuclear isobaric analog 0+ states to describe
proton-proton (pp), neutron-neutron (nn) and proton-
neutron (pn) isovector pairing correlations, accounted by
the pair annihilation (creation) operators Â

(†)
+1,−1,0, and

isospin symmetry, reflected by the isospin operator T̂ 2

and related to a J-independent isoscalar (T = 0) pn
force. While the isotensor part (Eq. 5) of the model
interaction lies outside of the scope of the present exam-
ination, we mention for completeness that it introduces
isospin symmetry breaking through the D-term and as
well a plausible, but very weak, isospin mixing (F -term)
[50] in the Hamiltonian.

Furthermore, higher-J states in the low-lying nuclear
energy spectra enter the analysis and these states require
the inclusion of an additional quadrupole-quadrupole in-
teraction that being symmetric under SU(3) breaks the
Sp(4) symmetry and lifts degeneracies,

HM = Hsp(4) + H⊥Q (2), HQ = −χ

2
Q ·Q. (6)

The H⊥Q (2)-term is the part of the pure two-body HQ(2)
interaction that is not contained in Sp(4). In the vector
algebra terminology this means that we add the part that
is orthogonal to the pure two-body Sp(4) Hamiltonian [6].
This is because the Sp(4) interaction contains a part of
the quadrupole-quadrupole interaction. This part is not
negligible as revealed by the correlation between HQ and
Hsp(4). Namely, in the scalar case it is 15% (1f7/2), 29%
(1f5/2) and 29% (2p1/22p3/2), and for the T=1 part of the
interactions in the isospin-scalar case, it is 34% (1f7/2),
58% (1f5/2) and 58% (2p1/22p3/2). This is probably one
of the reasons why the Sp(4) model interaction turns out
to work rather well despite no explicit appearance of the
quadrupole-quadrupole interaction.

Such a Hamiltonian (Eq. 6) does not affect the centroid
of Hsp(4) because H⊥Q (2) is traceless. In this way this
collective interaction preserves the shell structure that is
built into Hsp(4) and established by a harmonic oscillator
potential and as a result is favored in many studies [6,
15, 51, 52].

The interaction matrix elements (Eq. 4) correspond to
the pure nuclear interaction and do not include Coulomb
repulsion, which, in the Sp(4) model, is corrected in the
experimental energies themselves by applying an empir-
ical formula deduced in [53]. This may result in slightly
more bound states predicted by our model when com-
pared to estimates of realistic interactions.

III. UNDERSTANDING THE NUCLEAR
INTERACTION IN MANY-NUCLEON SYSTEMS

The similarity of different interactions and their pair-
ing/rotational characteristics can be tracked in many-
nucleon systems [14] through the propagation formulae
(Appendix Eqs. 15, 19). The latter determine how the
averages extracted from the two-nucleon matrix elements
get carried forward into many-nucleon systems. This
propagation of information is model-independent.

We examine the pure two-body part of the realistic in-
teractions, HR(2), and how it is correlated to the isospin-
conserving part of the model interactions under consid-
eration, (3) and (6). The latter, in addition to their cen-
troids, are pure two-body in the upper fp model space
because of the assumption for Hsp(4) of constant Fermi
level energy and fixed interaction strengths throughout
the entire region. The significance of the correlation co-
efficients between pure two-body interactions [29] reflect
the fact that nuclear states, their collective properties
and configuration mixing, are solely shaped by the pure
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two-body part of an interaction, while the one-body part,
albeit of a considerable significance, trivially reorders the
states in the nuclear energy spectrum. In addition, such
analyses are free of the one-body influence including in-
duced single-particle energies, which are related to the
monopole interaction [11, 46, 47], and external single-
particle energies. The latter are introduced when a core
is assumed, as for the 0~ω 40Ca-core shell model using
the GXPF1 interaction, but not for the 0~ω no-core
shell model with the CD-Bonn or CD-Bonn+3terms in-
teractions. For the NCSM interactions, the two-body
matrix elements specifying the particle-core interactions
supplant the role of the external single-particle energies
included with the GXPF1 interaction. These additional
two-body matrix elements together with the external
single-particle energies for GXPF1 are not included in
the present analyses.

In our study, we vary only χ, the quadrupole strength
parameter in (Eq. 6), to find its optimal value (which is
an exact solution) by maximizing the ζ correlation coeffi-
cient [54] between the model HM interaction and the pure
two-body part HR(2) of each of the realistic interactions
under consideration. We do not alter the parameters of
the Sp(4) model, which have already been shown in an
appropriate domain of states to be valid for reproducing
various quantities (such as binding energies and pairing
gaps) and are in agreement with estimates available in
literature [21, 22].

In both scalar (Table I) and isospin-scalar (Fig.
1) distributions, the ζ

n(T )
HR(2),HM

correlation of the
realistic interactions with the pairing+quadrupole
extended model interaction is stronger for the
GXPF1 interaction compared to CD-Bonn and
CD-Bonn+3terms (ζGXPF1(2),HM

≈ 0.8 is much higher
than 0.6 typically regarded as good [8]). Hence, other
types of interactions that do not correlate with the
pairing and quadrupole-quadrupole interactions (of fixed
strength throughout the upper fp shell) comprise a
relatively small part of the pure two-body GXPF1 in-
teraction. They are weakest for the T = n/2 group of
states (Fig. 1) for all the three interactions.

In this isospin-scalar space partitioning (Fig. 1), where
the ability of a realistic interaction to form correlated
pairs is detected via ζn,T

HR(2),Hsp(4)
, which is independent

of the pairing strength parameters in Hsp(4)(Eq. 3), the
T = n/2 group of states is where the Sp(4) symmetry and
particularly the isovector pairing correlations are mani-
fested. This includes the T = 1 part of the interaction
itself (n = 2). The results show a good tendency in
GXPF1 for development of pairing correlations in the
T = n/2 states as was the case for the 1f7/2 domain.
For the three interactions, the additional quadrupole-
quadrupole interaction, H⊥Q (2), is comparatively (much)
smaller for the highest-isospin states, while it increases
towards low-isospin states.

Compared to the pairing Hsp(4) Hamiltonian, the ad-
ditional collective interaction, H⊥Q (2), that is the part of

TABLE I: Correlation coefficients for many-nucleon sys-
tems of the pure two-body realistic interactions HR(2) with
Hsp(4) and H⊥Q (2), with the extended pairing+quadrupole
model interaction HM (Eq. 6), and with the pure two-
body full quadrupole-quadrupole interaction, HQ(2). The
(ζHM ,Hsp(4))

2 quantity gives the part, in %, of HM that is

Sp(4) symmetric.

CD-Bonn CD-Bonn+3terms GXPF1

ζHR(2),Hsp(4)
0.55 0.50 0.65

ζHR(2),H⊥
Q

(2) 0.14 0.20 0.51

ζHR(2),HM
0.57 0.54 0.83

(ζHM ,Hsp(4))
2 93.1% 85.7% 61.3%

ζHR(2),HQ(2) 0.28 0.33 0.67

the HQ(2) rotational interaction that is not included in
Hsp(4), has a lower correlation with HR for all the realis-
tic interactions in the upper fp (Table I, second row and
Fig. 1) except T 6= n/2 for GXPF1 in the isospin-scalar
case. This result implies that a comparatively larger part
of the overall correlations is already accounted for solely
by the model interaction with symplectic Sp(4) dynami-
cal symmetry, which, especially for both CD-Bonn inter-
actions, is only slightly broken by H⊥Q (2) (Table I, fourth
row and Fig. 1). The Sp(4) symmetry breaking is re-
lated to the correlation coefficient of H⊥Q (2) with HM

or equivalently to the ratio of their norms [55], where
(ζHM ,H⊥Q (2))2 = 1− (ζHM ,Hsp(4))

2 (Table I).
The capability of a realistic interaction to describe ro-

tational collective motion, and hence to reproduce ro-
tational bands and enhanced electric quadrupole tran-
sitions, can be detected via its correlation to the full
HQ(2) quadrupole-quadrupole two-body interaction (Ta-
ble I, fifth row and Fig. 2). In both scalar and isospin-
scalar cases, the rotational features are more fully devel-
oped for GXPF1 and less for CD-Bonn+3terms and CD-
Bonn (Fig. 2) different from the outcome in the 1f7/2

region especially for the T = 1 part of CD-Bonn. As ex-
pected, compared to the orthogonal H⊥Q (2) interaction
in (Eq. 6), the ζHR(2),HQ(2) correlations are much higher.
In the T = n/2 group of states the full quadrupole-
quadrupole contribution is the strongest (weakest) for
CD-Bonn+3terms (CD-Bonn and GXPF1).

In short, the GXPF1 interaction is expected to repro-
duce spectral features like pairing gaps and rotational
bands observed in the upper fp nuclei, while it is un-
likely for both CD-Bonn interactions to fully reflect the
rotational properties of these nuclei. In comparison, the
CD-Bonn+3terms interaction in the 1f7/2 orbit exhibits
well-developed pairing and rotational characteristics [12]
and hence it is expected to achieve a rather good de-
scription of the associated many-body phenomena in the
energy spectra of nuclei with valence nucleons occupying
the 1f7/2 orbit. Such a difference in the behavior of CD-
Bonn+3terms within both regions, 1f7/2 and upper
fp, may reflect the fact that this interaction was deter-
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FIG. 1: Correlation coefficients of the pure two-body realis-
tic interactions, CD-Bonn (blue),CD-Bonn+3terms (red) and
GXPF1 (green), with Hsp(4) (filled symbols), H⊥Q (2) (trans-
parent symbols) and HM (empty symbols) in the upper
fp shell for the isospin-scalar distribution. For each valence
particle number, n, the isospin T varies as n

2
, n

2
− 1, . . . , 0(1).

The figures are symmetric with respect to the sign of n− 2Ω.

mined through a reproduction of the energy spectrum
and binding energy of A = 48 1f7/2 nuclei.

The different extent to which the GXPF1 interaction
compared to the CD-Bonn and CD-Bonn+3terms in-
teractions reflects development of pairing correlations
and collective rotational modes in the upper fp do-
main may be the reason why their pure two-body
part do not correlate strongly as, for example, CD-
Bonn and CD-Bonn+3terms do. Namely, in the scalar
case the pure two-body correlations are 0.90 (between
CD-Bonn and CD-Bonn+3terms) and only 0.56 (CD-
Bonn and GXPF1) and 0.53 (CD-Bonn+3terms and
GXPF1). In the isospin-scalar case, the correlations
vary slightly with the particle number and isospin and
they are on average, 0.88 (between CD-Bonn and CD-
Bonn+3terms), 0.40 (CD-Bonn and GXPF1), and 0.37
(CD-Bonn+3terms and GXPF1). In addition, one can
compare the significant monopole influence of the three
interactions, which is very similar for all when aver-
aged over the isospin values. However, in the isospin-
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FIG. 2: Comparison between the orthogonal H⊥Q (2) and
the full two-body HQ(2) quadrupole-quadrupole interac-
tions in their correlation to the realistic interactions, CD-
Bonn (blue squares), CD-Bonn+3terms (red diamonds) and
GXPF1 (green circles), in the isospin-scalar distribution. For
each valence particle number, n, the isospin T varies as
n
2
, n

2
− 1, . . . , 0(1). The figure is symmetric with respect to

the sign of n− 2Ω.

scalar distribution, the correlation coefficients involving
the induced effective one-body contribution differ be-
tween GXPF1 and the two CD-Bonn interactions (Fig.
3). Their behavior, especially below mid-shell, reflects
the similarity of the corresponding T = 0 induced single-
particle energies (Appendix Eq. 17) and the opposite
signs of the corresponding λT=1

3/2 (for 2p3/2) and λT=1
5/2

(for 1f5/2 ) pure one-body interactions.
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FIG. 3: Correlation coefficients between the pure one-body
part of the CD-Bonn ,CD-Bonn+3terms and GXPF1 re-
alistic interactions in the isospin-scalar distribution. For
each valence particle number, n, the isospin T varies as
Tmax, Tmax − 1, . . . , 0(1) with Tmax = min(n

2
, 4Ω−n

2
).

In relation to the monopole (pure one-body) part of
the realistic interactions and its significance in nuclear
matter, an interesting outcome follows when each HR re-
alistic interaction is compared to a model interaction [of
the type (Eq. 3) or (Eq. 6)], in which the pure one-body
part is provided by HR (excluding external s.p.en. for
GXPF1) [14]. Such an interaction will be denoted by ‘*’,
e.g., H∗M = HM (0) + HR(1) + HM (2). Namely, in the
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(isospin-)scalar case the ζ
n(T )
HR,H∗M

correlation coefficient is
on average 0.81 (0.84) for CD-Bonn, 0.79 (0.81) for CD-
Bonn+3terms, and 0.84 (0.80) for GXPF1 (Fig. 4). This
implies that pairing and quadrupole-quadrupole interac-
tions can provide for a quite reasonable substitution of
the two-body part of the interactions. Other types of
two-body interactions different from pairing and Q · Q
in both CD-Bonn interactions decrease quickly towards
the mid-shell and beyond (e.g., down to only 4% of the
total realistic interaction for the T = n/2 states), where
the role of the one-body part for shaping nuclear energy
spectra strongly increases in importance.

A. Individual-Orbit Analysis

One can further perform a partitioning of the fp-space
to single-j orbits, 1f7/2 , 1f5/2 , 2p1/2 and 2p3/2, to pro-
vide for more detailed spectral measures that may reflect
important fine effects that are otherwise averaged out
when the entire fp major shell is taken into account. We
have already illustrated such an example and its signifi-
cance by exploration of the 1f7/2 orbit [12] (a few results
from that study are presented here for completeness).
Individual orbit analyses render correlation coefficients
that are free of the influence of any one-body interaction
[by definition, (Eq. 8,11,17)]. However, due to the small
model space, the 2p1/2 and 2p3/2 orbits are combined in
the analysis and hence εj and λj , j = {1/2, 3/2}, may
be nonzero. This is why in the 2p1/22p3/2 joint region
we consider again only the two-body part of the realistic
interactions and calculate correlation coefficients.

In the scalar distribution, a good portion, 53% to 98%,
of the extended pairing+quadrupole model interaction is
described solely by the Hsp(4) pairing interaction [Ta-
ble II, (ζHM ,Hsp(4))

2]. As mentioned above, although the
Sp(4) breaking due to the quadrupole-quadrupole inter-
action [H⊥Q (2)] is not large, correlations of HR with the
full HQ(2) are sometimes even stronger than ζHR,Hsp(4) .
The realistic interactions exhibit a quite well-developed
rotational character (Table II, ζHR,HQ(2)) except for CD-
Bonn and CD-Bonn+3terms in the 2p1/22p3/2 region.
Besides these cases, the HM model interaction, as re-
vealed by ζHR,HM

in Table II, can be used as a very good
approximation to the realistic interactions within each of
the domains considered.

The extent to which the Sp(4) isovector (T = 1) pair-
ing governs the interaction between two nucleons (n = 2)
within a certain domain of states is represented by the
correlation coefficients between Hsp(4) and HR in the
T = 1 region (Table III). The results show large J = 0
isovector coherence within each single-j shell, ζT

Hsp(4),HR
,

particularly for CD-Bonn+3terms and GXPF1, which
are expected to describe quite well phenomena of a pair-
ing character, while for CD-Bonn other types of inter-
action compete with pair formation. The latter are of
the H⊥Q (2) type for the 1f7/2 and 1f5/2 orbits, where

TABLE II: Correlation coefficients for many-nucleon systems
of the HR realistic interactions with Hsp(4)(Eq. 3), with the
extended pairing+quadrupole model interaction HM (Eq. 6),
and with the pure two-body full quadrupole-quadrupole in-
teraction, HQ(2). The (ζHM ,Hsp(4))

2 quantity gives the part,

in %, of HM that is Sp(4) symmetric.

Scalar Distribution

1f7/2 1f5/2 2p1/22p3/2
a

CD-Bonn ζHR,Hsp(4) 0.66 0.70 0.58

ζHR,HM 0.81 0.76 0.61

(ζHM ,Hsp(4))
2 65.9% 83.7% 91.7%

ζHR,HQ(2) 0.69 0.64 0.17

CD-Bonn ζHR,Hsp(4) 0.64 0.67 0.51

+3terms ζHR,HM 0.87 0.86 0.52

(ζHM ,Hsp(4))
2 53.4% 60.6% 98.3%

ζHR,HQ(2) 0.80 0.82 0.22

GXPF1 ζHR,Hsp(4) 0.76 0.77 0.70

ζHR,HM 0.93 0.84 0.90

(ζHM ,Hsp(4))
2 67.9% 84.7% 61.7%

ζHR,HQ(2) 0.78 0.69 0.85

apure two-body part of the interactions

the residual interactions are negligible. In short, the sim-
ple Sp(4) model interaction and especially its extended
pairing+quadrupole HM interaction can reproduce rea-
sonably well the T = 1 part of the realistic interactions
under consideration in the orbits specified in Table III.

TABLE III: Correlation coefficients for a two-nucleon system
(n = 2) of the HR realistic interactions with Hsp(4)(Eq. 3)
and with the extended pairing+quadrupole model interaction
HM (Eq. 6). The (ζHM ,Hsp(4))

2 quantity gives the part, in %,

of HM that is Sp(4) symmetric.

Isospin-scalar Distribution, T = 1

1f7/2 1f5/2 2p1/22p3/2
a

CD-Bonn ζT=1
HR,Hsp(4)

0.61 0.57 0.54

ζT=1
HR,HM

0.95 1.00 0.59

(ζHM ,Hsp(4))
2 41.5% 32.3% 84.2%

CD-Bonn ζT=1
HR,Hsp(4)

0.85 0.93 0.59

+3terms ζT=1
HR,HM

0.98 1.00 0.61

(ζHM ,Hsp(4))
2 73.9% 86.9% 92.1%

GXPF1 ζT=1
HR,Hsp(4)

0.71 0.86 0.69

ζT=1
HR,HM

0.96 1.00 0.94

(ζHM ,Hsp(4))
2 54.5% 74.0% 53.5%

apure two-body part of the interactions

For nuclear systems with more than two nucleons and
states with T = n/2, Table III continues to apply. In the
T 6= n/2 cases, the realistic interactions have a very sim-
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FIG. 4: Correlation coefficients in the isospin-scalar distribution of the realistic interactions, CD-Bonn (blue squares), CD-
Bonn+3terms (red diamonds) and GXPF1 (green circles), with H∗sp(4) (filled symbols), H⊥Q (2) (transparent symbols) and H∗M
(empty symbols), which closely follows ζHR,H∗

sp(4)
for both CD-Bonn interactions, in the upper fp shell. For each valence

particle number, n, the isospin T varies as Tmax, Tmax − 1, . . . , 0(1) with Tmax = min(n
2
, 4Ω−n

2
). A complete explanation of the

notation is given in the text.

ilar behavior in both the 1f5/2 and 1f7/2 (refer to Fig.
4 in [12] for correlations of HR to the extended pair-
ing+quadrupole model interaction) where CD-Bonn is
dominated by H⊥Q (2), while both H⊥Q (2) and Hsp(4) con-
tributions enter at almost the same footing in CD-
Bonn+3terms. In the 2p1/22p3/2 joint region the main
contribution to GXPF1 comes from Hsp(4) for all n, T
values. The GXPF1 interaction in the 1f5/2 1f7/2 orbits
and both CD-Bonn interactions in the 2p1/22p3/2 retain
the same overall pattern as in the upper fp region (Fig.
1) and with relatively stronger correlations coefficients.

A very close similarity is observed between realistic
and model interactions within individual orbits. How-
ever, more prominent differences among the interactions
appear in the multi-j upper fp domain especially con-
cerning both CD-Bonn interactions. This may indicate
that the inter-orbit interactions do not respect strongly
the symmetries imposed in the model interactions. In
addition, the interaction strengths may differ from one
orbit to another. While they do not affect correlation
coefficients in the singe-j cases, their relative strength is
of a great importance for multi-j analysis.

B. Energy Spectra for A = 58 Nuclei

The results presented above show that the HM model
Hamiltonian (Eq. 6) can be used in the upper fp re-
gion as a quite good approximation of the pure two-body
part of the GXPF1 interaction (Fig. 1). The model
interaction can also provide for a reasonable substitu-

tion of the pure two-body part of CD-Bonn and CD-
Bonn+3terms, especially towards and beyond the mid-
shell and for T ≈ n/2 states in the isospin-scalar case
(Fig. 4). As an illustrative example, we apply the sim-
pler model interaction (Eq. 6) to a nuclear system of two
nucleons in the upper fp region without any parameter
variation.

Particularly, we assume a 56Ni-core and that both nu-
cleons in 58Ni and 58Cu occupy the upper fp orbits with
reasonable probability [11]. For a description of the low-
lying structure of these nuclei, external single-particle en-
ergies are needed to rescale at the end the eigenvalues of
the model Hamiltonian. This is performed trivially due
to the microscopic structure of the model eigenstates,
which are constructed in terms of fermion creation oper-
ators. We adopt single-particle energies that are derived
from the 57Ni energy spectrum. To a very reasonable de-
gree, these energies reflect the influence of the 1f7/2 orbit
and the core mean-field contribution.

The model Hamiltonian uses a χ value of 0.027 that we
obtained through a comparison of HM to GXPF1 within
a scalar distribution. The reason is that the pure two-
body GXPF1 interaction holds the best correlation coef-
ficient to the model interaction in the upper fp region
(Table I). In addition, the energy spectra for 58Ni and
58Cu are found to be closely reproduced by shell model
calculations with the GXPF1 interaction in the full fp
oscillator shell [11].

We extend the model space to include the 1g9/2 orbit
as it intrudes in the upper fp domain. This is exactly the
space where the Sp(4) model was applied and interaction
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strength parameters determined [21]. The latter are kept
fixed throughout the present analyses. The results (Fig.
5) show a very good reproduction of the low-lying T = 1
spectra in 58Ni and 58Cu, especially the lowest 2+ states
for both nuclei and the first 0+ (T = 1) state above the
58Cu ground state. Both states are of particular signif-
icance. On the one hand, the energy difference between
the lowest 0+ and 2+ states is believed to be directly
affected by the formation of correlated pairs in the low-
est 0+ state (ground state for even-even nuclei) and the
pairing gap that occurs below the first excited 2+ state
of a broken pair. On the other hand, the 0+(T = 1) to
1+(T = 0) energy difference in N = Z odd-odd nuclei
is associated with the close interplay of isovector (T=1,
pairing correlations) and isoscalar (T=0) interactions be-
tween protons and neutrons in the same major shell. In
addition, the T = 0 spectrum of 58Cu as predicted by
the model interaction possesses the same pattern of the
levels observed, namely, the 1+ ground state is followed
by 3+, 1+, 2+, 4+, and 3+. The 58Cu T = 0 spectrum
appears narrower than the experimental data, which sug-
gests that different interaction strengths for T = 0 and
T = 1 need to be used.
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FIG. 5: Theoretical (‘th’) low-lying energy spectra for 58Ni
(left, blue) and 58Cu (right, red) compared to experiment
(‘exp’, black). The theoretical calculations are performed in
the 1f5/22p1/22p3/21g9/2 major shell with the HM model in-
teraction (Eq. 6 with χ = 0.027) and with single-particle
energies derived from 57Ni experimental energy levels.

In short, we demonstrate that strong correlations typ-
ically yield very similar energy spectra and reproduction
of the overall pattern of the energy levels without any
adjustment of the interaction strength parameters.

IV. CONCLUSIONS

We compared three modern realistic interactions, CD-
Bonn, CD-Bonn+3terms, and GXPF1 and two model
pairing and quadrupole interactions in the upper fp re-
gion by means of the theory of spectral distributions.
We focus on the weaker but property-defining two-body
part of the interactions, which yields strong correlation
of the pure two-body GXPF1 realistic interaction with

the pairing+quadrupole extended model in both scalar
and isospin-scalar distributions in the upper fp domain.

Particularly, the outcomes show very good scalar-
distribution correlations of GXPF1 with the Sp(4) dy-
namically symmetric interaction, which includes isovec-
tor pairing correlations and a proton-neutron isoscalar
force, and with the quadrupole-quadrupole interaction
for description of SU(3) dynamically symmetric collec-
tive rotational modes. Rotational features within many-
nucleon systems in the upper fp domain are found to
be more fully developed for GXPF1 and less for CD-
Bonn+3terms and CD-Bonn. The isospin-scalar space
partitioning demonstrates a tendency in GXPF1 towards
the formation of correlated pairs in the highest possible
isospin groups of states. For both CD-Bonn interactions,
other types of two-body interactions different from the
pairing and quadrupole interactions (with fixed strength
throughout the upper fp shell) decrease in importance
towards and beyond the mid-shell until they become neg-
ligible, that is, only about 4% of the total realistic inter-
action.

Individual orbit analysis, including the 1f7/2, 1f5/2,
2p1/2, and 2p3/2 levels, shows considerably stronger
correlation of all the interactions with the pair-
ing+quadrupole model interaction (up to 0.8 − 1.00).
In addition, the results, independent of pairing and
quadrupole strengths, reveal a tendency for pair forma-
tion within the individual orbits for the T = 1 part of
the CD-Bonn+3terms and GXPF1 interactions and well
developed collective rotational features within the 1f7/2

and 1f5/2 orbits especially in CD-Bonn+3terms and the
T = 1 CD-Bonn interactions.

In the upper fp region, the extended HM pair-
ing+quadrupole interaction is strongly correlated with
the pure two-body GXPF1 realistic interaction espe-
cially in the scalar distribution and for this reason can
be used as a good approximation. This is reflected in
the quite good agreement between the experimental low-
lying energy spectra of 58Ni and 58Cu and the theoreti-
cal prediction based on the HM model interaction in the
1f5/22p1/22p3/21g9/2 major shell.

In summary, based on these results, spectral distri-
bution theory appears to be a good framework for un-
covering fundamental properties of realistic interactions
in many-nucleon systems. We find varying degrees of
respect for selected underlying symmetries. As some
of these symmetries have been demonstrated to be im-
portant for certain spectral features, we have a tool for
rapidly assessing the likely success of these interactions
for reproducing those spectral features. For example, it
is unlikely that the CD-Bonn+3terms interaction will
provide a fully satisfactory description of the rotational
properties of nuclei in the upper fp shell. Given that
this interaction was determined only with A = 48 nu-
clear spectra and binding energies [10], future efforts at
expanding the region of its validity in the no-core shell
model should benefit from the analysis provided here.
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Appendix

The theory of spectral distributions (or statistical spec-
troscopy) is well documented in the literature [3–5, 7, 41]

and is accompanied by computational codes [7, 56] for
evaluating various measures. The purpose of this ap-
pendix is to specify the notation and ensure that our
definitions of the summations and numerical factors that
enter into such measures are clearly understood.

In standard second quantized form, a one- and two-
body interaction Hamiltonian is given in terms of
fermion creation a†jm(1/2)σ = c†jm(1/2)σ and annihilation
ajm(1/2)σ = (−1)j+m+1/2+σcj−m(1/2)−σ tensors, which
create or annihilate a particle of type σ = ±1/2 (pro-
ton/neutron) in a state of total angular momentum j
(half integer) with projection m in a finite space 2Ω =
Σj(2j + 1),

H = −
∑
r≤s

√
[r]εrs{a†r ⊗ as}(00) −

∑
r ≤ s

t ≤ u

Γ = (J, T )

√
[Γ]√

(1 + δrs)(1 + δtu)
WΓ

rstu{{a†r ⊗ a†s}Γ ⊗ {at ⊗ au}Γ}(00)

= −
∑
r≤s

√
[r]εrs{a†r ⊗ as}(00) −

1
4

∑
rstu

Γ

√
(1 + δrs)(1 + δtu)[Γ]WΓ

rstu{{a†r ⊗ a†s}Γ ⊗ {at ⊗ au}Γ}(00), (7)

where the labels are r = {jr, τr = 1
2}, [r] = 2(2jr + 1),

and [Γ] = (2J + 1)(2T + 1). In (Eq. 7), εrs is
the (external) single-particle energy (hereafter we con-
sider no angular momentum degeneracy for two dif-
ferent radial quantum numbers, εrs = εrδrs) and
W JT

rstu is the two-body antisymmetric matrix element in
the JT -coupled scheme [WΓ

rstu = −(−)r+s−ΓWΓ
srtu =

−(−)t+u−ΓWΓ
rsut = (−)r+s−t−uWΓ

srut = WΓ
turs]. For

an isospin nonconserving two-body interaction of isospin
rank T , the coupling of fermion operators is as follows,
{{a†r ⊗ a†s}JT ⊗ {at ⊗ au}JT }(0T ), with W

(T )JT
rstu matrix

elements.
For a major shell that consists of several s orbits, each

of degeneracy Ns (N =
∑

sNs), the (traceless) external
single-particle energy of the rth orbit is obtained as

ε̃r = εr − ε = εr −
1
N

∑
s

εsNs, (8)

where the average (external) single-particle energy is

ε =
1
N

∑
s

εsNs. (9)

Scalar Distribution. For a two-particle system, the

monopole moment (centroid), which is the average ex-
pectation value of the two-body interaction, is defined in
the scalar case as

Wc =
1(N
2

) ∑
r≤s,Γ

[Γ]WΓ
rsrs

=

∑
rs,Γ[Γ]WΓ

rsrs(1 + δrs)
N (N − 1)

, (10)

where N = 4Ω = 2
∑

r(2jr + 1), the Γ-sum goes over all
possible (J, T ) for given r, s, and

(N
2

)
=

∑
r≤s,Γ[Γ]. The

traceless induced single-particle energy is constructed by
contraction of the two-body interaction into an effective
one-body operator under the particular group structure,

λr =
1
Nr

∑
s,JT

[JT ]W JT
rsrs(1 + δrs)

− 1
N

∑
tu,JT

[JT ]W JT
tutu(1 + δtu). (11)

For a system with one hole in the rth orbit, λr corre-
sponds to the energy of a single particle as contributed
by the interaction with the valence particles above the
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core and differs from the εr, which are generated by the
interaction of a single particle with the core. In turn, the
traceless pure two-body interaction is defined as

W JT
rstu(2) = W JT

rstu − (Wc +
λr + λs

N − 2
)δrtδsu. (12)

For the Sp(4) interaction, the average two-body in-
teraction is expressed in terms of the parameters in the
following way,

Wc = −3G0(N
2

) +
3E0

2(N − 1)
− C. (13)

The pure one-body (traceless) induced single-particle en-

ergies are zero due to degeneracies in both cases of a
single-j orbit or the 1f5/22p1/22p3/21g9/2 multi-j shell.
In addition, the pure two-body matrix elements are in-
dependent of the C parameter and hence the correlation
coefficient depends only on two model parameters, G0

and E0.

In order to calculate energy moments and their prop-
agation for higher n (and T ) values, each interaction H
(consisting of one(k = 1)- and two(k = 2)-body parts)
needs to be expressed as a linear combination of terms of
definite particle rank (irreducible tensors Hk(ν) of rank
ν = 0, 1, 2), that is as a collection of pure zero-, one- and
two-body interactions. For n particles, the Hamiltonian
can be rendered,

H = nH1(0) +
(

n

2

)
H2(0) +H1(1) + (n− 1)H2(1) +H2(2)

= −nε−
(

n

2

)
Wc −

∑
r

[r]
1
2 (ε̃r +

n− 1
N − 2

λr){a†r ⊗ ar}(00)

−
∑
r ≤ s

t ≤ u

Γ = (J, T )

√
[Γ]√

(1 + δrs)(1 + δtu)
WΓ

rstu(2){{a†r ⊗ a†s}Γ ⊗ {at ⊗ au}Γ}(00), (14)

for then the quantity that defines the correlation coefficient (Eq. 1) is easily computed for different particle numbers n,

〈H†H ′〉n − 〈H†〉n〈H ′〉n =
n(N − n)
N (N − 1)

∑
r

[ε̃r +
n− 1
N − 2

λr][ε̃′r +
n− 1
N − 2

λ′r]Nr

+
n(n− 1)(N − n)(N − n− 1)
N (N − 1)(N − 2)(N − 3)

∑
r ≤ s

t ≤ u

Γ = (J, T )

[Γ]WΓ
rstu(2)W ′Γ

rstu(2). (15)

Isospin-Scalar Distribution. Analogously, the cen-
troid in the isospin-scalar case is defined as,

WT
c =

2
N (N + (−1)T )

∑
r≤s,J

[J ]W JT
rsrs (16)

where N = 2Ω. The λT
r traceless induced single-particle

energy for orbit r and the W JT
rstu(2) traceless pure two-

body interaction [7] are defined as,

λT
r =

1
Nr

∑
s,J

[J ]W JT
rsrs(1 + δrs)

− 1
N

∑
tu,J

[J ]W JT
tutu(1 + δtu), (17)

W JT
rstu(2) = W JT

rstu − (WT
c +

λT
r + λT

s

N + 2(−1)T
)δrtδsu.(18)

In order to calculate the correlation coefficient ζn,T and
the variance σn,T , the following quantities are needed,
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〈H†H ′〉n,T − 〈H†〉n,T 〈H ′〉n,T = p1(T )
∑

r

Nr ε̃r ε̃
′
r +

∑
r,τ

p1(n, T, τ)Nr[ε̃rλ
′τ
r + ε̃′rλ

τ
r ]

+
∑

r,{τ1,τ2}
p1(n, T, τ1, τ2)Nr[λτ1

r λ′
τ2
r + λτ2

r λ′
τ1
r ]

+
∑

τ

p2(n, T, τ)
2

N (N + (−1)τ )

∑
r ≤ s

t ≤ u

J

[J ]W Jτ
rstu(2)W ′Jτ

rstu(2), (19)

where τ is 0 or 1, and the sum over {τ1, τ2} goes over the set of values, {0, 0}, {0, 1} and {1, 1}. The propagator
functions are derived in [5, 57] to be,

p1(T ) =
n(N + 2)(N − n

2 )− 2NT (T + 1)
N (N − 1)(N + 1)

(20)

p1(n, T, τ) =
(N + 2)(N − n

2 )[(2τ + 1)n(n + 2(−1)τ )− 4T (T + 1)(−1)τ ] + 4NT (T + 1)(1− n)(1− (−1)τ )
4N (N − 1)(N + 1)(N + 2(−1)τ )

(21)

p1(n, T, τ1, τ2) =
1

8(N − 1)(N + 1)(N − 2)(N + 2(−1)τ1)
{4NT (T + 1)(n− 1)(N − 2n + 4)(1− (−1)τ1)

+[(2τ1 + 1)n(n + 2(−1)τ1)− 4T (T + 1)(−1)τ1 ][(2τ2 + 1)(n + 2(−1)τ2)(N − n

2
) 1
2 + T (T + 1)(−1)τ2 ]

×[N − 2(−1)τ2 ]} (22)

p2(n, T, τ = 0) =
[n(n + 2)− 4T (T + 1)][(N − n

2 )(N − n
2 + 1)− T (T + 1)]

8N (N − 1)
(23)

p2(n, T, τ = 1) =
1

N (N + 1)(N − 2)(N − 3)
{ 1

2T 2(T + 1)2(3N 2 − 7N + 6)

+
3
8
n(n− 2)(N − n

2
)(N − n

2
+ 1)(N + 1)(N + 2)

+ 1
2T (T + 1)[(5N − 3)(N + 2)n(n

2 −N ) +N (N − 1)(N + 1)(N + 6)]}. (24)

For the Sp(4) interaction, the centroid energy for a
given isospin value is,

WT
c = − G0(N

2

)δT1 + E0[(−1)T + 1
2 ]− C. (25)

The pure two-body matrix elements, W JT
rstu(2), and hence

the correlation coefficients involving Hsp(4), are then in-
dependent of the C and E0 parameters. The Sp(4) ma-
trix elements (Eq. 4) do not contribute to the one-body
part of the Hamiltonian, that is all λT

r are zero for a

single-j orbit as well as for the 1f5/22p1/22p3/21g9/2 ma-
jor shell. In addition, the contribution of the external
single-particle energies is already accounted for on av-
erage by the term εN̂ in (Eq. 3) and hence ε̃r = 0.
Therefore, there is no pure one-body part in the Sp(4)
model Hamiltonian. As far as the realistic interactions
are concerned, ε̃r and λ

(T )
r are trivially zero for the single-

j case. For CD-Bonn and CD-Bonn+3terms within a
multi-j shell there are no explicit external single-particle
energies, εr = 0, and hence the one-body contribution
emerges only from their W JT

rstu matrix elements.
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