Measurement of the Spin of the Ω^{-}Hyperon at BABAR

B. Aubert,,${ }^{1}$ R. Barate, ${ }^{1}$ M. Bona, ${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ E. Grauges, ${ }^{2}$ A. Palano, ${ }^{3}$ J. C. Chen, ${ }^{4}$ N. D. Qi, ${ }^{4}$ G. Rong, ${ }^{4}$ P. Wang, ${ }^{4}$ Y. S. Zhu, ${ }^{4}$ G. Eigen, ${ }^{5}$ I. Ofte, ${ }^{5}$ B. Stugu, ${ }^{5}$ G. S. Abrams, ${ }^{6}$ M. Battaglia, ${ }^{6}$ D. N. Brown, ${ }^{6}$ J. Button-Shafer, ${ }^{6}$ R. N. Cahn, ${ }^{6}$ E. Charles, ${ }^{6}$ M. S. Gill, ${ }^{6}$ Y. Groysman, ${ }^{6}$ R. G. Jacobsen, ${ }^{6}$ J. A. Kadyk,,${ }^{6}$ L. T. Kerth, ${ }^{6}$ Yu. G. Kolomensky, ${ }^{6}$ G. Kukartsev, ${ }^{6}$ G. Lynch, ${ }^{6}$ L. M. Mir, ${ }^{6}$ P. J. Oddone, ${ }^{6}$ T. J. Orimoto, ${ }^{6}$ M. Pripstein, ${ }^{6}$ N. A. Roe, ${ }^{6}$ M. T. Ronan, ${ }^{6}$ W. A. Wenzel, ${ }^{6}$ P. del Amo Sanchez, ${ }^{7}$ M. Barrett, ${ }^{7}$ K. E. Ford, ${ }^{7}$ T. J. Harrison, ${ }^{7}$ A. J. Hart, ${ }^{7}$ C. M. Hawkes, ${ }^{7}$ S. E. Morgan, ${ }^{7}$ A. T. Watson, ${ }^{7}$ K. Goetzen, ${ }^{8}$ T. Held, ${ }^{8}$ H. Koch, ${ }^{8}$ B. Lewandowski, ${ }^{8}$ M. Pelizaeus, ${ }^{8}$ K. Peters, ${ }^{8}$ T. Schroeder, ${ }^{8}$ M. Steinke, ${ }^{8}$ J. T. Boyd, ${ }^{9}$ J. P. Burke, ${ }^{9}$ W. N. Cottingham, ${ }^{9}$ D. Walker, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{10}$ B. G. Fulsom,,10 C. Hearty, ${ }^{10}$ N. S. Knecht, ${ }^{10}$ T. S. Mattison, ${ }^{10}$ J. A. McKenna, ${ }^{10}$ A. Khan, ${ }^{11}$ P. Kyberd, ${ }^{11}$ M. Saleem, ${ }^{11}$ D. J. Sherwood, ${ }^{11}$ L. Teodorescu, ${ }^{11}$ V. E. Blinov, ${ }^{12}$ A. D. Bukin, ${ }^{12}$ V. P. Druzhinin, ${ }^{12}$ V. B. Golubev,,12 A. P. Onuchin, ${ }^{12}$ S. I. Serednyakov, ${ }^{12}$ Yu. I. Skovpen, ${ }^{12}$ E. P. Solodov, ${ }^{12}$ K. Yu Todyshev, ${ }^{12}$ D. S. Best,,13 M. Bondioli, ${ }^{13}$ M. Bruinsma, ${ }^{13}$ M. Chao, ${ }^{13}$ S. Curry, ${ }^{13}$ I. Eschrich, ${ }^{13}$ D. Kirkby, ${ }^{13}$ A. J. Lankford, ${ }^{13}$ P. Lund, ${ }^{13}$ M. Mandelkern, ${ }^{13}$ R. K. Mommsen, ${ }^{13}$ W. Roethel, ${ }^{13}$ D. P. Stoker, ${ }^{13}$ S. Abachi, ${ }^{14}$ C. Buchanan, ${ }^{14}$ S. D. Foulkes, ${ }^{15}$ J. W. Gary, ${ }^{15}$ O. Long, ${ }^{15}$ B. C. Shen, ${ }^{15}$ K. Wang, ${ }^{15}$ L. Zhang, ${ }^{15}$ H. K. Hadavand, ${ }^{16}$ E. J. Hill, ${ }^{16}$
H. P. Paar, ${ }^{16}$ S. Rahatlou, ${ }^{16}$ V. Sharma, ${ }^{16}$ J. W. Berryhill, ${ }^{17}$ C. Campagnari, ${ }^{17}$ A. Cunha, ${ }^{17}$ B. Dahmes, ${ }^{17}$ T. M. Hong, ${ }^{17}$ D. Kovalskyi, ${ }^{17}$ J. D. Richman, ${ }^{17}$ T. W. Beck, ${ }^{18}$ A. M. Eisner, ${ }^{18}$ C. J. Flacco, ${ }^{18}$ C. A. Heusch, ${ }^{18}$ J. Kroseberg, ${ }^{18}$ W. S. Lockman, ${ }^{18}$ G. Nesom, ${ }^{18}$ T. Schalk, ${ }^{18}$ B. A. Schumm, ${ }^{18}$ A. Seiden, ${ }^{18}$ P. Spradlin, ${ }^{18}$ D. C. Williams, ${ }^{18}$ M. G. Wilson, ${ }^{18}$ J. Albert, ${ }^{19}$ E. Chen, ${ }^{19}$ A. Dvoretskii, ${ }^{19}$ F. Fang, ${ }^{19}$ D. G. Hitlin, ${ }^{19}$ I. Narsky, ${ }^{19}$
T. Piatenko, ${ }^{19}$ F. C. Porter, ${ }^{19}$ A. Ryd, ${ }^{19}$ A. Samuel, ${ }^{19}$ G. Mancinelli, ${ }^{20}$ B. T. Meadows, ${ }^{20}$ M. D. Sokoloff, ${ }^{20}$ F. Blanc, ${ }^{21}$ P. C. Bloom,,21 S. Chen, ${ }^{21}$ W. T. Ford, ${ }^{21}$ J. F. Hirschauer, ${ }^{21}$ A. Kreisel, ${ }^{21}$ U. Nauenberg, ${ }^{21}$ A. Olivas, ${ }^{21}$ W. O. Ruddick, ${ }^{21}$ J. G. Smith, ${ }^{21}$ K. A. Ulmer, ${ }^{21}$ S. R. Wagner, ${ }^{21}$ J. Zhang, ${ }^{21}$ A. Chen, ${ }^{22}$ E. A. Eckhart, ${ }^{22}$ A. Soffer, ${ }^{22}$ W. H. Toki,,22 R. J. Wilson, ${ }^{22}$ F. Winklmeier, ${ }^{22}$ Q. Zeng, ${ }^{22}$ D. D. Altenburg, ${ }^{23}$ E. Feltresi, ${ }^{23}$ A. Hauke, ${ }^{23}$ H. Jasper, ${ }^{23}$ A. Petzold, ${ }^{23}$ B. Spaan, ${ }^{23}$ T. Brandt, ${ }^{24}$ V. Klose, ${ }^{24}$ H. M. Lacker, ${ }^{24}$ W. F. Mader, ${ }^{24}$ R. Nogowski, ${ }^{24}$ J. Schubert, ${ }^{24}$ K. R. Schubert, ${ }^{24}$ R. Schwierz, ${ }^{24}$ J. E. Sundermann, ${ }^{24}$ A. Volk, ${ }^{24}$ D. Bernard, ${ }^{25}$ G. R. Bonneaud, ${ }^{25}$ P. Grenier, ${ }^{25, *}$ E. Latour, ${ }^{25}$ Ch. Thiebaux, ${ }^{25}$ M. Verderi, ${ }^{25}$ D. J. Bard, ${ }^{26}$ P. J. Clark, ${ }^{26}$ W. Gradl, ${ }^{26}$ F. Muheim, ${ }^{26}$ S. Playfer, ${ }^{26}$ A. I. Robertson, ${ }^{26}$ Y. Xie, ${ }^{26}$ M. Andreotti, ${ }^{27}$ D. Bettoni, ${ }^{27}$ C. Bozzi, ${ }^{27}$ R. Calabrese, ${ }^{27}$ G. Cibinetto, ${ }^{27}$ E. Luppi, ${ }^{27}$ M. Negrini, ${ }^{27}$ A. Petrella, ${ }^{27}$ L. Piemontese, ${ }^{27}$ E. Prencipe, ${ }^{27}$ F. Anulli, ${ }^{28}$ R. Baldini-Ferroli, ${ }^{28}$ A. Calcaterra, ${ }^{28}$ R. de Sangro, ${ }^{28}$ G. Finocchiaro, ${ }^{28}$ S. Pacetti, ${ }^{28}$ P. Patteri, ${ }^{28}$ I. M. Peruzzi,,$^{28, \dagger}$ M. Piccolo, ${ }^{28}$ M. Rama, ${ }^{28}$ A. Zallo, ${ }^{28}$ A. Buzzo, ${ }^{29}$ R. Capra, ${ }^{29}$ R. Contri, ${ }^{29}$ M. Lo Vetere, ${ }^{29}$ M. M. Macri, ${ }^{29}$ M. R. Monge, ${ }^{29}$ S. Passaggio, ${ }^{29}$ C. Patrignani, ${ }^{29}$ E. Robutti, ${ }^{29}$ A. Santroni, ${ }^{29}$ S. Tosi, ${ }^{29}$ G. Brandenburg, ${ }^{30}$ K. S. Chaisanguanthum, ${ }^{30}$ M. Morii, ${ }^{30}$ J. Wu, ${ }^{30}$ R. S. Dubitzky, ${ }^{31}$ J. Marks, ${ }^{31}$ S. Schenk, ${ }^{31}$ U. Uwer, ${ }^{31}$ W. Bhimji, ${ }^{32}$ D. A. Bowerman, ${ }^{32}$ P. D. Dauncey, ${ }^{32}$ U. Egede, ${ }^{32}$ R. L. Flack, ${ }^{32}$ J .A. Nash, ${ }^{32}$ M. B. Nikolich, ${ }^{32}$ W. Panduro Vazquez, ${ }^{32}$ X. Chai, ${ }^{33}$ M. J. Charles, ${ }^{33}$ U. Mallik, ${ }^{33}$ N. T. Meyer, ${ }^{33}$ V. Ziegler, ${ }^{33}$ J. Cochran, ${ }^{34}$ H. B. Crawley, ${ }^{34}$ L. Dong, ${ }^{34}$ V. Eyges, ${ }^{34}$ W. T. Meyer, ${ }^{34}$ S. Prell, ${ }^{34}$ E. I. Rosenberg, ${ }^{34}$ A. E. Rubin, ${ }^{34}$ A. V. Gritsan, ${ }^{35}$ M. Fritsch, ${ }^{36}$ G. Schott, ${ }^{36}$ N. Arnaud, ${ }^{37}$ M. Davier, ${ }^{37}$ G. Grosdidier, ${ }^{37}$ A. Höcker, ${ }^{37}$ F. Le Diberder, ${ }^{37}$ V. Lepeltier, ${ }^{37}$ A. M. Lutz, ${ }^{37}$ A. Oyanguren, ${ }^{37}$ S. Pruvot, ${ }^{37}$ S. Rodier, ${ }^{37}$ P. Roudeau, ${ }^{37}$ M. H. Schune, ${ }^{37}$ A. Stocchi, ${ }^{37}$ W. F. Wang, ${ }^{37}$ G. Wormser, ${ }^{37}$ C. H. Cheng, ${ }^{38}$ D. J. Lange, ${ }^{38}$ D. M. Wright, ${ }^{38}$ C. A. Chavez, ${ }^{39}$ I. J. Forster, ${ }^{39}$ J. R. Fry, ${ }^{39}$ E. Gabathuler, ${ }^{39}$ R. Gamet, ${ }^{39}$ K. A. George, ${ }^{39}$ D. E. Hutchcroft, ${ }^{39}$ D. J. Payne, ${ }^{39}$ K. C. Schofield, ${ }^{39}$ C. Touramanis, ${ }^{39}$ A. J. Bevan, ${ }^{40}$ F. Di Lodovico, ${ }^{40}$ W. Menges, ${ }^{40}$ R. Sacco, ${ }^{40}$ G. Cowan, ${ }^{41}$ H. U. Flaecher, ${ }^{41}$ D. A. Hopkins, ${ }^{41}$ P. S. Jackson, ${ }^{41}$ T. R. McMahon, ${ }^{41}$ S. Ricciardi, ${ }^{41}$ F. Salvatore, ${ }^{41}$ A. C. Wren, ${ }^{41}$ D. N. Brown, ${ }^{42}$ C. L. Davis,,${ }^{42}$ J. Allison, ${ }^{43}$ N. R. Barlow, ${ }^{43}$ R. J. Barlow, ${ }^{43}$ Y. M. Chia, ${ }^{43}$ C. L. Edgar, ${ }^{43}$ G. D. Lafferty, ${ }^{43}$ M. T. Naisbit, ${ }^{43}$ J. C. Williams, ${ }^{43}$ J. I. Yi, ${ }^{43}$ C. Chen, ${ }^{44}$ W. D. Hulsbergen, ${ }^{44}$ A. Jawahery, ${ }^{44}$ C. K. Lae, ${ }^{44}$ D. A. Roberts, ${ }^{44}$ G. Simi, ${ }^{44}$ G. Blaylock, ${ }^{45}$ C. Dallapiccola, ${ }^{45}$ S. S. Hertzbach, ${ }^{45}$ X. Li, ${ }^{45}$ T. B. Moore, ${ }^{45}$ S. Saremi, ${ }^{45}$ H. Staengle, ${ }^{45}$ R. Cowan, ${ }^{46}$ G. Sciolla, ${ }^{46}$ S. J. Sekula, ${ }^{46}$ M. Spitznagel, ${ }^{46}$ F. Taylor, ${ }^{46}$ R. K. Yamamoto, ${ }^{46}$ H. Kim, ${ }^{47}$ P. M. Patel, ${ }^{47}$ S. H. Robertson, ${ }^{47}$ A. Lazzaro, ${ }^{48}$ V. Lombardo, ${ }^{48}$ F. Palombo, ${ }^{48}$ J. M. Bauer, ${ }^{49}$ L. Cremaldi, ${ }^{49}$ V. Eschenburg, ${ }^{49}$ R. Godang, ${ }^{49}$ R. Kroeger, ${ }^{49}$ D. A. Sanders, ${ }^{49}$ D. J. Summers, ${ }^{49}$ H. W. Zhao, ${ }^{49}$ S. Brunet, ${ }^{50}$ D. Côté, ${ }^{50}$ P. Taras, ${ }^{50}$ F. B. Viaud, ${ }^{50}$ H. Nicholson, ${ }^{51}$ N. Cavallo, ${ }^{52, \ddagger}$ G. De Nardo, ${ }^{52}$ F. Fabozzi, ${ }^{52, \ddagger}$ C. Gatto, ${ }^{52}$ L. Lista, ${ }^{52}$ D. Monorchio, ${ }^{52}$ P. Paolucci, ${ }^{52}$ D. Piccolo, ${ }^{52}$ C. Sciacca, ${ }^{52}$ M. Baak, ${ }^{53}$ G. Raven, ${ }^{53}$ H. L. Snoek, ${ }^{53}$ C. P. Jessop, ${ }^{54}$ J. M. LoSecco, ${ }^{54}$ T. Allmendinger, ${ }^{55}$ G. Benelli,,${ }^{55}$ K. K. Gan, ${ }^{55}$ K. Honscheid, ${ }^{55}$ D. Hufnagel, ${ }^{55}$ P. D. Jackson, ${ }^{55}$ H. Kagan, ${ }^{55}$ R. Kass, ${ }^{55}$ A. M. Rahimi, ${ }^{55}$ R. Ter-Antonyan, ${ }^{55}$
Q. K. Wong, ${ }^{55}$ N. L. Blount, ${ }^{56}$ J. Brau, ${ }^{56}$ R. Frey, ${ }^{56}$ O. Igonkina, ${ }^{56}$ M. Lu, ${ }^{56}$ C. T. Potter, ${ }^{56}$ R. Rahmat, ${ }^{56}$ N. B. Sinev, ${ }^{56}$ D. Strom, ${ }^{56}$ J. Strube, ${ }^{56}$ E. Torrence, ${ }^{56}$ F. Galeazzi, ${ }^{57}$ A. Gaz, ${ }^{57}$ M. Margoni, ${ }^{57}$ M. Morandin, ${ }^{57}$ A. Pompili, ${ }^{57}$ M. Posocco,,${ }^{57}$ M. Rotondo, ${ }^{57}$ F. Simonetto, ${ }^{57}$ R. Stroili, ${ }^{57}$ C. Voci, ${ }^{57}$ M. Benayoun, ${ }^{58}$ J. Chauveau, ${ }^{58}$ P. David, ${ }^{58}$ L. Del Buono, ${ }^{58}$ Ch. de la Vaissière, ${ }^{58}$ O. Hamon, ${ }^{58}$ B. L. Hartfiel, ${ }^{58}$ M. J. J. John, ${ }^{58}$ J. Malclès, ${ }^{58}$ J. Ocariz, ${ }^{58}$ L. Roos, ${ }^{58}$ G. Therin, ${ }^{58}$ P. K. Behera, ${ }^{59}$ L. Gladney, ${ }^{59}$ J. Panetta,,${ }^{59}$ M. Biasini, ${ }^{60}$ R. Covarelli, ${ }^{60}$ C. Angelini, ${ }^{61}$ G. Batignani, ${ }^{61}$ S. Bettarini, ${ }^{61}$ F. Bucci, ${ }^{61}$ G. Calderini, ${ }^{61}$ M. Carpinelli, ${ }^{61}$ R. Cenci, ${ }^{61}$ F. Forti, ${ }^{61}$ M. A. Giorgi, ${ }^{61}$ A. Lusiani, ${ }^{61}$ G. Marchiori, ${ }^{61}$ M. A. Mazur, ${ }^{61}$ M. Morganti,,${ }^{61}$ N. Neri, ${ }^{61}$ G. Rizzo, ${ }^{61}$ J. J. Walsh, ${ }^{61}$ M. Haire, ${ }^{62}$ D. Judd, ${ }^{62}$ D. E. Wagoner, ${ }^{62}$ J. Biesiada, ${ }^{63}$ N. Danielson, ${ }^{63}$ P. Elmer, ${ }^{63}$ Y. P. Lau, ${ }^{63}$ C. Lu, ${ }^{63}$ J. Olsen, ${ }^{63}$ A. J. S. Smith, ${ }^{63}$ A. V. Telnov, ${ }^{63}$ F. Bellini, ${ }^{64}$ G. Cavoto, ${ }^{64}$ A. D'Orazio, ${ }^{64}$ D. del Re, ${ }^{64}$ E. Di Marco, ${ }^{64}$ R. Faccini, ${ }^{64}$ F. Ferrarotto, ${ }^{64}$ F. Ferroni, ${ }^{64}$ M. Gaspero, ${ }^{64}$ L. Li Gioi, ${ }^{64}$ M. A. Mazzoni, ${ }^{64}$ S. Morganti, ${ }^{64}$ G. Piredda, ${ }^{64}$ F. Polci, ${ }^{64}$ F. Safai Tehrani, ${ }^{64}$ C. Voena, ${ }^{64}$ M. Ebert, ${ }^{65}$ H. Schröder, ${ }^{65}$ R. Waldi, ${ }^{65}$ T. Adye, ${ }^{66}$ N. De Groot, ${ }^{66}$ B. Franek, ${ }^{66}$ E. O. Olaiya, ${ }^{66}$ F. F. Wilson, ${ }^{66}$ S. Emery, ${ }^{67}$ A. Gaidot, ${ }^{67}$ S. F. Ganzhur, ${ }^{67}$ G. Hamel de Monchenault, ${ }^{67}$ W. Kozanecki, ${ }^{67}$ M. Legendre, ${ }^{67}$ G. Vasseur, ${ }^{67}$ Ch. Yèche, ${ }^{67}$ M. Zito, ${ }^{67}$ X. R. Chen, ${ }^{68}$ H. Liu, ${ }^{68}$ W. Park, ${ }^{68}$ M. V. Purohit, ${ }^{68}$ J. R. Wilson, ${ }^{68}$ M. T. Allen, ${ }^{69}$ D. Aston, ${ }^{69}$ R. Bartoldus, ${ }^{69}$ P. Bechtle, ${ }^{69}$ N. Berger, ${ }^{69}$ R. Claus, ${ }^{69}$ J. P. Coleman, ${ }^{69}$ M. R. Convery, ${ }^{69}$ M. Cristinziani, ${ }^{69}$ J. C. Dingfelder, ${ }^{69}$ J. Dorfan, ${ }^{69}$ G. P. Dubois-Felsmann, ${ }^{69}$ D. Dujmic, ${ }^{69}$ W. Dunwoodie, ${ }^{69}$ R. C. Field, ${ }^{69}{ }^{6}$ T. Glanzman, ${ }^{69}$ S. J. Gowdy, ${ }^{69}$ M. T. Graham, ${ }^{69}$ V. Halyo, ${ }^{69}$ C. Hast,,${ }^{69}$ T. Hryn'ova, ${ }^{69}$ W. R. Innes, ${ }^{69}$ M. H. Kelsey, ${ }^{69}$ P. Kim, ${ }^{69}$ D. W. G. S. Leith, ${ }^{69}$ S. Li, ${ }^{69}$ S. Luitz, ${ }^{69}$ V. Luth, ${ }^{69}$ H. L. Lynch, ${ }^{69}$ D. B. MacFarlane, ${ }^{69}$ H. Marsiske, ${ }^{69}$ R. Messner, ${ }^{69}$ D. R. Muller, ${ }^{69}$ C. P. O'Grady, ${ }^{69}$ V. E. Ozcan, ${ }^{69}$ A. Perazzo, ${ }^{69}$ M. Perl, ${ }^{69}$ T. Pulliam, ${ }^{69}$ B. N. Ratcliff, ${ }^{69}$ A. Roodman, ${ }^{69}$ A. A. Salnikov, ${ }^{69}$ R. H. Schindler, ${ }^{69}$ J. Schwiening, ${ }^{69}$ A. Snyder, ${ }^{69}$ J. Stelzer, ${ }^{69}$ D. Su, ${ }^{69}$ M. K. Sullivan, ${ }^{69}$ K. Suzuki, ${ }^{69}$ S. K. Swain, ${ }^{69}$ J. M. Thompson, ${ }^{69}$ J. Va'vra, ${ }^{69}$ N. van Bakel, ${ }^{69}$ M. Weaver, ${ }^{69}$ A. J. R. Weinstein, ${ }^{69}$ W. J. Wisniewski, ${ }^{69}$ M. Wittgen, ${ }^{69}$ D. H. Wright, ${ }^{69}$ A. K. Yarritu, ${ }^{69}$ K. Yi, ${ }^{69}$ C. C. Young, ${ }^{69}$ P. R. Burchat, ${ }^{70}$ A. J. Edwards, ${ }^{70}$ S. A. Majewski, ${ }^{70}$ B. A. Petersen, ${ }^{70}$ C. Roat, ${ }^{70}$ L. Wilden, ${ }^{70}$ S. Ahmed, ${ }^{71}$ M. S. Alam, ${ }^{71}$ R. Bula, ${ }^{71}$ J. A. Ernst, ${ }^{71}$ V. Jain, ${ }^{71}$ B. Pan, ${ }^{71}$ M. A. Saeed, ${ }^{71}$ F. R. Wappler, ${ }^{71}$ S. B. Zain, ${ }^{71}$ W. Bugg, ${ }^{72}$ M. Krishnamurthy, ${ }^{72}$ S. M. Spanier, ${ }^{72}$ R. Eckmann, ${ }^{73}$ J. L. Ritchie, ${ }^{73}$ A. Satpathy, ${ }^{73}$ C. J. Schilling, ${ }^{73}$ R. F. Schwitters, ${ }^{73}$ J. M. Izen, ${ }^{74}$ X. C. Lou, ${ }^{74}$ S. Ye, ${ }^{74}$ F. Bianchi, ${ }^{75}$ F. Gallo, ${ }^{75}$ D. Gamba, ${ }^{75}$ M. Bomben, ${ }^{76}$ L. Bosisio, ${ }^{76}$ C. Cartaro, ${ }^{76}$ F. Cossutti, ${ }^{76}$ G. Della Ricca, ${ }^{76}$ S. Dittongo, ${ }^{76}$ L. Lanceri, ${ }^{76}$ L. Vitale, ${ }^{76}$ V. Azzolini, ${ }^{77}$ F. Martinez-Vidal, ${ }^{77}$ Sw. Banerjee, ${ }^{78}$ B. Bhuyan, ${ }^{78}$ C. M. Brown, ${ }^{78}$ D. Fortin, ${ }^{78}$ K. Hamano, ${ }^{78}$ R. Kowalewski, ${ }^{78}$ I. M. Nugent, ${ }^{78}$ J. M. Roney, ${ }^{78}$ R. J. Sobie, ${ }^{78}$ J. J. Back, ${ }^{79}$ P. F. Harrison, ${ }^{79}$ T. E. Latham, ${ }^{79}$ G. B. Mohanty, ${ }^{79}$ M. Pappagallo, ${ }^{79}$ H. R. Band, ${ }^{80}$ X. Chen, ${ }^{80}$ B. Cheng, ${ }^{80}$ S. Dasu, ${ }^{80}$ M. Datta, ${ }^{80}$ K. T. Flood, ${ }^{80}$ J. J. Hollar, ${ }^{80}$ P. E. Kutter, ${ }^{80}$ B. Mellado, ${ }^{80}$ A. Mihalyi, ${ }^{80}$ Y. Pan, ${ }^{80}$ M. Pierini, ${ }^{80}$ R. Prepost, ${ }^{80}$ S. L. Wu, ${ }^{80}$ Z. Yu, ${ }^{80}$ and H. Neal ${ }^{81}$ (The BABAR Collaboration)

${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
${ }^{2}$ Universitat de Barcelona, Facultat de Fisica Dept. ECM, E-08028 Barcelona, Spain
${ }^{3}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
${ }^{4}$ Institute of High Energy Physics, Beijing 100039, China
${ }^{5}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
${ }^{6}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{7}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{8}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{9}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{10}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
${ }^{11}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{12}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{13}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{14}$ University of California at Los Angeles, Los Angeles, California 90024, USA
${ }^{15}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{16}$ University of California at San Diego, La Jolla, California 92093, USA
${ }^{17}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{18}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
${ }^{19}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{20}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{21}$ University of Colorado, Boulder, Colorado 80309, USA ${ }^{22}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{23}$ Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
${ }^{24}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany

[^0](Dated: June 10, 2006)
A measurement of the spin of the Ω^{-}hyperon produced through the exclusive process $\Xi_{c}^{0} \rightarrow$ $\Omega^{-} K^{+}$is presented using a total integrated luminosity of $116 \mathrm{fb}^{-1}$ recorded with the BABAR detector at the $e^{+} e^{-}$asymmetric-energy B-Factory at SLAC. Under the assumption that the Ξ_{c}^{0} has spin $1 / 2$, the angular distribution of the Λ from $\Omega^{-} \rightarrow \Lambda K^{-}$decay is inconsistent with all half-integer

Abstract

Ω^{-}spin values other than $3 / 2$. Lower statistics data for the process $\Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+}$from a $230 \mathrm{fb}^{-1}$ sample are also found to be consistent with Ω^{-}spin $3 / 2$. If the Ξ_{c}^{0} spin were $3 / 2$, an Ω^{-}spin of $5 / 2$ cannot be excluded.

PACS numbers: $13.30 . E g, 14.20 . \mathrm{Lq}$

The $S U(3)$ classification scheme predicted [1] the existence of the Ω^{-}hyperon, an isosinglet with hypercharge $Y=-2$ and strangeness $S=-3$, as a member of the $J^{P}=3 / 2^{+}$ground state baryon decuplet. Such a particle was observed subsequently with the predicted mass in a bubble chamber experiment [2]. In previous attempts to confirm the spin of the $\Omega^{-}[3-5], K^{-} p$ interactions in a liquid hydrogen bubble chamber were studied. In each case only a small Ω^{-}data sample was obtained, and the Ω^{-}production mechanism was not well understood. As a result, these experiments succeeded only in establishing that the Ω^{-}spin is greater than $1 / 2$.

In this letter, measurements of the Ω^{-}spin are obtained using Ω^{-}samples [6] from the decay of Ξ_{c}^{0} and Ω_{c}^{0} charm baryons inclusively produced in $e^{+} e^{-}$collisions at center-of-mass energies 10.58 and 10.54 GeV . The primary Ω^{-}sample is obtained from the decay sequence $\Xi_{c}^{0} \rightarrow \Omega^{-} K^{+}$, with $\Omega^{-} \rightarrow \Lambda K^{-}$, while a much smaller sample resulting from $\Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+}$, with $\Omega^{-} \rightarrow \Lambda K^{-}$is used for corroboration. It is assumed that each charm baryon type has spin $1 / 2$ and, as a result of its inclusive production, that it is described by a diagonal spin projection density matrix. The analysis does not require that the diagonal matrix elements be equal.

The helicity formalism $[7,8]$ is applied in order to examine the implications of various Ω^{-}spin hypotheses for the angular distribution of the Λ from Ω^{-}decay. By choosing the quantization axis along the direction of the Ω^{-}in the charm baryon rest-frame, the Ω^{-}inherits the spin projection of the charm baryon, since any orbital angular momentum in the charm baryon decay has no projection in this direction. It follows that, regardless of the spin J of the Ω^{-}, the density matrix describing the Ω^{-}sample is diagonal, with non-zero values only for the $\pm 1 / 2$ spin projection elements, i.e. the helicity λ_{i} of the Ω^{-}can take only the values $\pm 1 / 2$. Since the final state Λ and K^{-}have spin values $1 / 2$ and 0 , respectively, the net final state helicity λ_{f} also can take only the values $\pm 1 / 2$. The helicity angle θ_{h} is then defined as the angle between the direction of the Λ in the rest-frame of the Ω^{-}and the quantization axis (Fig. 1).

The probability for the Λ to be produced with Euler angles $\left(\phi, \theta_{h}, 0\right)$ with respect to the quantization axis is given by the square of the amplitude ψ, characterizing the decay of an Ω^{-}with total angular momentum J and helicity λ_{i} to a 2 -body system with net helicity λ_{f},

$$
\begin{equation*}
\psi=A_{\lambda_{f}}^{J} D_{\lambda_{i} \lambda_{f}}^{J *}\left(\phi, \theta_{h}, 0\right) \tag{1}
\end{equation*}
$$

where the transition matrix element $A_{\lambda_{f}}^{J}$ represents the

a) All decay products in the Ξ_{c}^{0} rest-frame.

b) All decay products in the Ω^{-}rest-frame; in this frame, $\vec{\Omega}_{1}^{-} \rightarrow \vec{\Omega}_{2}^{-}=\overrightarrow{0}, \vec{\Lambda}_{1} \rightarrow \vec{\Lambda}_{2}, \vec{K}_{1}^{-} \rightarrow \vec{K}_{2}^{-}$.

FIG. 1: Schematic definition of the helicity angle θ_{h} in the decay chain $\Xi_{c}^{0} \rightarrow \Omega^{-} K^{+}, \Omega^{-} \rightarrow \Lambda K^{-}$; as shown in b) θ_{h} is the angle between the Λ direction in the Ω^{-}rest-frame and the Ω^{-}direction in the Ξ_{c}^{0} rest-frame (the quantization axis).
coupling of the Ω^{-}to the final state, and $D_{\lambda_{i} \lambda_{f}}^{J}$ is an element of the Wigner rotation matrix [9]; $A_{\lambda_{f}}^{J}$ does not depend on λ_{i} because of rotational invariance (WignerEckart theorem [10]). The angular distribution of the Λ is then given by the total intensity,

$$
\begin{equation*}
I \propto \sum_{\lambda_{i}, \lambda_{f}} \rho_{i}\left|A_{\lambda_{f}}^{J} D_{\lambda_{i} \lambda_{f}}^{J *}\left(\phi, \theta_{h}, 0\right)\right|^{2} \tag{2}
\end{equation*}
$$

where the $\rho_{i}(i= \pm 1 / 2)$ are the diagonal density matrix elements inherited from the charm baryon, and the sum is over all initial and final helicity states.

Using this expression, the Λ angular distribution integrated over ϕ is obtained for spin hypotheses $J_{\Omega}=1 / 2$, $3 / 2$, and $5 / 2$, respectively as follows:

$$
\begin{align*}
& d N / d \cos \theta_{h} \propto 1+\beta \cos \theta_{h} \tag{3}\\
& d N / d \cos \theta_{h} \propto \propto 3 \cos ^{2} \theta_{h}+\beta \cos \theta_{h}\left(5-9 \cos ^{2} \theta_{h}\right) \tag{4}\\
& d N / d \cos \theta_{h} \propto 1-2 \cos ^{2} \theta_{h}+5 \cos ^{4} \theta_{h} \\
&+\beta \cos \theta_{\mathrm{h}}\left(5-26 \cos ^{2} \theta_{h}+25 \cos ^{4} \theta_{h}\right) \tag{5}
\end{align*}
$$

where the coefficient of the asymmetric term

$$
\beta=\left[\frac{\rho_{1 / 2}-\rho_{-1 / 2}}{\rho_{1 / 2}+\rho_{-1 / 2}}\right]\left[\frac{\left|A_{1 / 2}^{J}\right|^{2}-\left|A_{-1 / 2}^{J}\right|^{2}}{\left|A_{1 / 2}^{J}\right|^{2}+\left|A_{-1 / 2}^{J}\right|^{2}}\right]
$$

may be non-zero as a consequence of parity violation in charm baryon and Ω^{-}weak decay. Eqs. (3) and (4) are the distributions considered in connection with the discovery of the $\Delta(1232)$ resonance [11], generalized to account for parity violation.

The data samples used for this analysis were collected with the BABAR detector at the PEP-II asymmetric energy $e^{+} e^{-}$collider and correspond to a total integrated luminosity of $116 \mathrm{fb}^{-1}$ and $230 \mathrm{fb}^{-1}$ for the $\Xi_{c}^{0} \rightarrow \Omega^{-} K^{+}$ and $\Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+}$samples, respectively. The detector is described in detail elsewhere [12]. The selection of Ξ_{c}^{0} and Ω_{c}^{0} candidates requires the intermediate reconstruction of events consistent with $\Omega^{-} \rightarrow \Lambda K^{-}$and $\Lambda \rightarrow p \pi^{-}$. Particle identification selectors for the proton and the kaons, based on specific energy loss $(\mathrm{d} E / \mathrm{d} x)$ and Cherenkov angle measurements, have been used [12]. Each intermediate state candidate is required to have its invariant mass within a $\pm 3 \sigma$ mass window centered on the fitted peak position of the relevant distribution, where σ is the mass resolution obtained from the fit. In all cases, the fitted peak mass is consistent with the expected value [13]. The intermediate state invariant mass is then constrained to its nominal value [13].

Since the hyperons are long-lived, the signal-tobackground ratio is improved by imposing vertex displacement criteria. The distance between the $\Omega^{-} K^{+}$or $\Omega^{-} \pi^{+}$vertex and the Ω^{-}decay vertex, when projected onto the plane perpendicular to the collision axis, must exceed 1.5 mm in the Ω^{-}direction. The distance between the Ω^{-}and Λ decay vertices is required to exceed 1.5 mm in the direction of the Λ momentum vector. In order to further enhance signal-to-background ratio, a selection criterion is imposed on the center-of-mass momentum p^{*} of the charm baryon: $p^{*}>1.8 \mathrm{GeV} / c$ for Ξ_{c}^{0} and $p^{*}>2.5 \mathrm{GeV} / c$ for Ω_{c}^{0} candidates. In addition, a minimum laboratory momentum requirement of $200 \mathrm{MeV} / c$ is imposed on the π^{+}daughter of the Ω_{c}^{0} in order to reduce combinatorial background level due to soft pions. The invariant mass spectra of Ξ_{c}^{0} and Ω_{c}^{0} candidates in data are shown before efficiency correction in Figs. 2(a) and 2(b), respectively. The signal yields $\left(770 \pm 33 \Xi_{c}^{0}\right.$ and 159 ± 17 Ω_{c}^{0} candidates) are obtained from fits with a double Gaussian $\left(\Xi_{c}^{0}\right)$ or single Gaussian $\left(\Omega_{c}^{0}\right)$ signal function and a linear background function. The corresponding selection efficiencies obtained from Monte Carlo simulations are 14.7% and 15.8%, respectively.

For the Ω^{-}sample resulting from Ξ_{c}^{0} decay, the uncorrected $\cos \theta_{h}(\Lambda)$ distribution is obtained by means of an unbinned maximum likelihood fit to the $\Omega^{-} K^{+}$invariant mass spectrum corresponding to each of ten equal inter-

FIG. 2: The uncorrected $\Omega^{-} K^{+}$(a) and $\Omega^{-} \pi^{+}$(b) invariant mass spectra in data. The curves result from the fits described in the text.
vals of $\cos \theta_{h}(\Lambda)$ in the range -1 to 1 . In each interval the Ξ_{c}^{0} signal function shape is fixed to that obtained from the fit shown in Fig. 2 (a). The Ξ_{c}^{0} reconstruction efficiency in each interval of $\cos \theta_{h}(\Lambda)$ is obtained from Monte Carlo simulation, and the resulting efficiency-corrected distribution is shown in Fig. 3. The measured efficiency varies linearly from 14.0% at $\cos \theta_{h}(\Lambda)=-1$ to 15.3% at $\cos \theta_{h}(\Lambda)=+1$, and so the shape of the angular distribution is changed only slightly by the correction procedure. The dashed curve corresponds to a fit of the $J_{\Omega}=3 / 2$ parametrization of Eq. (4) and yields $\beta=0.04 \pm 0.06$. The forward-backward asymmetry $A=(F-B) /(F+B)$ of the efficiency-corrected $\cos \theta_{h}(\Lambda)$ distribution of Fig. 3, where $B(F)$ represents the number of signal events satisfying $\cos \theta_{h}(\Lambda) \leq 0(\geq 0)$, is $+0.001 \pm 0.019$. This and the fitted value of β indicate that the data show no significant asymmetry, and so we set $\beta=0$ in subsequent fits. The solid curve represents the fit to the data with $\beta=0$; the fit information relevant to Eq. (4) is indicated in Table 1.

The efficiency-corrected $\cos \theta_{h}(\Lambda)$ distribution with fits corresponding to Eqs. (3) and (5) with $\beta=0$ is shown in Fig. 4. The solid line represents the expected distribution for $J_{\Omega}=1 / 2$, while the dashed curve corresponds to $J_{\Omega}=5 / 2$. The corresponding values of fit confidence level (C.L.) are extremely small (Table 1). For $J_{\Omega} \geq 7 / 2$, the predicted angular distribution increases even more steeply for $\left|\cos \theta_{\mathrm{h}}\right| \sim 1$ than for $J_{\Omega}=5 / 2$ and exhibits $\left(2 J_{\Omega}-2\right)$ turning points. The relevant fit C.L.

FIG. 3: The efficiency-corrected $\cos \theta_{h}(\Lambda)$ distribution for $\Xi_{c}^{0} \rightarrow \Omega^{-} K^{+}$data. The dashed curve shows the $J_{\Omega}=3 / 2$ fit using Eq. (4), in which β allows for possible asymmetry. The solid curve represents the corresponding fit with $\beta=0$.

FIG. 4: The efficiency-corrected $\cos \theta_{h}(\Lambda)$ distribution for $\Xi_{c}^{0} \rightarrow \Omega^{-} K^{+}$data. The solid line represents the expected distribution for $J_{\Omega}=1 / 2$, while the dashed curve corresponds to $J_{\Omega}=5 / 2$. In each case, $\beta=0$.
values are even smaller than that for $J_{\Omega}=5 / 2$, and so $J_{\Omega} \geq 7 / 2$ can be excluded at C.L. greater than 99%.

These fit results were checked using the sample of Ω^{-}hyperons obtained from Ω_{c} baryon decays. The Ω_{c} baryon is presumed to belong to the $\mathbf{6}$ representation of an $S U(3) J^{P}=1 / 2^{+}$multiplet [13], so that the Ω^{-} decay angular distribution should again be proportional to $\left(1+3 \cos ^{2} \theta_{h}\right)$. After efficiency-correction, the angular distribution shown in Fig. 5 is found to be consistent with $J_{\Omega^{-}}=3 / 2$ with β again set to zero. The fit to the corrected distribution has $\chi^{2} / \mathrm{NDF}=6.5 / 9$

J_{Ω}	Fit $\chi^{2} /$ NDF	Fit C.L.	Comment
$1 / 2$	$100.4 / 9$	1×10^{-17}	Fig. 4, solid line
$3 / 2$	$6.5 / 9$	$0.69(\beta=0)$	Fig. 3, solid curve
$3 / 2$	$6.1 / 8$	$0.64(\beta \neq 0)$	Fig. 3, dashed curve
$5 / 2$	$47.6 / 9$	3×10^{-7}	Fig. 4, dashed curve

TABLE I: The $\cos \theta_{h}(\Lambda)$ angular distribution fit C.L. values corresponding to Ω^{-}spin hypotheses $1 / 2,3 / 2$ and $5 / 2$ for $\Xi_{c}^{0} \rightarrow \Omega^{-} K^{+}$data assuming $J_{\Xi_{c}}=1 / 2$.

FIG. 5: The efficiency-corrected $\cos \theta_{h}(\Lambda)$ distribution in data for $\Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+}$events. The curve corresponds to $J_{\Omega_{c}}=1 / 2$ and $J_{\Omega^{-}}=3 / 2$ with $\beta=0$.
and C.L. 0.69, and so is in very good agreement with the results obtained from Ξ_{c}^{0} decay. The fit for β yields $\beta=0.4 \pm 0.2$ and the value of the forward-backward asymmetry is $+0.013 \pm 0.058$.

The implications for the spin of the Ω^{-}if the spin of the Ξ_{c}^{0} is assumed to be $3 / 2$ are now considered. For $J_{\Omega}=1 / 2$, the predicted decay angular distribution is again given by Eq. (3), and so this possibility can be ruled out.

If asymmetric contributions are ignored, the Ω^{-}angular distribution for spin values $3 / 2$ and $5 / 2$ are determined by the values of the quantities $x=\rho_{3 / 2}+\rho_{-3 / 2}$ and $(1-x)=\rho_{1 / 2}+\rho_{-1 / 2}$. For $J_{\Omega}=3 / 2, x=0$ would yield a distribution given by Eq. (4) with $\beta=0$, in excellent agreement with the data. However, for inclusive Ξ_{c}^{0} production with the Ω^{-}direction in the Ξ_{c}^{0} rest-frame as quantization axis, it would seem more reasonable to expect the spin projection states to be populated equally. This would yield $x=0.5$, and would result in an isotropic Ω^{-}decay distribution, in clear disagreement with the observed behavior.

A consequence of such a Ξ_{c}^{0} density matrix configuration would be that there should be no preferred direction in the decay to $\Omega^{-} K^{+}$in the Ξ_{c}^{0} rest-frame. This hypothesis has been tested in the present analysis by measuring the Ξ_{c}^{0} polarization with respect to its production-plane normal; there is no evidence for such polarization. In addition, the spherical harmonic $\left(Y_{L}^{M}\right)$ moments of the Ξ_{c}^{0} decay angular distribution for $L \leq 6$ and $M \leq 6$ have been compared to those obtained from simulation in which the Ξ_{c}^{0} decay is isotropic; no significant difference was found. It is therefore reasonable to infer that the combination $J_{\Xi_{c}}=3 / 2$ and $J_{\Omega}=3 / 2$ is disfavored.

For $J_{\Omega}=5 / 2$ the situation is quite different. The decay angular distribution is then

$$
\begin{align*}
d N / d \cos \theta_{h} \propto & 10 \cos ^{4} \theta_{h}-4 \cos ^{2} \theta_{h}+2 \\
& -x\left(25 \cos ^{4} \theta_{h}-18 \cos ^{2} \theta_{h}+1\right) \tag{6}
\end{align*}
$$

In this case, $x=0.5$ gives

$$
\begin{equation*}
d N / d \cos \theta_{h} \propto-5 \cos ^{4} \theta_{h}+10 \cos ^{2} \theta_{h}+3 \tag{7}
\end{equation*}
$$

which has a minimum at $\cos \theta_{h}=0$, maxima at $\cos \theta_{h}=$ ± 1, and fits the observed angular distribution with C.L. 0.44. If x is allowed to vary, the best fit to the data has $x=0.4$, which corresponds to

$$
\begin{equation*}
d N / d \cos \theta_{h} \propto 1+2 \cos ^{2} \theta_{h} \tag{8}
\end{equation*}
$$

the quartic term is thus cancelled, and fit C.L. 0.53 is obtained.

It follows from this discussion that for $J_{\Xi_{c}}=3 / 2$, the hypothesis $J_{\Omega}=1 / 2$ is ruled out, and $J_{\Omega}=3 / 2$ may reasonably be considered disfavored; however, $J_{\Omega}=5 / 2$ is entirely acceptable. For this reason, it has been emphasized that the determination that the Ω^{-}has spin $3 / 2$ is entirely contingent upon the assumption that the spin of the Ξ_{c}^{0} (and of the Ω_{c}^{0}) is $1 / 2$.

In conclusion, the angular distributions of the decay products of the Ω^{-}baryon resulting from Ξ_{c}^{0} and Ω_{c}^{0} decays are well-described by a function $\propto\left(1+3 \cos ^{2} \theta_{h}\right)$. These observations are consistent with spin assignments $1 / 2$ for the Ξ_{c}^{0} and the Ω_{c}^{0}, and $3 / 2$ for the Ω^{-}. Values of $1 / 2$ and greater than $3 / 2$ for the spin of the Ω^{-}yield C.L. values significantly less than 1% when spin $1 / 2$ is assumed for the parent charm baryon.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany),

INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

* Also at Laboratoire de Physique Corpusculaire, Clermont-Ferrand, France
${ }^{\dagger}$ Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
\# Also with Università della Basilicata, Potenza, Italy
[1] M. Gell-Mann, Proceedings of the International Conference on High-Energy Physics, p. 805 (1962).
[2] V. E. Barnes et al., Phys. Rev. Lett. 12, 204 (1964).
[3] M. Deutschmann et al., Phys. Lett. B73, 96 (1978).
[4] M. Baubillier et al., Phys. Lett. B78, 342 (1978).
[5] R. J. Hemingway, et al., Nucl. Phys. B142, 205 (1978).
[6] The use of charge conjugate states is implied throughout.
[7] M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959).
[8] S. U. Chung, CERN Yellow Report, CERN 71-8 (1971).
[9] E. Wigner, Gruppentheories, Freidrich Vieweg und Sohn, Braunschweig (1931); Group Theory, Academic Press, New York (1959).
[10] E. Wigner, Z. Phys. 43, 624 (1927);
C. Eckart, Rev. Mod. Phys. 2, 305 (1930).
[11] H. L. Anderson, E. Fermi, E. A. Land and D. E. Nagle, Phys. Rev. 85, 936 (1952).
[12] B. Aubert et al. (BABAR), Nucl. Instr. Meth. A479, 1 (2002).
[13] S. Eidelman et al. (Particle Data Group), Phys. Lett. B592, 1 (2004).

[^0]: ${ }^{25}$ Ecole Polytechnique, Laboratoire Leprince-Ringuet, F-91128 Palaiseau, France
 ${ }^{26}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
 ${ }^{27}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
 ${ }^{28}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
 ${ }^{29}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
 ${ }^{30}$ Harvard University, Cambridge, Massachusetts 02138, USA
 ${ }^{31}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
 ${ }^{32}$ Imperial College London, London, SW7 2AZ, United Kingdom
 ${ }^{33}$ University of Iowa, Iowa City, Iowa 52242, USA
 ${ }^{34}$ Iowa State University, Ames, Iowa 50011-3160, USA
 ${ }^{35}$ Johns Hopkins University, Baltimore, Maryland 21218, USA
 ${ }^{36}$ Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
 ${ }^{37}$ Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B.P. 34, F-91898 ORSAY Cedex, France
 ${ }^{38}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
 ${ }^{39}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
 ${ }^{40}$ Queen Mary, University of London, E1 4NS, United Kingdom
 ${ }^{41}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom ${ }^{42}$ University of Louisville, Louisville, Kentucky 40292, USA
 ${ }^{43}$ University of Manchester, Manchester M13 9PL, United Kingdom
 ${ }^{44}$ University of Maryland, College Park, Maryland 20742, USA
 ${ }^{45}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
 ${ }^{46}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
 ${ }^{47}$ McGill University, Montréal, Québec, Canada H3A $2 T 8$
 ${ }^{48}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
 ${ }^{49}$ University of Mississippi, University, Mississippi 38677, USA
 ${ }^{50}$ Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
 ${ }^{51}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
 ${ }^{52}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
 ${ }^{53}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
 ${ }^{54}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
 ${ }^{55}$ Ohio State University, Columbus, Ohio 43210, USA
 ${ }^{56}$ University of Oregon, Eugene, Oregon 97403, USA
 ${ }^{57}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
 ${ }^{58}$ Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
 ${ }^{59}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
 ${ }^{60}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
 ${ }^{61}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
 ${ }^{62}$ Prairie View A $\mathcal{B} M$ University, Prairie View, Texas 77446, USA
 ${ }^{63}$ Princeton University, Princeton, New Jersey 08544, USA
 ${ }^{64}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
 ${ }^{65}$ Universität Rostock, D-18051 Rostock, Germany
 ${ }^{66}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
 ${ }^{67}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
 ${ }^{68}$ University of South Carolina, Columbia, South Carolina 29208, USA
 ${ }^{69}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
 ${ }^{70}$ Stanford University, Stanford, California 94305-4060, USA
 ${ }^{71}$ State University of New York, Albany, New York 12222, USA
 ${ }^{72}$ University of Tennessee, Knoxville, Tennessee 37996, USA
 ${ }^{73}$ University of Texas at Austin, Austin, Texas 78712, USA
 ${ }^{74}$ University of Texas at Dallas, Richardson, Texas 75083, USA
 ${ }^{75}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
 ${ }^{76}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
 ${ }^{77}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
 ${ }^{78}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
 ${ }^{79}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
 ${ }^{80}$ University of Wisconsin, Madison, Wisconsin 53706, USA
 ${ }^{81}$ Yale University, New Haven, Connecticut 06511, USA

