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Equilibrium Beam Distribution in an Electron Storage Ring Near Linear
Synchrobetatron Coupling Resonances
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Linear dynamics in a storage ring can be described by the one-turn map matrix. In the case of
a resonance where two of the eigenvalues of this matrix are degenerate, a coupling perturbation
causes a mixing of the uncoupled eigenvectors. A perturbation formalism is developed to find
eigenvalues and eigenvectors of the one-turn map near such a linear resonance. Damping and
diffusion due to synchrotron radiation can be obtained by integrating their effects over one turn,
and the coupled eigenvectors can be used to find the coupled damping and diffusion coefficients.
Expressions for the coupled equilibrium emittances and beam distribution moments are then derived.
In addition to the conventional instabilities at the sum, integer and half-integer resonances, it is
found that the coupling can cause an instability through anti-damping near a sum resonance even
when the symplectic dynamics are stable. As one application of this formalism, the case of linear
synchrobetatron coupling is analyzed where the coupling is caused by dispersion in the RF cavity, or
by a crab cavity. Explicit closed-form expressions for the sum/difference resonances are given along
with the integer/half-integer resonances. The integer and half-integer resonances caused by coupling
require particular care. We find an example of this with the case of a crab cavity for the integer
resonance of the synchrotron tune. Whether or not there is an instability is determined by the value
of the horizontal betatron tune, a unique feature of these coupling-caused integer or half-integer
resonances. Finally, the coupled damping and diffusion coefficients along with the equilibrium
invariants and projected emittances are plotted as a function of the betatron and synchrotron tunes
for an example storage ring based on PEP-II.
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Introduction

The design of an electron storage ring typically uses a
lattice of bending and focussing magnets to steer and fo-
cus the beam along with RF cavities to replenish energy
to the beam lost to radiation. Two important questions
to ask about a given storage ring are 1) is the motion of
the stored particles stable? and if so 2) what will be the
distribution of particles that are stored? When nonlin-
ear effects can be ignored, the answer to the first question
can be given quite concisely. One constructs the symplec-
tic one-turn map matrix, and if all the eigenvalues have
magnitude 1, the ring is stable, otherwise there is an in-
stability. As for the second question, the stored electron
beam will reach a unique distribution determined by a
balance between the diffusion and the damping effects of
synchrotron radiation [1]. The beam distribution is also
affected by other diffusion processes such as intrabeam
scattering. In this paper, we consider only radiation ef-
fects which are often dominant.

Electron storage rings are often designed so that nom-
inally there is no coupling among the transverse (x and
y) and the longitudinal (z) dimensions. The real stor-
age ring, however, will always have some coupling: ex-
plicitly due to intentional coupling elements, such as a
solenoid in a collider interaction region [2], or a crab cav-
ity for crossing angle compensation [3], and undesirably
because of small errors in the lattice. Because of this
coupling, one must reexamine the answers to the ques-

tions of stability and beam distribution and see whether
the small additional coupling has caused an instability
and to what extent it has altered the beam distribution.
This is of particular concern when the storage ring is op-
erated near resonances where a small added coupling can
cause significant effects. In the case when one is forced
to operate near a resonance, it is important to under-
stand the effect of the resonance on stability and beam
distribution. Such an operation has become routine for
example in the B-factory colliders PEP-II and KEK-B
when their horizontal betatron tunes are chosen to be
close to a half-integer [2, 3]. In the case of KEK-B, a
special concern to be addressed is due to the planned in-
stallation of a crab cavity, which is a natural agent of a
linear synchrobetatron resonance.

Regarding the question of linear stability, a general so-
lution was given in the classic paper by Courant and Sny-
der [4]. They showed that small coupling can cause an
instability near a sum, integer, or half-integer resonance
but not near a difference resonance. Once this question
has been answered, however, one would also like to know
the width of the instability. Courant and Snyder answer
this question for a particular x−y coupling perturbation.
Expressions for the widths of integer and half integer res-
onances have also been found for specific perturbations.
For the case of synchrobetatron coupling, Hoffstaetter
and Chao find expressions for the widths of some of the
synchrobetatron coupling resonances induced by disper-
sion at an RF cavity or by a crab cavity [5]. In the
present paper, we give general expressions for instability
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widths, including many of the results of Hoffstaetter and
Chao for synchrobetatron coupling, but we also address
the question on beam distribution.

A beam of electrons in a storage ring will reach an equi-
librium due to a balance between the effects of radiation
damping and diffusion [1]. In the absence of nonlineari-
ties, this equilibrium will be a Gaussian function of the
phase space coordinates. Subject to further conditions
which we will discuss, the Gaussian distribution in phase
space can be expressed in the form

f(~z) =
1

π3〈g1〉〈g2〉〈g3〉
exp

(
− g1
〈g1〉

− g2
〈g2〉

− g3
〈g3〉

)
.

(1)
Here, the g1,2,3 are quadratic invariants which we will
write as ga = ~zTGa~z, with a = 1, 2, 3, ~z being the phase
space vector and the T indicating a transpose of the vec-
tor. 〈g1,2,3〉 are the average values of the invariants over
the beam distribution. Under this formulation, the prob-
lem reduces to finding the form of the invariants and their
average values.

To find the evolution of the 〈ga〉, we consider some
non-symplectic process that causes a local change in the
beam second moments Σjk = 〈zjzk〉. The net change in
the 〈ga〉 is then given by integrating the corresponding
change in the invariant around the ring:

∆〈ga〉 =
∮

ds Tr
[
Ga

dΣ
ds

]
(2)

with Tr representing the trace of a matrix. Thus, in this
formulation, the non-symplectic process acts locally on
the moments, causing changes in the invariants which are
global quantities, determined from the one turn map at
the given position. In this paper, we consider synchrotron
radiation as the non-symplectic process. In general, how-
ever, we could include any non-symplectic process in this
framework. For example, see [6, 7] for more information
on including intrabeam scattering within a fully coupled
formalism.

The 〈ga〉 are related to the rms beam emittances by
〈ga〉 = 2εa. In case the problem of interest is 2-D (4-D
phase space), as we will be in the following, the formula-
tion simply changes from a = 1, 2, 3 to a = 1, 2.

Formulae for the equilibrium emittances due to syn-
chrotron radiation were given for the uncoupled case in
the work by Sands [1] in terms of the so-called syn-
chrotron radiation integrals [8]. In the general case in-
cluding coupling, an algorithm was given in [9] to nu-
merically compute the equilibrium distribution moments
given the linear lattice of the storage ring. This is effi-
cient for precise results, but loses the explicit dependence
on the lattice functions that an analytic expression pro-
vides. A generalization of the synchrotron radiation inte-
grals was given in [10, 11]. [11] extends the synchrotron
radiation integrals to the case of general coupling, but
does not specifically consider the case of a linear reso-
nance. Reference [18] also discusses equilibrium distri-
butions with coupling, including spin polarization, and

develops a perturbation theory, but does not cover the
case of resonances. In the present work, we consider weak
coupling but focus on obtaining analytic expressions near
a resonance.

As noted in [11], to compute the emittances exactly us-
ing radiation integrals, if one adds a perturbation at one
point, one must recalculate all of the lattice functions ev-
erywhere. We will formulate our perturbative approach,
taking advantage of its approximate nature by treating
the coupling as a small perturbation, so that this is not
required. Only the uncoupled lattice functions, along
with quantities derived from the local perturbation will
enter our final expressions.

As also noted in [11], when we are exactly on the res-
onance, the equilibrium beam distribution is not neces-
sarily well described by a function of the invariants g1,2,3
alone, and the basic assumption of our formalism breaks
down. This break-down occurs when particle motion in
phase space is dominated not by its symplectic dynamics
but by its damping and diffusion effects. In order that
the distribution retain the form (1) near resonance, we
require the condition

χx,y,z � |ξ| (3)

where χx,y,z are the unperturbed damping decrements
(percentage reduction of the x, y, and z amplitudes per
turn) and ξ is a dimensionless coupling constant to be
defined later.1 This condition is satisfied over a wide
range of practical situations, although should be checked
in specific cases. Reference [11] contains numerical ex-
amples relating to this issue. The authors compute the
full set of equilibrium moments for a realistic lattice. Ex-
pressing these moments in the eigen-basis, one can see to
what extent the approximation of Eq. (1) is valid. They
do indeed find an example (near a difference resonance)
where for very weak coupling, this approximation breaks
down. We also note that increased periodicity in a lattice
design may further improve the approximation [13].

Linear resonances have been extensively analyzed in
accelerator physics. The result of Courant and Snyder
previously mentioned can be reframed by saying that in-
stabilities in linear dynamics are possible when two of
the eigenvalues of the one-turn map matrix are close

1 We argue for Eq. (3) as follows. From [11], we see that being a
function of the invariants requires χa � |δµ| where δµ is the dis-
tance from resonance of the eigen-phase advances. We will find
that |δµ| =

p
∆µ2 ± ξ2 where ∆µ is basically the distance from

resonance for the uncoupled system. Resonance occurs when ∆µ
and ξ are of the same order. Near resonance, therefore, |δµ| ∼ ξ.
We will find that the χa only change dramatically very close to
the resonance, so replacing χa by χx,y,z should be reasonably
good. Thus, if (3) is satisfied, we expect that Eq. (1) is a good
approximation except in the extremely close vicinity of an un-
stable resonance. When the condition (3) fails, one could still
use our expressions for coupled eigenvectors to solve for the full
set of second moments explicitly.
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to equal. Let us consider the case of 4-D transverse-
longitudinal phase space. (We refer to this as the case
of synchrobetatron coupling. The same framework will
apply to the purely transverse x-y coupling as well [14].)
The eigenvalues of the uncoupled map are given by e±iµx

and e±iµz , where µx,z = 2πνx,z with νx,z the horizontal
(betatron) and longitudinal (synchrotron) tunes respec-
tively. The condition of degenerate eigenvalues amounts
to either νx ± νz = integer, or νx or νz is an integer or
half integer.

Because the eigenvalues are degenerate at a resonance,
we need to consider degenerate perturbation theory. This
method is commonly used in quantum mechanics. In that
context, one examines how perturbations to the Hamilto-
nian operator change the energies (eigenvalues) and wave
functions (eigenvectors). There is an analogous formula-
tion for classical mechanics which we will develop and
apply to our problem. The difference between the two
cases is that in the quantum mechanics context, one per-
turbs a Hermitian matrix. Here we will perturb a sym-
plectic matrix. The framework is quite analogous, but
some unique features will emerge in the symplectic case
such as the issue of instabilities.

We now give a brief overview of the paper. In Sec-
tion I, we summarize and give definitions regarding the
computation of the invariants and their equilibrium val-
ues starting from a general one-turn map and the local
damping and diffusion from synchrotron radiation. From
the one-turn map M , we find eigenvalues and eigenvec-
tors. Given an eigenvector va, the invariant matrix is
given by

Ga = −J(vav†a + v∗av
T
a )J. (4)

with ∗ representing complex conjugate, † representing
conjugate transpose and J the symplectic inner product
matrix given in Eq. (13). We normalize the eigenvectors
so that vjvk = δjk with δjk the Kronecker delta and vj

is a “co-vector” defined by vj = −isgn(j)v†jJ . From the
normalized eigenvectors, we also construct a symplectic
matrix U using them as columns.

Next we consider a non-symplectic process which gives
rise to constant damping and diffusion matrices. We find
that we can describe such a process in terms of a local
damping matrix B and a local diffusion matrix D. The
evolution equation (2) simplifies to

∆〈ga〉 = −2χa〈ga〉+ d̄a (5)

where the damping decrements χa are given by

χa =
∮
ds[Aaa +A−a−a] (6)

with A = U−1BU and the global diffusion coefficients d̄a
are given by

d̄a =
∮
dsTr[GaD]. (7)

We then give explicit expressions for B and D for syn-
chrotron radiation and show that we reproduce the re-
sults of Sands [1] in the uncoupled case.

In Section II, we formulate our perturbative approach.
We expand the one-turn map and the corresponding
eigenvalue equation, writing:

M = M0 +M1 +M2 + . . . (8)
λj = λj0 + λj1 + λj2 + . . . (9)
vj = ṽj0 + vj1 + vj2 + . . . (10)

We consider the case where the one turn map is near a
degeneracy and consider M0 to be the map exactly on
resonance. ṽj0 is a linear combination of the vj0, the
eigenvectors of the uncoupled map which are degenerate
on resonance. The perturbation picks out a specific linear
combination of the degenerate eigenvectors. It will be
one of the main tasks of this paper to compute ṽj0. We
write M1 = M1µ+M1ξ where M1µ is the difference from
resonance and M1ξ is any additional perturbation (e.g.
coupling). For the case of the integer and half integer
resonance, we find that we need a second order M2ξ and
need to do second order degenerate perturbation theory.
For each resonance, we express our results for the eigen-
phase advance and perturbed eigenvectors in terms of
a coupling paramater ξ, a splitting parameter ∆µ, an
average shift µ̄, and a phase φ. These are all expressed
in terms of the matrix elements rjk = vj0Pvk0 where
M1 = PM0. We find that there are instabilities for all
but the difference resonance and the width is given by
ξ > ∆µ.

In Section III, we apply our formalism to two cases
of synchrobetatron coupling: dispersion at an RF cavity
and the addition of a crab cavity. We give explicit ex-
pressions for ξ, ∆µ, φ, and µ̄ near each of the resonances,
thereby providing analytic formulae for stop-band widths
and perturbed eigenvectors.

In Section IV, we combine the results of Section II
and Section I to compute coupled expressions for the in-
variants Ga and also ba and da, the local damping and
diffusion coefficients for the eigenmodes. We find that
in addition to the coupling mixing together the uncou-
pled invariants Gx and Gz, there are additional terms
Gc which oscillate around the ring. These terms could
be expressed as linear combinations of the extra invari-
ants that exist for the one-turn map exactly on resonance,
as discussed further in [10]. By doing our perturbation
theory in terms of the eigenvectors, they naturally come
out of the analysis. We then find the global damping
and diffusion coefficients by integration of these quanti-
ties around the ring. The additional mixing terms are
found to not contribute much to the global damping and
diffusion in typical cases. One notable exception to this
is the case of the integer synchrotron tune resonance. Be-
cause the synchrotron phase advances very little around
the ring, the mixing term does indeed contribute to the
global diffusion and one must be careful to include this
term. A final notable result of this section is that one of
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the damping decrements χa can bbecome negative near
a sum resonance. This indicates an instability which we
refer to as an “anti-damping instability”.

Section V connects together the results of Sections III
and IV giving plots and discussion. We use the param-
eters for the PEP-II LER as an example storage ring
to plot the coupled damping and diffusion coefficients
and equilibrium emittances as a function of the betatron
and synchrotron tunes near each of the resonances. We
also examine the question of instability, both due to the
Hamiltonian dynamics and due to anti-damping.

Section VI contains the conclusion. Further deriva-
tions are contained in the appendices. Appendix A gives
derivations related to the invariants and second moment
matrix. In Appendix B we formulate our general per-
turbation theory. Appendix C proves a relationship be-
tween the coupling parameters for the sum and differ-
ence resonances. Appendix D gives further derivations
related to the integer and half integer resonances caused
by coupling. Finally, we point out that tables I-IV con-
tain summaries of much of the results contained in this
paper. Once the basic approach is understood, the in-
formation contained in these tables would give the main
results needed to apply the approach to a new type of
perturbation or a new set of parameters.

I. GENERAL COMPUTATION OF
EQUILIBRIUM EMITTANCES

Consider a general electron storage ring with a given
linear lattice. Ignoring the damping and diffusion effects
due to synchrotron radiation, we can describe the dy-
namics at any position s in terms of a one-turn map M :

~zs+C = M(s)~zs, (11)

where C is the circumference of the ring and where ~z is
our phase space coordinate vector (column matrix). The
matrix M is symplectic [4] which means

MTJM = J, (12)

where a superscript T means taking the transpose of a
matrix, and J is the symplectic inner product matrix

J =


0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 . (13)

The six eigenvectors and eigenvalues of M satisfy

Mvk = λkvk. (14)

The index k runs over ±1,±2,±3. We normalize the
eigenvectors such that

v†jJvk = i sgn(j) δjk, (15)

where sgn(j) is 1 for j > 0 and −1 for j < 0, and † means
taking the complex conjugate and transpose of a matrix
(or vector). This normalization condition suggests the
definition of an upper indexed object

vj ≡ −i sgn(j) v†jJ. (16)

The normalization condition (15) then reads

vjvk = δjk. (17)

We refer to an eigenvector vk with k > 0 as a positive
mode eigenvector and one with k < 0 as a negative mode
eigenvector. Note that this property of being a positive
or negative mode is intrinsic to a given eigenvector and
is not a property of the normalization: multiplying by
a constant cannot convert a positive mode eigenvector
into a negative mode, and vice versa. The positive and
negative modes are related as follows,

v−k = iv∗k, v−k = −ivk∗. (18)

When M describes stable motion in the storage ring,
the eigenvalues λk can be expressed as

λk = eiµk , (19)

with µk a real quantity. We refer to µk as the eigen-phase
advance, with µk = 2πνk where νk is the eigen-tune. The
positive and negative phase advances are related to each
other as

µ−k = −µk. (20)

From the vk’s, we construct a matrix using them as
columns,

U = ( v1 v−1 v2 v−2 v3 v−3 ) . (21)

Given the normalization, one can show that U is sym-
plectic. We can thus consider U as a (complex) canonical
transformation that diagonalizes2 M . In particular

U−1MU = eΛ (22)

=


eiµ1 0 0 0 0 0
0 e−iµ1 0 0 0 0
0 0 eiµ2 0 0 0
0 0 0 e−iµ2 0 0
0 0 0 0 eiµ3 0
0 0 0 0 0 e−iµ3

 .

2 Another useful canonical transformation involves taking
√

2
times the real and imaginary parts of the vk’s for the columns of
U . This is a real canonical transformation and results in a block
diagonal M with blocks given by rotation matrices. Thanks to
Y. Cai of SLAC for pointing this out. It is the same as that
given in [15]. We discuss this transformation in Appendix A,
but otherwise do not make use of it in this work.
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Let us now discuss the invariants of M . Let g = ~zTG~z
be a quadratic invariant of M , where G is a symmetric
matrix. To be an invariant, g(s) must satisfy the condi-
tion g(s) = g(s+ C) for all ~z, or

MTGM = G. (23)

Note that linear combinations of invariants are still
invariants. In the non-degenerate case, there are 3 lin-
early independent invariants. Given U , there is a natural
choice for these three invariants. We express them as

ga = ~zTGa~z, Ga = JUHaU
TJ, a = 1, 2, 3 (24)

with

H1 =

(
iσx 0 0
0 0 0
0 0 0

)
, H2 =

( 0 0 0
0 iσx 0
0 0 0

)
,

H3 =

( 0 0 0
0 0 0
0 0 iσx

)
, σx =

(
0 1
1 0

)
. (25)

One can verify that these are invariants by using (23),
and more details are given in Appendix A. These invari-
ants can also be written directly in terms of the eigen-
vectors as

Ga = −J(vav†a + v∗av
T
a )J. (26)

From this expression, we note two properties of the in-
variants. First, they are real quantities, and second, they
are independent of the overall phase of the eigenvector va.
Further, there is no need to allow a to run over negative
values. If we do so, Eq. (26) shows that G−a = Ga.
That is, the invariants determined by the negative mode
eigenvectors are identical to those from the corresponding
positive mode. This is a manifestation of the relationship
between vk and v−k.

The invariants ga, expressed in terms of normalized
eigenvectors in (24) and (26), turn out to be the action
variables often used in perturbation theory in classical
systems. To see that, let us express the one-turn map as

M = eJS . (27)

In this form, S has the physical meaning that the effective
Hamiltonian describing the one-turn motion around the
observation point s is given by H = 1

2~z
TS~z. Then using

S = −JUΛU−1, Λ =

(
iµ1σz 0 0

0 iµ2σz 0
0 0 iµ3σz

)
,

and σz =
(

1 0
0 −1

)
, (28)

it follows that

S = µ1G1 + µ2G2 + µ3G3. (29)

The one-turn effective Hamiltonian is therefore given by

H =
1
2
(µ1g1 + µ2g2 + µ3g3). (30)

For the transverse dimension, the ga corresponding to
the betatron oscillations reduces to the Courant-Snyder
invariant in the uncoupled case.3

Now, suppose that the distribution of electrons in the
storage ring is given as a function of the invariants ga. In
particular, let it have a Gaussian distribution given by
Eq.(1). In terms of matrices Ga, the second moments of
the distribution

〈zizj〉 = Σij (31)

are given by

Σ = −1
2
〈g1〉JG1J −

1
2
〈g2〉JG2J −

1
2
〈g3〉JG3J, (32)

which we derive in Appendix A.
We have now completed the formalism to find the beam

equilibrium distribution from the one-turn map M . The
only missing quantities are 〈g1,2,3〉. To find them, we
will need to consider the effects of damping and diffusion,
which are so far ignored.

A. Damping Effect

In an electron storage ring, the stored electrons give off
energy in the form of synchrotron radiation in the bend-
ing magnets that is replenished in the RF cavities. This
radiation process gives rise to both a damping and a dif-
fusion effect [1]. As mentioned, we consider the one-turn
dynamics around a point of observation s. We now need
to integrate the actions of damping and diffusion for one
turn around the same observation point. We will assume
that the damping and diffusion effects are very weak, so
that they do not affect the particle motion appreciably
over one turn of the otherwise symplectic particle motion
(see Eq.(3)).

We designate the linear map for ~z from position s1
to s2, ignoring damping and diffusion, as Ts1→s2 . The
one-turn map around the observation position s is M =
Ts→s+C , with C the ring circumference.

Consider the damping effect first. The action of ra-
diation damping occurs in the bending magnets4 and
the RF cavities. It is mostly longitudinal synchrotron
damping in the bending magnets and transverse betatron
damping in the RF cavities. In either case, we define the
damping action at position s′ by a matrix B(s′) for each

3 For the sake of this agreement, we have not included a factor of
1
2

in the definition of the ga, Eq.(24).
4 In this context, a quadrupole magnet with an off-centered beam

is considered a bending magnet.
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damping element. In this definition, the transport ma-
trix over a damping element Telem is modified to become
Telem× [I−

∫
ds′B(s′)], where the integration of s′ is over

the damping element under consideration.
Assuming B(s′) is small, we keep only to first order

in B when integrating over one turn around position s.
The result is that the one-turn linear map around s is
modified from M to become

M(I − B̄), (33)

where

B̄ =
∫ s+C

s

ds′ T−1
s→s′B(s′)Ts→s′ . (34)

Having obtained the symplectic one-turn map M
around the observation point s and the integrated damp-
ing matrix B̄, the one-turn evolution of the beam distri-
bution second-moment matrix Σ is given by

Σ(s+C) = [M(I − B̄)] Σ(s) [M(I − B̄)]T (35)
≈ MΣ(s)MT−MB̄Σ(s)MT−MΣ(s)B̄TMT ,

where we have again kept only first order in the damping
matrix, as we do throughout this paper.

B. Diffusion Effect

We next consider the integrated action of diffusion for
one turn around position s. Let the diffusion action be
described by

d~z

ds
= ξ̂, (36)

where the vector ξ̂ describes the diffusion noise, and has
the property that its average over the noise ensemble van-
ishes, but that

〈ξ̂i(s1)ξ̂j(s2)〉 = Dij(s1)δ(s2 − s1). (37)

The brackets 〈 〉 means averaging over the ensemble of
synchrotron radiation events. Quantities Dij(s1) are the
diffusion coefficients. Equation (37) says that the fluc-
tuations from the synchrotron radiation photons form a
white noise process which is delta-function correlated in
time. Explicit expressions of the matrices B(s) and D(s)
are given later in this section.

In response to the diffusion, a particle motion contains
an extra term, at the observation point,

~z(s) =
∫ s+C

s

Ts′→s+C ξ̂(s′)ds′. (38)

Using this expression, one computes zizj at position s.
Averaging zizj over the beam distribution and over the

ensemble of possible ξ̂’s, we obtain an extra term con-
tributing to the second-moment matrix Σ for its one turn
evolution,

D̄(s) =
∫ s+C

s

ds′ Ts′→s+CD(s′)TTs′→s+C . (39)

Physically,
∫
D(s′)ds′ over a storage ring element gives

the contribution of diffusion to the Σ second moments
due to this element. This contribution is then transferred
to position s by the map Ts′→s+C to give the integrated
D̄.

C. Evolution of Beam Distribution

Combining the results of (35) and (39) then gives the
net one-turn evolution5

Σ(s+ C) = MΣ(s)MT −MB̄Σ(s)MT

−MΣ(s)B̄TMT + D̄(s). (40)

To find the exact equilibrium distribution, we stipulate
in Eq.(40) that Σ(s+C) = Σ(s) = Σeq(s). This equation
can be solved for Σeq directly using eigenanalysis [11,
12]. For our purposes here, however, we assume that
the distribution stays a function of the invariants. The
average value of the invariant is given by

〈ga〉 = Tr(GaΣ), a = 1, 2, 3. (41)

Using (41), (23), and (40), along with the cyclic prop-
erty of the trace, we obtain the evolution equation for
〈ga〉,

〈ga〉(s+C)− 〈ga〉(s) = −2 Tr(B̄ΣGa) + Tr(GaD̄). (42)

We then use (32), (24), and UTGaU = JHaJ (using the
symplectic property of U) to obtain, after some algebra,

〈ga〉(s+ C)− 〈ga〉(s) = −2χa〈ga〉+ d̄a (43)

where the global eigenmode damping decrements per
turn χa are given by

χa = Āaa + Ā−a−a, a = 1, 2, 3, (44)

where

Ā = U−1B̄U, (45)

and the one-turn eigenmode diffusion coefficients d̄a are

d̄a = Tr(GaD̄), a = 1, 2, 3. (46)

5 Note that we have assumed that both the damping and diffusion
terms are small in comparison to the symplectic evolution, so
that we could compute the damping effect while ignoring the
diffusion and vice versa.
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From (43), we see that the equilibrium value of the
invariants are given by

〈ga〉eq =
d̄a
2χa

, a = 1, 2, 3. (47)

It may be useful to express the global damping decre-
ments χa and the global diffusion coefficients d̄a in an
integral form. Writing out (45) explicitly gives

Ā = U−1(s)B̄(s)U(s)

=
∫ s+C

s

U−1(s′)B(s′)U(s′)ds′

≡
∮
A(s′)ds′ (48)

where we have used the fact that the U matrix of eigen-
vectors transforms as U(s) = Ts→s′U(s′), and defined
the local A matrix in terms of the local damping matrix
as6

A(s′) = U−1(s′)B(s′)U(s′). (49)

The matrix Ā is independent of the observation position
s, although B̄ in general depends on s. We can thus write
the global damping decrements as

χa =
∮

[Aaa(s′) +A−a−a(s′)]ds′. (50)

We refer to the integrand as the local damping coefficient
and write

ba = Aaa +A−a−a (51)

so that

χa =
∮
ba(s′)ds′. (52)

For the diffusion coefficients, we use (39), (46), and
the transformation property of the invariant Ga(s′) =
TTs′→s+CGa(s)Ts′→s+C to derive

d̄a =
∮

Tr[Ga(s′)D(s′)]ds′ ≡
∮
da(s′)ds′, (53)

where we have defined the local diffusion coefficient

da = Tr[GaD]. (54)

The global diffusion coefficients d̄a are independent of
s. It follows that the equilibrium emittances 1

2 〈ga〉eq are
also global quantities, independent of s.

6 The matrix A depends on the overall phases of the eigenvectors
vk in U . However, the diagonal elements are independent of
these phases, and only the diagonal elements enter the evolution
equations for the invariants.

Thus, to find the equilibrium emittance, we must find
the local invariants Ga and the U matrix constructed
from the eigenvectors of M using (21) and (24). Given
these and local damping and diffusion matrices B and
D, we find the local damping and diffusion coefficients ba
and da from (49), (51), and (54). Finally, we integrate
these around the ring to find the global damping decre-
ments and global diffusion coefficients which give us the
equilibrium emittances.

D. Sum Rules

The sum of the local damping coefficients gives the
trace of A(s). From this we derive

b1 + b2 + b3 = Tr(U−1BU)
= Tr(B)
= bx + by + bz, (55)

where bx, by, and bz are the damping coefficients in un-
coupled coordinates. Thus, regardless of the details of
the Hamiltonian dynamics (contained in U(s)), the sum
of the ba is unchanged. This is a local sum rule for the
damping coefficients. Integrating this equation around
the ring, we get a global sum rule,

χ1 + χ2 + χ3 = χx + χy + χz (56)

where χx,y,z are the global damping decrements for the
uncoupled case. Equation (56) is a manifestation of the
well-known Robinson theorem [16].

Under some specific conditions, one can also obtain a
sum rule for the invariants and diffusion coefficients. In
particular, consider a 2-D coupled storage ring. Eq.(29)
says that

µ1G1 + µ2G2 = S. (57)

In later sections, we will formulate a perturbation theory
in which we start with an uncoupled, degenerate map and
consider the effects of small coupling and small deviation
from degeneracy. Let us write µx0 and µz0 for the phase
advances at degeneracy (e.g. µx0 = −µz0 for sum reso-
nances, and µx0 = µz0 for difference resonances) and S0

for the effective Hamiltonian matrix at the degeneracy.
At the degeneracy, then, we have

µx0Gx + µz0Gz = S0. (58)

Breaking the degeneracy and adding a small coupling
amount to adding small perturbations to the one-turn
map. This will add small corrections to S0, and µx0,z0
to first order in the perturbations. The invariants G1,2,
however can have large changes depending on the per-
turbation, as will be clear in later sections. Then, taking
(57) to lowest order and setting it equal to (58), we get

µx0G1 + µz0G2 = µx0Gx + µz0Gz (59)
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This is a sum rule for the invariants. For the case of the
sum/difference resonance it says

G1 −G2 = Gx −Gz sum res.
G1 +G2 = Gx +Gz dif. res. (60)

For the integer resonance in the longitudinal motion, we
have µz0 = 0, in which case this sum rule tells us that
to lowest order, the invariant in the x-dimention is un-
changed 7 ,

G1 = Gx int. z res. (61)

Similarly,

G2 = Gz. int. x res. (62)

Now, the local diffusion coefficients da are given by
da = Tr(GaD), where D is the diffusion matrix. Mul-
tiplying the above sum rules on the right by the matrix
D and then taking a trace gives sum rules for the local
diffusion coefficients. The results for the sum/difference
and integer resonances are

d1 − d2 = dx − dz = invariant sum res.
d1 + d2 = dx + dz = invariant dif. res.

d1 = dx int z res.
d2 = dz int. x res. (63)

We can also integrate this equation around the ring to
get sum rules for the global diffusion coefficients,

d̄1 − d̄2 = d̄x − d̄z = invariant sum res.
d̄1 + d̄2 = d̄x + d̄z = invariant dif. res.

d̄1 = d̄x int z res.
d̄2 = d̄z int. x res. (64)

where the d̄a are the integrated da as given in (53).
From the sum rule (64) for sum and difference reso-

nances (global version), and using (47), we have

χ1〈g1〉eq − χ2〈g2〉eq = invariant sum res.
χ1〈g1〉eq + χ2〈g2〉eq = invariant dif. res. (65)

Since χ1,2 must be positive for stable motion, it follows
that this sum rule imposes a stability condition for par-
ticle motion. For example, in case of coupling between
the two transverse betatron motions, Eq.(65) implies that
the motion is stable near a difference resonance and pos-
sibly unstable near a sum resonance. This is a familiar
result involving the sum rule of equilibrium beam emit-
tances [4]. The present formalism therefore contains in

7 One might be tempted to write the sum rule for the invariants
as µ1G1 + µ2G2 = µxGx + µzGz and note that near an integer
(x) resonance µ2 ≈ µz and G2 ≈ Gz and hence conclude that
G1 = (µx/µ1)Gx. This reasoning is incorrect since the sum rule
is only valid to lowest order, and to lowest order µ1 = µx0 = 0.
Eq. (257) later shows that this flawed reasoning misses a term.

one framework the Robinson sum rule and the emittance
sum rule near linear resonances.

In the case where the coupling near a sum/difference
resonance occurs in synchrobetatron space, and the op-
eration is above transition, we find that µz = −µs (see
later) where µs is the usual (positive) synchrotron phase
advance per turn. Thus, in terms of µs, there is a sign
reversal in the definition of degeneracy so that a sum
resonance has µx0 = µs and difference resonance has
µx0 = −µs. In terms of µs, then, stability applies near
a sum resonance and instability occurs near a difference
resonance. This is also a familiar result [17], associated
with the longitudinal negative mass above transition. In
the present paper, however, we make the choice to relate
our definitions of resonance to νz so that as in the case of
x-y coupling, the difference resonance is stable and the
sum resonance is unstable. This has the advantage of
permitting a uniform treatment of synchrobetatron cou-
pling and transverse betatron coupling. To reiterate, by
“sum resonance”, we mean νx+νz is near an integer, and
for a “difference resonance”, νx − νz is near an integer.

E. Expressions for B(s) and D(s)

For completeness, we give explicit expressions of B(s)
and D(s) here for the synchrobetatron coupled case. Our
coordinates are (x, x′, z, δ) where x and z are the parti-
cle’s horizontal and longitudinal displacements relative
to the beam center, x′ = px/pz is the slope of the parti-
cle’s motion in x, and δ = (pz − P0)/P0 where P0 is the
design reference momentum.

Ignoring the opening angle effect, the diffusion due to
synchrotron radiation only happens in the coordinate δ,
and

D(s) =

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 d(s)

 , (66)

where [1]

d(s) =
55

48
√

3
α0

γ5

|ρ(s)|3

(
~
mc

)2

, (67)

with α0 the fine structure constant, γ the relativistic en-
ergy factor, ρ(s) the bending radius of the bending mag-
nets, ~ the reduced Planck constant, and m the electron
rest mass. As we see from the ρ(s) in the denominator,
diffusion only happens in the bending magnets.

Later in our applications, it will be convenient to make
a transformation from ~z to the betatron coordinates ~zβ =
B~z by a coordinate transformation

B =

 1 0 0 −η
0 1 0 −η′
η′ −η 1 0
0 0 0 1

 , (68)
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where η and η′ are the dispersion function and its slope
at position s. It follows that we will need to define

Dβ = BDBT = d

 η2 ηη′ 0 −η
ηη′ η′2 0 −η′
0 0 0 0
−η −η′ 0 1

 , (69)

which we write in terms of 2× 2 submatrices as

Dβ =
(
Dxx Dxz

Dzx Dzz

)
. (70)

Damping occurs in the bending magnets and in the
RF cavity. At an RF cavity, the particle gains back the
average energy by the amount U0, which it lost due to
radiation one turn around the ring. It follows that the
RF cavity contributes to a damping [1]

x′ → x′
(

1− U0

cP0

)
, (71)

which could be described as

Bcav(s) =

 0 0 0 0
0 U0

cP0
δ(s− sc) 0 0

0 0 0 0
0 0 0 0

 , (72)

where sc is the location of the cavity. In case of multiple
RF cavities at positions sci, we define

bx(s) =
∑
i

U0i

cP0
δ(s− sci), (73)

with
∑
i U0i = U0, i.e. the net energy loss is U0.

For the damping effect due to the bending magnets,
we have

Bbend(s) =

 0 0 0 0
0 0 0 0
0 0 0 0
bδx 0 0 bz

 . (74)

The bz term comes from the fact that a higher energy
electron radiates more whereas the bδx term has two
parts. The first comes from the fact that a particle with
a larger value of x takes a longer path through the mag-
net and the second from the fact that the power radiated
depends on the magnetic field, which in turn depends
on x if the vertical magnetic field strength By contains
a quadrupole component. In separated function dipoles,
this second part vanishes. The first is proportional to 1

ρ .
Specifically, we have

bz = PγcP0, bδx =
Pγ

2cE0

(
1
ρ

+
2
By

∂By
∂x

)
, (75)

where c is the speed of light, E0 = cP0 at high energy,
is the reference energy of the particle, Pγ is the instan-
taneous radiated power given by

Pγ =
e2c3Cγ

2π
E2

0B
2
y , (76)

e is the electron charge, re is the electron classical radius,
and the constant

Cγ =
4π
3

re
(mc2)3

= 8.85× 10−5meter−GeV−3. (77)

Pγ is only non-zero in the bending magnets. This is why
we have written Bbend in Eq.(74).

Altogether, then, we have

B(s) =

 0 0 0 0
0 bx(s) 0 0
0 0 0 0

bδx(s) 0 0 bz(s)

 (78)

For later applications, we will again need to transform
the damping matrix to the betatron coordinates. We
then calculate

Bβ(s) = BBB−1 (79)

=

 −ηbδx 0 0 −η(bz + ηbδx)
−η′bδx bx 0 η′(bx − bz − ηbδx)

0 −bxη 0 −bxηη′
bδx 0 0 bz + ηbδx

 .

Let us write this in terms of 2× 2 submatrices as

Bβ =
(
Bxx Bxz
Bzx Bzz

)
. (80)

F. Uncoupled Ring

A typical storage ring is designed to be uncoupled. If
we use betatron coordinates, defined by ~zβ = B~z with B
defined in (68), then the linear one-turn map for the ring
at some position s is of the form

Muncoupled =
(
Mx 0
0 Mz

)
. (81)

Because Mx and Mz are symplectic, following Courant
and Snyder, we can write them in the form

Mx = cosµxI + sinµxJx = eµxJx , Jx =
(
αx βx
−γx −αx

)
,

(82)
and

Mz = cosµzI + sinµzJz = eµzJz , Jz =
(
αz βz
−γz −αz

)
.

(83)
Here, βx, αx = −2β′x, and γx = 1+α2

x

βx
are the usual

Courant-Snyder lattice parameters. They are periodic
with period C; e.g. βx(s+C) = βx(s). Note that adding
integer multiples of 2π to µx and µz does not change
the one turn map. We will thus, except where other-
wise noted, assume that an appropriate multiple has been
added (subtracted) so that

µx,z ∈ [−π, π] (84)
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To find the corresponding lattice parameters for z, let
us consider a model storage ring with one RF cavity. The
transfer matrix for the RF cavity can then be written as

Tcav =
(

1 0
r
a 1

)
(85)

where r = 4 sin2 µz

2 , with µz the synchrotron phase ad-
vance8. The transfer matrix from the RF cavity to an-
other position s is

Tzρ(s) =
(

1 −aα̌
0 1

)
. (86)

The subscript tells us that this is the longitudinal transfer
matrix taking bends into account. Here, a = Cαc with
αc the momentum compaction factor9, and

α̌ =
1
a

∫ s

sc

η(s′)
ρ(s′)

ds′, (87)

with sc the position of the RF cavity, η the dispersion
and ρ the dipole bending radius. We note that α̌ de-
pends on the two positions sc and s and ranges from 0
(when s = sc) to 1 (when s = sc + C). We call αcα̌ the
partial momentum compaction. The one-turn map at an
arbitrary position s is then

Mz =
(

1− rα̌ −a[1 + rα̌(α̌− 1)]
r
a 1− r + rα̌

)
. (88)

One can verify that the eigenvalues of Mz are indeed
e±iµz . Comparing the two different forms for Mz, we
identify

βz = −a[1 + α̌r(α̌− 1)]
sinµz

,

γz = − r

a sinµz
,

αz = (1− 2α̌) tan
µz
2
. (89)

The synchrotron phase advance per turn µz is typically
small. Taking lowest order in µz we get

βz = − a

µz
, γz = −µz

a
, αz =

µz
2

(1− 2α̌). (90)

Note that in order to preserve the symplectic requirement
that βzγz = 1 + α2

z, we have to keep higher order in µz
in βz and γz.

We require that βz and γz be positive. This means
that µz must be negative (assuming a > 0, which is true

8 For multiple cavities, we consider them to all be lumped into a
single cavity with the correct strength to give the appropriate
µz .

9 We have assumed that the beam is well above transition. For
the general case, we replace, αc with the slip factor, αc − 1/γ2

where γ is the relativistic factor.

above transition). Thus, designating the usual (positive)
synchrotron phase as µs, we have µz = −µs. In terms of
µs then,

βz =
a

µs
, γz =

µs
a
, αz =

−µs
2

(1− 2α̌). (91)

Given the general forms (82) and (83) for Mx and Mz,
we can express the eigenvectors of Muncoupled as

vx =
1√
2


√
βx

i−αx√
βx

0
0

 , vz =
1√
2


0
0√
βz

i−αz√
βz

 , (92)

with corresponding eigenvalues eiµx and eiµz , which can
be checked by direct multiplication. The above vx and
vz are positive modes, and the corresponding negative
modes are v−x = iv∗x and v−z = −iv∗z . Using the
notation in (16), we can express the normalization as
vxvx = vzvz = v−xv−x = v−zv−z = 1 and all other com-
binations give 0. To be explicit, because vx is a positive
mode (likewise vz), vx = −iv†xJ .

G. Transformation of Eigenvectors around Ring

Here, we consider how the eigenvectors transform
around the ring. This is necessary because we will want
to know how the damping and diffusion coefficients trans-
form around the ring, and they depend on the local eigen-
vectors. The eigenvectors transform in the same way as
the phase space coordinate ~z does, i.e. with the trans-
fer matrix from position s1 to position s2. We express
the transfer matrix in terms of the Courant-Snyder lat-
tice functions and the phase advance from s1 to s2, ψx12,
which is related to βx(s) by

ψx12 =
∫ s2

s1

ds

βx(s)
. (93)

In betatron coordinates, the transfer matrix is given by

T0β(s1 → s2) ≡ T12β =

R11 R12 0 0
R21 R22 0 0
0 0 1 −aα̌
0 0 0 1

 , (94)

where aα̌ is C times the partial momentum compaction
factor from s1 to s2, and

R11 =

√
β2

β1
(cosψx12 + α1 sinψx12),

R12 =
√
β1β2 sinψx12,

R21 =
1√
β1β2

[(α1 − α2) cosψx12 − (1 + α1α2) sinψx12],

R22 =

√
β1

β2
(cosψx − α2 sinψx12), (95)
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where β1 = βx(s1), etc. When s2 = s1 + C, ψx12 = µx.
We have not written the longitudinal transfer matrix

in terms of βz, αz, and γz for reasons of convenience.
We have assumed that we have not crossed an RF cavity
from s1 to s2. In the case that we do, we need to also
multiply by (85). To lowest order in µs,

ψz12 = α̌µs, (96)

where α̌ is integrated from s1 to s2. This can be derived
by setting R12 for the z transformation (−aα̌) equal to√
βz1βz2 sinψz12. In the general case with multiple RF

cavities, we would need to compute the resulting βz, αz
and γz, but otherwise the formalism remains the same.
Note, however, that we assume that the dispersion at
each of the RF cavities is 0 in the computation of the αz,
βz, and γz. These are uncoupled lattice functions. We
treat dispersion at an RF cavity as a perturbation and
later give an example for the case of a single cavity.

The transfer map in betatron coordinates is related to
the transfer map in real coordinates by

T12β = B2T12B−1
1 , (97)

where B1 and B2 are the betatron coordinate transfor-
mation matrices given in (68) involving the dispersion at
s1 and s2 respectively.

Applying T12β to the eigenvectors, we can show

T12βvx(s1) = eiψx12vx(s2),

T12βvz(s1) = eiψz12vz(s2), (98)

where vx(s2) and vz(s2) are expressions (92) with the
lattice functions advanced to position s2.

H. Uncoupled Invariants and Diffusion Coefficients

Using the uncoupled eigenvectors vx,z, Eq.(92), to-
gether with Eq.(26) we find the uncoupled invariants

Gx =

 γx αx 0 0
αx βx 0 0
0 0 0 0
0 0 0 0

 , (99)

Gz =

 0 0 0 0
0 0 0 0
0 0 γz αz
0 0 αz βz

 . (100)

For the x direction, we find the standard Courant-Snyder
invariant,

gx = γxx
2
β + 2αxxβx′β + βxx

′2
β , (101)

where we recall that we are using the ~zβ betatron coor-
dinates defined in Eq.(68).

The uncoupled local diffusion coefficients are given by

dx = Tr(GxDβ) = dHx, (102)

dz = Tr(GzDβ) = dβz ≈ d
a

µs
. (103)

We use the standard definition of Hx

Hx = γxη
2
x + 2αxηxη′x + βxη

′2. (104)

The global diffusion coefficients d̄x and d̄z are given by
integrating these quantities around the ring.

I. Uncoupled Global Damping Decrements

To find the damping decrements, we use Eqs. (48) and
(50). Using betatron coordinates, in the uncoupled case,
the U matrix and its inverse are block diagonal,

U =
(
Ux 0
0 Uz

)
, U−1 =

(
U−1
x 0
0 U−1

z

)
, (105)

where Ux,z and U−1
x,z are 2× 2 matrices. All these quan-

tities depend on the position in the ring s. Eq.(50) then
says

χx =
∮

Tr[U−1
x (s)B(s)Ux(s)]ds =

∮
Tr[Bxx(s)]ds,

(106)
and likewise for z,

χz =
∮

Tr[Bzz]ds. (107)

Thus, in the uncoupled case, we find that

χx =
∮

[bx(s)− ηbδx(s)] ds

≡ U0

2E0
(1−D) ≡ U0

2E0
Jx (108)

χz =
∮

[bz(s) + ηbδx(s)] ds

≡ U0

2E0
(2 +D) ≡ U0

2E0
Jz (109)

where U0 =
∮
dsPγ is the total radiated energy per turn

and we have introduced the standard notation of D, Jx,
and Jz for the damping partition numbers. This is a
well-known result in [1], and a similar rederivation has
been given in [11] and [10]. Note that one can think of
dispersion as causing coupling, and that the local and
global sum rules of Eqs.(55) and (56) are satisfied.

J. Uncoupled Equilibrium Emittances (Sands
Results)

Now that we have the global diffusion coefficients and
damping decrements for the uncoupled case, Eq. (47)
gives the equilibrium values of the invariants, or in terms
of the emittances εa = 〈ga〉/2 we find

εx =
55

48
√

3
α0γ

5
∮
dsHx

|ρ3|
2U0
E0
Jx

(110)
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εz =
55

48
√

3
α0γ

5 a
µs

∮
ds 1
|ρ3|

2U0
E0
Jz

(111)

II. PERTURBATION THEORY NEAR A
RESONANCE

The global damping and diffusion coefficients are con-
structed from the eigenvectors of the one-turn map,
vk(s), along with the damping and diffusion matrices
B(s) and D(s). In this section we use perturbation the-
ory to find approximate expressions for the vk’s. We
will construct invariants and damping and diffusion co-
efficients from these eigenvectors in the following sec-
tion. In this section, we consider the 4-D phase space
of horizontal-longitudinal synchrobetatron dynamics, ig-
noring the vertical dimension.

A. Adding a Perturbation

In Section I, we discussed the uncoupled storage ring.
We now introduce some additional coupling element at
some position in the ring. This changes the one-turn
map, and as discussed in section I, we could eigenan-
alyze the new ring and find the new equilibrium beam
distribution. What we really need are the new eigenvec-
tors. Assuming the coupling is small, we would like to do
perturbation theory to find them. However, doing per-
turbation theory directly on Muncoupled is problematic
near a resonance. At the degeneracy, the eigenvectors
are also degenerate, meaning that linear combinations
of eigenvectors are still eigenvectors. One must add a
perturbation to break the degeneracy and pick out spe-
cific eigenvectors.10 The degeneracy is broken by two
relevant small quantities. First, there is the distance in
tune space from resonance, and second, there is the cou-
pling. Interesting perturbative effects occur when these
two quantities are of similar size. The correct lowest or-
der eigenvectors are not necessarily those of Muncoupled.
We will thus consider Muncoupled to be M0 +M1µ where
M0 is the map exactly on resonance. Instead of doing
perturbation theory on Muncoupled, we will do it on M0.
If we turn off the coupling, we will of course expect to get
the correct eigenvalues and eigenvectors for Muncoupled.

There are many ways to define such an on-resonance
M0. We choose to do so in such a way that the eigenvec-
tors remain to be given by Eq.(92). This can be accom-
plished by choosing

M0 =
(
Mx0 0

0 Mz0

)
, (112)

10 For more on this point, see a discussion of degenerate perturba-
tion theory in quantum mechanics, such as in [19], pp. 227-231,
as well as our derivations in the next section and in Appendix B.

where

Mx0 = eµx0Jx , Mz0 = eµz0Jz , (113)

where µx0 and µz0 are their degenerate (exactly on res-
onance) values and Jx and Jz are defined as before, i.e.
by (82) and (83). In particular, αx,z, βx,z, and γx,z are
the uncoupled lattice functions derived from Muncoupled.
Let us write11 µx = µx0 + δµx/2 and µz = µz0 + δµz/2,
then the perturbation to M0 is given to lowest order as

M1µ =
( δµx

2 JxMx0 0
0 δµz

2 JzMz0

)
=
( δµx

2 Jx 0
0 δµz

2 Jz

)
M0. (114)

For example, in the case of the sum resonance, µx+µz =
δµ where δµ is small (recall the redefinition Eq. (84).
We then write µx0 = µ, µz0 = −µ, and δµx = δµz = δµ.
For the difference resonance, µx − µz = δµ, and we have
µx0 = µz0 = µ and δµx = −δµz = δµ. For the integer
resonance in µx, we have µx0 = µ−x0 = 0 and δµx = 2µx.
In this case µz0 can be anything; although in practice, the
synchrotron tune will typically be small. Finally, for a
half-integer resonance in µx, we have µx0 = π, and δµx =
2(µx − π). Along with the corresponding µz integer and
half-integer resonances, this covers all the single linear
resonances.

The matrix M1µ specifies the deviation of the uncou-
pled map from being exactly on resonance. In addition
to the perturbation M1µ, we still have to add the per-
turbation coming from the coupling. We designate its
contribution to the one-turn map as M1ξ. This could
come from an error in the lattice, or from an added cou-
pling element (such as a crab cavity) somewhere in the
ring, or in the case of dispersion at an RF cavity, which
can be considered to be intrinsically coupling (not due to
errors). We show how to find M1ξ for a dispersive RF
cavity and a crab cavity in a later section. We write

M = M0 +M1, M1 = M1µ +M1ξ. (115)

As mentioned, M1µ does not change the eigenvectors of
M0; M1ξ will, however. To be more explicit about the
perturbation M1ξ, suppose that at position sj we insert
a perturbation 1 + P (sj). Let there be n such perturba-
tions, arranged such that 0 < s1 < s2 < . . . < sn < C.
We have defined the observation position to be s = 0.
The new one-turn map at the observation position is

M = Tsn→C [1+P (sn)] . . . Ts1→s2 [1+P (s1)]T0→s1

(116)

11 The factor of 1/2 is for later convenience – it allows for the
interpretation of δµx,z as the splitting between the uncoupled
nearly degenerate phase advances.
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Keeping lowest order in the perturbations, we find

M1ξ =

(
n∑

m=1

Tsm→CP (sm)T−1
0→sm

)
Muncoupled(0).

(117)

B. Perturbation to Eigenvalues and Eigenvectors

BecauseM0 is degenerate, we use degenerate perturba-
tion theory to find the perturbed eigenvectors and eigen-
values. We here give a brief derivation of the results we
will need for most of what follows. The discussion is
carried out in greater generality and detail in Appendix
B.

Consider specific values of j and k such that a degener-
acy occurs with µj0 = µk0 = µ0. Then vj0 and vk0 form
a degenerate subspace of M0; that is, any linear combi-
nations of vj0 and vk0 are still degenerate eigenvectors of
M0. The perturbation will pick out a particular linear
combination in addition to perturbing it, thus breaking
the degeneracy. We write this as

vj = ṽj0 + ṽj1 + . . . ,

vk = ṽk0 + ṽk1 + . . . , (118)

where ṽj0 and ṽk0 are the 0th order linear combinations:

ṽj0 = cjj0vj0 + cjk0vk0,

ṽk0 = ckj0vj0 + ckk0vk0, (119)

where vj0 and vk0 are the eigenvectors of M0 with eigen-
values λj0 and λk0, and are identified with two of the
four candidates vx, v−x, vz, and v−z from Eq.(92) as the
case may be.

We then expand the eigenvalues up to 1st order,

λj = λj0 + λj1 + . . . ,

λk = λk0 + λk1 + . . . , (120)

The eigenvalue equations up to 1st order for vj and vk
say

(M0+M1)(ṽj0 + ṽj1) = (λj0+λj1)(ṽj0+ṽj1),
(M0+M1)(ṽk0+ṽk1) = (λk0+λk1)(ṽk0+ṽk1). (121)

We now multiply by vj0 and vk0 on the left to each of
these equations. We again keep up to first order. After
using the 0th order eigenvalue equation, and using the
expansion in Eq.(119), we find the eigenvalue equation(

Mjj Mjk

Mkj Mkk

)(
cj,kj0
cj,kk0

)
= λj,k1

(
cj,kj0
cj,kk0

)
, (122)

where we have defined

Mmn = vm0M1vn0. (123)

Thus, we see that in order to find the coefficients for the
coupled eigenvectors, we need to find the eigenvectors of
this perturbation matrix M, whereas to find the pertur-
bation to the eigenvalues, we find its eigenvalues.

The matrix elements of M are mutually interrelated
because M1 is not arbitrary but must be such that M
is symplectic. We write M = M0 + M1 and apply the
symplectic condition (12). Given that M0 is symplectic,
we find, to lowest order,12

MT
0 (JM1) = (JM1)TM0. (124)

which says that MT
0 JM1 is a symmetric matrix. Taking

a transpose and conjugate of Eq. (123), and using this
equation and the definition (16), we can now prove the
following relationships among the matrix elements Mmn

(m,n = ±1,±2):

Mmn = −sgn(m)sgn(n) λm0λn0M∗
nm, (125)

Mmn = M∗
−m−n. (126)

For later convenience, we would also like to define some
additional related quantities. As we saw in Eqs.(114) and
(117), it is often convenient to write M1 in the form

M1 = PM0. (127)

We then define

rmn = vm0Pvn0, (128)

from which follows that

rmn = e−iµn0Mmn. (129)

In terms of the rmn, the relations (125) and (126) state

rmn = −sgn(m)sgn(n)r∗nm, (130)
rmn = r∗−m−n. (131)

We now solve the eigenvalue equation (122). In terms
of the rmn, the eigenvalues are

λj1 =
eiµ0

2

[
(rjj+rkk)+(rjj−rkk)

√
1+

4rjkrkj
(rjj−rkk)2

]
,

λk1 =
eiµ0

2

[
(rjj+rkk)−(rjj−rkk)

√
1+

4rjkrkj
(rjj−rkk)2

]
.

(132)

12 In the case that M1 is proportional to some parameter and that
M is symplectic for some continuous range of that parameter,
then Eq.(124) will be true exactly, not just to lowest order, which
one sees by writing out the symplectic condition as a Taylor series
in this parameter and setting terms of the same order equal to
each other. This situation applies to the cases considered in this
paper. For the RF cavity, this parameter is r, and for the crab
cavity it is ξc, see Eqs.(205) and (226).
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From the perturbations to the eigenvalues, we can find
the perturbation to the phase advances. To this end, we
write

λj = λj0+λj1 = ei(µ0+µj1) ≈ eiµ0(1+iµj1),

λk = λk0+λk1 = ei(µ0+µk1) ≈ eiµ0(1+iµk1). (133)

from which we see that the first order perturbation to
the phase advances are given by

µj1 = −ie−iµ0λj1 (134)

µk1 = −ie−iµ0λk1

Let us decompose the shift in the phase advances into
an average shift and difference from that average. i.e. we
write

µj1 = µ̄+
δµ1

2
,

µk1 = µ̄− δµ1

2
, (135)

which implies

µ̄ =
1
2
(µj1 + µk1),

δµ1 = µj1 − µk1. (136)

Using (136), (134) and (132), we find

µ̄ = −i(rjj + rkk), (137)

δµ1 = − i
2
(rjj − rkk)

√
1 +

4rjkrkj
(rjj − rkk)2

. (138)

Now, using Eq.(130), rjj and rkk are purely imaginary.
We can then define the quantity

∆µ = −i(rjj − rkk), (139)

and we know that it will be real. In fact, it is useful
to focus on this term a bit more for the moment. Re-
call that M1 = M1µ + M1ξ. We correspondingly write
rmn = rmnµ + rmnξ and ∆µ = ∆µµ + ∆µξ for the two
corresponding parts of rmn and ∆µ. The form of M1µ

was given in Eq.(114). Note that M0 factored out so
that the perturbation coming from the difference from
resonance, Pµ is

Pµ =
(
δµxJx 0

0 δµzJz

)
. (140)

Now, one can easily show that (ignoring the 0’s in the
z and δ components) vx is an eigenvector of Jx with
eigenvalue i, and v−x with eigenvalue −i. Likewise
for vz and v−z. Using this, we immediately get that
r11µ = −r−1−1µ = iδµx and r22µ = r−2−2µ = iδµz. We
have given the expressions for δµx,z in the paragraph fol-
lowing Eq.(114). The result is that ∆µµ is δµ = µx − µz
for the difference resonance, δµ = µx + µz for the sum

resonance, and 2µx or 2(µx − π) for an x integer or half
integer resonance, respectively and likewise for z. Then
we can write

∆µ = δµ− i(rjjξ − rkkξ). (141)

∆µ will be one of the main parameters we need to com-
pute in any given example. We refer to it as the ”splitting
parameter”. The additional term involving the perturba-
tion gives the direct change to the tune split (times 2π)
assuming rjkξ = 0.

Next, using Eq.(130), we find

rjkrkj = −sgn(j)sgn(k)|rjk|2. (142)

If we then define

ξ = 2|rjk|, (143)

Eq.(138) becomes

δµ1 =
∆µ
2

√
1 + sgn(j)sgn(k)

ξ2

∆µ2
. (144)

In the case where one mode is positive and the other
negative, we see that δµ1 becomes imaginary and hence
we have an instability for

ξ > |∆µ| (145)

whereas if both modes are positive or both negative, there
is no instability. It is here that we see why the difference
resonance is always stable, whereas the sum, integer and
half-integer resonances can have instabilities. In the case
of the difference resonance, the positive x mode is de-
generate with the positive z mode and likewise for the
negative modes. For the sum resonance, the positive x
mode is degenerate with the negative z mode and the
negative x mode degenerate with the positive z mode.
We can also understand the instability of the integer and
half-integer resonances. In the case of the x integer and
half-integer resonances, the positive x mode is degener-
ate with the negative x mode, whereas for the z integer
and half-integer resonances, the positive and negative z
modes are degenerate. So, the difference resonance has
degenerate modes of the same sign and hence stability,
while the sum, integer and half-integer resonances have
degenerate modes of opposite signs and hence the possi-
bility of instability.

Next, consider the eigenvectors of M. These can be
written as(

cjj0
cjk0

)
=

(
rjj−rkk

2rkj

[
1 +

√
1 + 4rjkrkj

(rjj−rkk)2

]
1

)
,

(
ckj0
ckk0

)
=

(
rjj−rkk

2rkj

[
1−

√
1 + 4rjkrkj

(rjj−rkk)2

]
1

)
. (146)

These eigenvectors have yet to be normalized. All of
the quantities here fit nicely into the definitions we have
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already made except for the rkj in the denominator. We
know that it has an absolute value of ξ

2 , but it also has
an additional phase. Let us thus define a phase φ by

rjk =
ξ

2
eiφ, (147)

or

φ = arg(rjk), (148)

where arg() means taking the angle in the complex plane
with φ ∈ [−π, π]. We use (130) to relate rjk to rkj , noting
that we get an additional minus sign when j and k have
the same sign. The eigenvectors look different depending
on whether the modes have the same or different signs.
When both modes have the same sign, after normaliza-
tion, we can express the eigenvectors as

ṽj0 = cos
θ

2
vj0 + ie−iφ sin

θ

2
vk0,

ṽk0 = ieiφ sin
θ

2
vj0 + cos

θ

2
vk0, (149)

where

tan θ =
ξ

∆µ
. (150)

When the modes have opposite signs and supposing that
j is the positive mode, we find the normalized eigenvec-
tors to be

ṽj0 = cosh
θ

2
vj0 − ie−iφ sinh

θ

2
vk0,

ṽk0 = ieiφ sinh
θ

2
vj0 + cosh

θ

2
vk0, (151)

where

tanh θ =
ξ

∆µ
. (152)

We have normalized these eigenvectors such that

ṽj0ṽk0 = δjk. (153)

The overall phases are chosen so that for θ = 0, ṽj0 = vj0
and ṽk0 = vk0. Note also that for this choice of overall
phase, for the cases when k = −j, i.e. the integer or
half integer resonance, the condition that ṽj0 = iṽ∗k0 is
satisfied.

C. Cases of Resonances

We now consider the specific cases for values of j and
k. We will first consider the integer and half integer reso-
nances and then the sum and difference resonances. The
integer and half integer resonances involve a single pair
of degenerate eigenvalues: for the integer resonance, an
eigenvalue pair approaches the positive real axis while
for the half integer resonance, a pair approaches the neg-
ative real axis. In the cases of the sum and difference
resonances, both eigenvalue pairs become degenerate.

1. Integer/Half Integer Resonance

The integer/half integer resonances are covered by the
cases where (j, k) equals (1,−1) or (2,−2). Let us con-
sider the case (j, k) = (2,−2). This is the case of an
integer or half-integer resonance for µz. For the integer
resonance, we have µz0 = µ−z0 = 0 and for the half-
integer resonance, we have µz0 = −µ−z0 = π. Here, the
perturbation matrix is(

M22 M2−2

M−22 M−2−2

)
. (154)

The coupling parameter is given by

ξ = 2|r2−2|, (155)

The splitting parameter ∆µ is given by

∆µ = 2µz − 2ir22ξ (156)

for the integer resonance and

∆µ = 2(µz − π)− 2ir22ξ, (157)

for the half integer resonance. The average shift in the
phase advances of µ±z, µ̄, is given by

µ̄ = −i(r22ξ + r−2−2ξ) = 2Re(r22ξ) = 0, (158)

where we have used (130) and (131). This result is ex-
pected due to the fact that µ2 = −µ−2. In terms of
these quantities, then, we can express the perturbed x
eigen-phase advance to first order as

µ2 =
∆µ
2

√
1− ξ2

∆µ2
. (159)

for the integer resonance and

µ2 = π +
∆µ
2

√
1− ξ2

∆µ2
. (160)

for the half integer resonance. Note that these reduce
to µz when the perturbation is turned off. The coupling
angle is defined by

tanh θ =
ξ

∆µ
. (161)

so that θ ranges from −∞ to ∞ with the sign determined
by the sign of ∆µ.

In terms of this angle, we can express the eigen-phase
advance as

µ2 =
∆µ
2

sech(θ) (162)

for the integer resonance, with ∆µ given in (156), or

µ2 − π =
∆µ
2

sech(θ) (163)
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for the half integer resonance, with ∆µ given in (157).
Note that as θ gets large, the eigen-phase advance goes
to 0. At the instability, θ passes through infinity and µ2

becomes complex.
Finally, the relative phase for the eigenvectors is given

by

φ = arg(r2−2) (164)

for both the integer and half-integer resonance. Eq. (151)
then gives the eigenvectors in terms of these quantities
as

ṽ2 = cosh
θ

2
vz − ie−iφ sinh

θ

2
v−z

ṽ−2 = ieiφ sinh
θ

2
vz + cosh

θ

2
v−z (165)

We can write these explicitly as

v2 =
1√
2


√
βz[cosh( θ2 )− e−iφ sinh( θ2 )]

1
βz

[(i− αz) cosh( θ2 ) + (i+ αz)e−iφ sinh( θ2 )]
0
0


(166)

and v−2 = −iv∗2 . Note that only the 2-D z phase space
components of the eigenvectors get mixed together by the
perturbation. Further, only this subspace of the pertur-
bation matrix matrix enters into the coupling angle and
phase, as is evident in (154). Thus, this is a fully 2-D
calculation. One might wonder what happened to the
coupling, which is a 4-D phenomena. It turns out that
we have in fact missed the coupling, and that to include
it appropriately, we need to go to second order perturba-
tion theory. We find that the eigenvectors are still given
by (165), but now the expressions for the coupling angle
and phase includes the full 4-D coupling perturbation
matrix. We discuss this further in Section E.

For the case of the µx integer and half-integer reso-
nances, the perturbation matrix is(

M11 M1−1

M−11 M−1−1

)
, (167)

and the preceding results are repeated with 2 and z re-
placed by 1 and x.

2. Sum Resonance

Next we consider the sum resonance where we have
the degeneracies (j, k) = (1,−2) and (j, k) = (−1, 2).
Note that both of these degeneracies must occur together
because of symplectity of M . The perturbation matrices
are(

M11 M1−2

M−21 M−2−2

)
,

(
M−1−1 M−12

M2−1 M22

)
. (168)

We find a single coupling parameter

ξ = 2|r1−2|. (169)

∆µ is given by

∆µ = µx + µz − i(r11ξ − r−2−2ξ), (170)

The coupling angle is now defined by

tanh θ =
ξ

∆µ
. (171)

Next, µ̄ is given by

µ̄ = −i(r11ξ + r−2−2ξ). (172)

The eigen-phase advances are

µ1 = µ+ µ̄+
∆µ
2

sech(θ),

µ2 = −µ−2 = −µ− µ̄+
∆µ
2

sech(θ). (173)

The phase for the eigenvectors is given by

φ = arg(r1−2). (174)

The eigenvectors are then given in terms of these quan-
tities as

ṽ1 = cosh
θ

2
vx − ie−iφ sinh

θ

2
v−z

ṽ−2 = ieiφ sinh
θ

2
vx + cosh

θ

2
v−z (175)

The other two eigenvectors are given by v−1 = −iv∗1 and
v2 = −iv∗−2.

3. Difference Resonance

For the difference resonance, we have the degeneracies
(1, 2) and (−1,−2). The perturbation matrices are(

M11 M12

M21 M22

)
,

(
M−1−1 M−1−2

M−2−1 M−2−2

)
. (176)

We find a single coupling parameter

ξ = 2|r12|. (177)

∆µ is given by

∆µ = µx − µz − i(r11 − r22). (178)

The coupling angle is then given by

tan θ =
ξ

∆µ
(179)

Here θ can range from −π/4 to π/4, again with ∆µ de-
termining the sign. The eigen-phase advances are

µ1 = µ+ µ̄+
∆µ
2

√
1 +

ξ2

∆µ2
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µ2 = µ+ µ̄− ∆µ
2

√
1 +

ξ2

∆µ2
. (180)

In terms of the coupling angle, we can express these as

µ1 = µ+ µ̄+
∆µ
2

sec(θ)

µ2 = µ+ µ̄− ∆µ
2

sec(θ). (181)

The phase for the eigenvectors is given by

φ = arg(r12). (182)

We can now construct the eigenvectors from (149)

ṽ1 = cos
θ

2
vx + ie−iφ sin

θ

2
vz,

ṽ2 = ieiφ sin
θ

2
vx + cos

θ

2
vz. (183)

The other two eigenvectors are v−1 = −iv∗1 and v−2 =
−iv∗2 .

The results for ξ, ∆µ, φ, and µ̄ for each of these reso-
nances are summarized in the first six rows of Table I.

D. Special Case of an Integer/Half-Integer
Resonance Caused by Coupling

We have seen that there is a subtlety related to integer
and half-integer resonances. One can see that the “true
x-z coupling” from r12 or r1−2 did not enter into the re-
sults. In fact, the integer/half integer results we have
derived follow from a strictly 2-D phase space analysis,
reproducing results already contained in [4]. However,
we are also interested in the situation where the pertur-
bation is strictly a coupling perturbation, i.e., M1ξ only
has elements in the two off diagonal blocks. This will be
the case for the perturbation due to a crab cavity when
there is no dispersion at the cavity. We can then ask
whether this coupling perturbation can cause an integer
or half-integer resonance if it is strong enough. Clearly
our first order perturbation theory is insufficient to an-
swer this question, and we thus consider 2nd order de-
generate perturbation theory. We do this in Appendix B,
providing an alternative derivation and further details in
Appendix D. The result is that we can use the same re-
sults as above for the integer or half-integer resonance,
except that we use as the perturbation matrix (consider
the case when the resonance occurs in the z-dimension,
i.e. µz is close to 0 or π)

M12M21
λ20−λ10

M1−2M21
λ20−λ10

+M−12M2−1
λ20−λ−10

+M−1−2M2−1
λ20−λ−10

+M22 +M2−2

M12M−21
λ20−λ10

M1−2M−21
λ20−λ10

+M−12M−2−1
λ20−λ−10

+M−1−2M−2−1
λ20−λ−10

+M−22 +M−2−2


. (184)

We note that we have here a mixture of first and second
order quantities. Neglecting the second order quantities
reduces this to Eq.(167).

For the case of the integer z resonance, this matrix
simplifies to

|r12|2
1−e−iµx −

|r−12|2
1−eiµx

+r22
ir21r1−2 cot(µx

2 ) + r2−2

−ir∗21r∗1−2 cot(µx

2 ) + r−22

|r12|2
1−eiµx −

|r−12|2
1−e−iµx

+r−2−2


(185)

where the rjk here are really rjkξ, the matrix elements
due to just the coupling perturbation. The perturbed
eigenvalues and eigenvectors are now given by the eigen-
values and eigenvectors of this matrix. We can again
express them in terms of a coupling parameter, splitting
parameter and phase. The coupling parameter and phase
are defined by

ξeiφ =
1
2
[r2−2 + ir21r1−2 cot(

µx
2

)] (186)

which reduce to (155) and (164) if we ignore the second
order term.

The splitting parameter is given by

∆µ = 2µz − 2ir22ξ − (|r12|2 + |r−12|2) cot(
µx
2

) (187)

The results for the other integer and half integer reso-
nance are summarized in the last four rows of Table I. In
terms of ξ and ∆µ, we can again define a coupling angle

tanh θ =
ξ

∆µ
(188)

The eigen-phase advance is now given by (162). It is
useful, however, to write out the expression for µ2 more
explicitly. Let us consider the case in which the perturba-
tion is purely a coupling perturbation (r22ξ = r2−2ξ = 0)
and in which |r12| = |r1−2| 13. We then find

µ2
2 =µ2

z −
1
2
µzξ

2
± cot(

µx
2

) (189)

where ξ± = 2|r12| = 2|r1−2| is the coupling parameter for
the sum or difference resonances, which we have assumed
to be equal. We can now see that µ2 becomes unstable
when

1
2
ξ2± cot(

µx
2

) > µz (190)

Applying a similar analysis, and under the same condi-
tions, we find an instability near the half integer z reso-
nance when

1
2
ξ2± tan(

µx
2

) < π − µz (191)

13 See Appendix C for more on this condition.
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reso. condition ∆µ (mod 2π) ξ φ µ̄

sum µx+µz=2πn µx+µz−i(r11−r−2−2) 2|r1−2| arg(r1−2) −i(r11 + r−2−2)

diff. µx−µz=2πn µx−µz−i(r11 − r22) 2|r12| arg(r12) −i(r11 + r22)

int (x) µx = 2πn 2µx − 2ir11 2|r1−1| arg(r1−1) 0

int (z) µz = 2πn 2µz − 2ir22 2|r2−2| arg(r2−2) 0
1
2
-int(x) µx=π(2n+1) 2(µx−π)−2ir11 2|r1−1| arg(r1−1) 0

1
2
-int(z) µz=π(2n+1) 2(µz−π)−2ir22 2|r2−2| arg(r2−2) 0

cp. int (x) µx = 2πn 2µx − 2ir11 2|r1−1 + ir2−1r12 cot(µz
2

)| arg(r1−1 + ir2−1r12 cot(µz
2

)) 0

−(|r12|2+|r−12|2) cot(µz
2

)

cp. int (z) µz = 2πn 2µz − 2ir22 2|r2−2 + ir1−2r21 cot(µx
2

)| arg(r2−2 + ir1−2r21 cot(µx
2

)) 0

−(|r12|2 + |r−12|2) cot(µx
2

)

cp. 1
2
-int(x) µx=π(2n+1) 2(µx−π)−2ir11 2|r1−1 − ir2−1r12 tan(µz

2
)| arg(r1−1 − ir1−2r21 tan(µz

2
)) 0

+(|r12|2 + |r−12|2) tan(µz
2

)

cp. 1
2
-int(z) µz=π(2n+1) 2(µz−π)−2ir22 2|r2−2 − ir1−2r21 tan(µx

2
)| arg(r2−2 − ir1−2r21 tan(µx

2
)) 0

+(|r12|2 + |r−12|2) tan(µx
2

)

TABLE I: Linear resonances of a synchrobetatron coupled storage ring. For each of the linear resonances, we give general
expressions for the quantities ∆µ, ξ, φ, and µ̄. The quantities rjk here are rjkξ, i.e. the part of rjk coming from the coupling
perturbation Pξ. We have left off the subscript ξ for convenience. The matrix elements rjkµ coming from the difference from
resonance are included explicitly in the ∆µ and involved µx and µz. The resonances with the abbreviation “cp.” refer to the
full 2nd order calculation for the coupling-induced integer and half integer resonances (see Appendix D).

The results for the x integer and half integer resonances
can be found by interchance of x and z. Instabilities
occur when

1
2
ξ2± cot(

µz
2

) > µx (192)

or

1
2
ξ2± tan(

µz
2

) < π − µx (193)

The general expressions for µ1 and µ2 are given in
Eqs.(376) and (377), but much of the basic physics can be
seen by examining these results. Note how the coupling
parameters for the sum or difference resonance enter into
all of these expressions along with the value of the other
phase advance not going unstable. Since µz is negative
(above transition), we see that for the z integer reso-
nance, there can only be an instability when νx > 1

2 . For
the crab cavity, this is indeed an important resonance to
consider because νx > 1

2 is a typical operation condition
and for realistic parameters, a storage ring can approach
the instability region. For dispersion at an RF cavity, we
will find that because of the form of ξ± (in particular,
its dependence on the synchrotron tune), (190) is never
satisfied and there is no such integer resonance.

E. Evolution of Eigenvectors Around Ring

We have given expressions for the eigenvectors near
each of the resonances, computed at the position of the
perturbation. In order to find global quantities like equi-
librium invariants, we will need to know how the eigen-

vectors evolve around the ring. We can determine this
using Eq.(98).

Let us consider the integer or half-integer resonance.
Take mode 2 for example. We have seen that we can
write the perturbed eigenvector in the form

v2(s1) = cosh(
θ

2
)vz(s1)− ie−iφ sinh(

θ

2
)v−z(s1). (194)

Applying T12β to this vector we find

v2(s2) = eiψz12 cosh(
θ

2
)vz(s2)

−ie−i(φ+ψz12) sinh(
θ

2
)v−z(s2). (195)

We have used the fact that ψ−z12 = −ψz12. The overall
phase does not enter into any physical quantities, so we
can multiply by e−iψz12 and we find that the new eigen-
vector is that of the old, but with the lattice functions
advanced to the new values and the phase φ(s2) related
to φ(s1) by

φ(s2) = φ(s1) + 2ψz12. (196)

Likewise, for the x integer/half integer resonance, the
phase in the definition of v1 is

φ(s2) = φ(s1) + 2ψx12. (197)

For the difference resonance, we apply the same argu-
ment and find

φ(s2) = φ(s1) + ψx12 − ψz12. (198)
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For the sum resonance, we find

φ(s2) = φ(s1) + ψx12 + ψz12. (199)

The phase advances ψx12 and ψz12 are given in Eqs.(93)
and (96).

In the following section we will use these near reso-
nance eigenvectors we have derived to construct the local
damping and diffusion coefficients which are then inte-
grated around the ring. We have computed the eigenvec-
tors at an arbitrary position s2 by first computing them
at the position of the perturbation s1 and then trans-
forming them to s2 by applying T12β . For consistency,
we would like to see that we get the same result if we
do the perturbation theory directly on the one-turn map
at s2. Writing M = (1 + P )M0 and transforming from
position 1 to position 2 we find

(1 + P (s2))M0(s2) = M(s2) (200)
= T12βM(s1)T−1

12β

= (1 + T12βP (s1)T−1
12β)M0(s2)

So that

P (s2) = T12βP (s1)T−1
12β (201)

Now, applying this equation along with (98) to the def-
inition of rmn, (128), and using the symplectic property
of T12β , we find that rmn transforms as

rmn(s2) = ei(ψn12−ψm12)rmn(s1) (202)

i.e. they are invariant except for an over phase change.
From (202) we can see that rjj(s2) = rjj(s1) and so all
of the ∆µ are global quantities. We can also show that
the quantities ξ are global quantities. For the sum, dif-
ference and simple integer and half-integer resonances,
its obvious because of the absolute value. For the cou-
pling caused integer and half-integer and half integer res-
onance, one must show that the two terms transform with
the same phase. For example, using (202) several times
on ξ for the x integer resonance (found in line 7 of table
I), we can show

ξ(s2) = |e−2iψx12 | ξ(s1)
= ξ(s1) (203)

and likewise for all the other ξ’s. Thus, for each reso-
nance, ξ and ∆µ are global quantities, independent of
where they are calculated, and hence so is the coupling
angle θ. We can also use Eq. (202) to show that the ex-
pressions derived for φ(s) give the same results whether
one first computes φ(s1) and then uses T12β to advance
the eigenvectors to get φ(s2), as we have done above, or
if one first advances the rmn to s2 and then computes
the phase. The argument for the coupling caused integer
and half-integer resonances is the same as that used in
(203). Finally, we note that near each resonance, the net
change in φ is a multiple of 2π to lowest order, and thus,

modulo 2π, φ is a well-defined, periodic function in the
ring.

To summarize, the coupling angle θ is a global quan-
tity independent of position in the ring, whereas φ is
a phase that changes locally, but is periodic around the
ring, modulo 2π. The formulas for φ given in Table I refer
to the value at the position of the perturbation. We will
use the eigenvectors to find the local invariants, which
will depend on φ through cosφ and sinφ. To advance
these quantities to another position, φ must be advanced
using Eqs. (196)-(199).

III. EXAMPLES

In the previous section we formulated a perturbation
theory to find the eigenvectors and eigenvalues of the
one turn map near a linear resonance in the presence
of a coupling perturbation. In this section we give two
examples of synchrobetatron coupling perturbations and
apply the foregoing results to these two cases. Our two
examples are dispersion at an RF acceleration cavity and
the addition of a crab cavity.

In these two examples, the perturbation occurs at a
single location. The procedure for a given example is as
follows. First we find the perturbation matrix Pξ. From
this quantity, we derive the rjkξ. Out of these quantities,
we construct ξ, ∆µ, φ, and µ̄ for each resonance. For the
integer and half-integer resonances, we compute the full
2nd order coupled quantities given in the last four rows
of Table I. However, we keep terms to lowest order in
the various small quantities such as µs, the crab cavity
strength ξc or the dispersion at the RF cavity. In some
cases, we will find that the naive first order calculation
gives the same results; however, in others, the full calcu-
lation was required. In the case of the crab cavity, we do
not assume that the dispersion at the crab cavity is par-
ticularly small, since it may be of some interest to know
what the effect is of placing a crab cavity at an arbitrary
position in the ring.

From ξ, ∆µ, and µ̄, we find the tune shift and the cou-
pling angle θ. From the tune shift, we can see whether or
not an instability occurs. Out of θ and φ, we construct
the global damping and diffusion coefficients, dropping
middle terms in all cases except for the µz = 0 inte-
ger resonance, as discussed previously. Once the equi-
librium invariants are calculated, one could then use de-
tailed knowledge of the lattice functions to find the beam
distribution at a given position, using formulae for the
beam distribution moments, Σ.

For each resonance, we give explicit expressions for
ξ, ∆µ, φ, and µ̄, only constructing the other quantities
when instructive.
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A. Dispersion at an RF Cavity

As our first example, we consider coupling due to dis-
persion at the RF cavity. The uncoupled longitudinal
one turn map Mz was given by (88). This was derived in
physical coordinates. If there is dispersion at the cavity,
we must transform the map into betatron coordinates
and (81) is no longer block diagonal. The cavity map is
transformed with BTcavB−1. We would like to pull out
the part that causes the synchrotron oscillations and con-
sider the extra part as the perturbation. To do this, we
write

BTcavB−1 = (1 + PRF)Tcav, (204)

where Tcav was given in (85), except here we work in the
4-D space, so include a 2×2 identity matrix in the upper
left block and 0’s in the off-diagonal blocks. Using this
prescription, we derive

PRF =
r

a

 ηη′ −η2 −η 0
η′2 −ηη′ −η′ 0
0 0 0 0
−η′ η 0 0

 . (205)

From this matrix we construct the rjkξ:

r11 = −i r
2a
Hx

r1−1 =
r

2aβx
[(i+ αx)η + βxη

′]2

r12 = i
r

2a

√
βz
βx

[(i+ αx)η + βxη
′]

r1−2 = − r

2a

√
βz
βx

[(i+ αx)η + βxη
′]

r22 = r2−2 = 0 (206)

where Hx is defined in Eq. (104). From these we find
ξ, ∆µ, φ, and µ̄ for each resonance out of which we can
construct the perturbed eigenvalues and eigenvectors.

1. Sum/Difference Resonance

Examining the perturbation (205) we see that the de-
terminant of the off diagonal blocks is zero. From Ap-
pendix C, this tells us that the coupling parameters for
the sum and difference resonances will be equal. Com-
puting them, we find

ξ± =
r

a

√
Hxβz (207)

where the ± indicates both the sum and difference reso-
nance. If we expand this to lowest order in µz, we find

ξ± =

√
Hx

a
|µz|3/2. (208)

Note that this goes to 0 at as µz goes to zero. This
means that we expect the sum and difference resonances
to become weaker for smaller synchrotron tune. For the
splitting parameter we find

∆µ = µx + µz +
r

a
Hx (209)

for the sum resonance and

∆µ = µx − µz +
r

a
Hx (210)

for the difference resonance. The quantitiy r is approx-
imately µ2

z, so that term can typically be ignored. For
both sum and difference resonance, the average shift of
the eigen-phase advance is

µ̄ = −µ2
z

Hx

2a
(211)

The phase for the sum resonance is

φ = arg[−(i+ αx)η + βxη
′]. (212)

while for the difference resonance

φ = arg[i(i+ αx)η + βxη
′]. (213)

To lowest order in µz, the instability condition for the
sum resonance is√

Hx

a
|µz|

3
2 > |µx + µz| . (214)

2. Integer/Half-integer Resonance

We now consider the integer and half integer reso-
nances. Near the integer x resonance, we find that the
coupling parameter is proportional to µ4

z. There is still
in fact an instability for νx near an integer, but it is ex-
tremely weak, with a width of order Hx

a µ
4
z. We do not

consider this resonance further.
For the half integer resonance in µx, we find

ξ = µ2
z

Hx

a
(215)

∆µ = 2(µx − π)− Hx

a
µ2
z (216)

φ = 2arg(Gx + iη) (217)

where we define

Gx = η′βx + ηαx. (218)

We find that there is an instability when

Hx

a
µ2
z > µx − π (219)

This says that there is an instability for µx > π with
a width of Hx

a µ
2
z. Note that these results are identical
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to those we would obtain by using the 5th row in Table
I (first order calculation). The other terms are higher
order in µz and have been ignored.

For the integer resonance in µz (µz near 0, as is typi-
cally the case), we get

ξ =
∣∣∣∣µ3
zHx

2a
cot

µx
2

∣∣∣∣ (220)

∆µ = 2µz −
|µz|3Hx

2a
cot(

µx
2

) (221)

φ = 0. (222)

Here we find that µ2 is given by

µ2 = µz

√
1 + µ2

z

Hx

2a
cot(

µx
2

). (223)

From this expression, we can see that there is no insta-
bility for the µz integer resonance. The quantity inside
the square root could become negative only in two cases.
One case is where the perturbation PRF is not small and
hence perturbation theory no longer applies. The other
case is if µx is near 0 or 2π in which case we are in the re-
gion of overlap between two different resonances in which
we may need to consider the other resonances. Numeri-
cal calculation confirms that there is in fact no instability
for small synchrotron tune, regardless of the values of the
other parameters.

B. Crab Cavity

As our second example, we consider a single crab
cavity[20]. The map for the crab cavity is given by

Tcrab =

 1 0 0 0
0 1 ξc 0
0 0 1 0
ξc 0 0 1

 , (224)

where ξc gives the strength of the cavity. In the case
where the crab cavity is used to correct for a half crossing
angle Φ at the interaction point of a collider [3], assuming
no resonance, ξc is related to that crossing angle by

ξc =


2Φ sin(πνx)√

βkβ∗x
single crab cavity

Φ√
βkβ∗x

crab cavity pair
(225)

where βk is the beta function at the crab cavity and β∗x
is the beta function at the interaction point. For a pair
of crab cavities, one positions them symmetrically about
the interaction point such that there is a total of a π
phase shift between them and the second cancels out the
effect of the first in the rest of the ring. The expression
given here for a single crab cavity comes from comput-
ing the angle at the IP due to a change in closed orbit,
assuming no resonance. Near a resonance, this formula
needs to be reconsidered. Indeed, it is the purpose of this

paper to determine the effect on beam dynamics due to
coupling near a resonance. We include this formula be-
cause in practice, the value of ξc may be chosen assuming
the machine is away from all resonances.

We here consider the case of a single crab cavity. Sup-
pose we insert a crab cavity in the ring at position s2.
The RF cavity is assumed to be located at sc so that the
partial momentum compaction factor as given in (87) in-
volves integration from sc to s2.

Transforming (224) into betatron coordinates, we get
for the perturbation

Pcrab = ξc

 −η 0 0 −η2

−2η′ η 1 −ηη′
ηη′ −η2 −η 0
1 0 0 η

 . (226)

Note that the perturbation is proportional to the crab
cavity strength ξc. Note also that η here now refers to
the dispersion at the crab cavity while we assume the
dispersion at the RF acceleration cavity to vanish.

First we compute the rjkξ:

r11ξ = iξcGx
r1−1ξ = −ξc((i+ αx)η + βxη

′)

r12ξ = −iξc
(i+αx)(−i+αz)η2+βx(βz+(−i+αz)ηη′)

2
√
βxβz

r1−2ξ = ξc
(i+ αx)(i+ αz)η2 + βx(βz + (i+ αz)ηη′)

2
√
βxβz

r22ξ = iξcηαz

r2−2ξ = ξc(−i+ αz)η (227)

The rest of the rjk can be gotten using (130) and (131).
Next, we construct ξ, ∆µ, φ and µ̄ for each of the

resonances and from these compute θ and µ1 and µ2.

1. Sum/Difference Resonance

In this case, examining the perturbation matrix (226)
we find that the determinant of the off-diagonal subma-
trices are not zero. We thus expect a difference between
the coupling parameters for the sum and difference reso-
nances. Indeed, we find

ξ± = ξc

√
aβx
µs

∓ 2η2 (228)

Note that ξ2− − ξ2+ = 4ξ2cη
2 which is consistent with Eq.

(353) from Appendix C. We see that in the case that
the dispersion at the crab cavity is zero, the coupling
parameter is inversely proportional to the square root of
the synchrotron tune. Thus, we expect the sum and dif-
ference resonances to get stronger for small synchrotron
tune. The splitting parameter is given by

∆µ = µx + µz + ξc(Gx + ηαz) (229)
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TABLE II: Resonances for dispersive RF cavity

reso. condition ∆µ (mod 2π) ξ φ µ̄

sum µx+µz=2πn µx+µz+
r
a
Hx

q
Hx
a
|µz|

3
2 arg(−(i + αx)η + βxη′) −µ2

z
Hx
2a

dif. µx−µz=2πn µx−µz+
r
a
Hx

q
Hx
a
|µz|

3
2 arg(i(i + αx)η + βxη′) −µ2

z
Hx
2a

int (x) µx = 2πn 2µx +O(Hx
a

µ4
z) O(Hx

a
µ4

z) 2arg(Gx + iη) 0

int (z) µz = 2πn 2µz − µzHx
2a

cot(µx
2

) µsHx
2a

| cot(µx
2

)| 0 0
1
2
-int(x) µx=π(2n+1) 2(µx−π)− Hx

a
µ2

z µ2
z
Hx
a

2arg(Gx + iη) 0

for the sum resonance, and

∆µ = µx − µz + ξc(Gx − ηαz) (230)

for the difference resonance. Gx was defined in Eq. (218).
The phase φ is given by

φ = arg
[
aβx
µs

− η2 + iηGx
]

(231)

for the sum resonance and

φ = arg
[
−ηGx − i(

aβ

µs
− η2)

]
(232)

for the difference resonance. For the case of no dispersion
at the crab cavity, the difference resonance has φ = −π

2
and the sum resonance has φ = 0. The average shift in
the phase advance, µ̄ is given by

µ̄ = ξc(Gx ± ηαz) (233)

with the plus sign for the difference resonance and the
minus sign for the sum resonance.

For the sum resonance, we find an instability for

ξc

√
aβx
µs

− 2η2 > µx + µz + ξc(Gx + ηαz) (234)

2. Integer/Half-integer Resonance

For the x integer resonance the coupling parameter is

ξ2 = 4βxHxξ
2
c +

4aβxGx
µ2
s

ξ3c +
a2β2

x

µ4
s

ξ4c , (235)

The splitting parameter is

∆µ = 2µx + 2ξcG + ξ2c
aβx
µ2
s

(236)

and the phase, to lowest order in µz and ξc is

φ = π (237)

Out of ξ and ∆µ, we construct

µ2
1 = (µx + ξcGx)2 + (µx + ξcGx)

aβx
µ2
s

ξ2c

−aβxGx
µ2
s

ξ3c − βxHxξ
2
c (238)

From this, we can see that for µx < 0 (or close to 2π) and
for the case of no dispersion, we can have an instability
if

aβx
µ2
s

ξ2c > |µx| (µx < 0) (239)

At larger µz and with non-negligable dispersion at the
crab cavity and for the case Gx = 0, we find an instability
for

ηξc > |µx| (240)

for both positive and negative µx.
For the half integer resonance in x, we find a coupling

parameter

ξ2 = 4βxHxξ
2
c − aβxGxξ3c +

1
16
a2β2

xξ
4
c , (241)

The splitting parameter is

∆µ = 2(µx − π) + 2ξcGx −
1
4
aβxξ

2
c (242)

and the phase is

φ = arg
(

1
8
aβxξ

2
c − Gxξc − iη

)
(243)

which vanishes when there is no dispersion at the crab
cavity. Computing ∆µ2− ξ2 and noting the cancellation
of terms, we find

(µ1−π)2 = [(µx−π)+ξcGx]2 − [(µx−π)+2ξcGx]
aβx
4
ξ2c

−βxHxξ
2
c +

1
4
aβxGxξ3c (244)

For the case of Gx = 0, we can have an instability for

(µx − π)
aβx
4
ξ2c + η2ξ2c > (µx − π)2 (245)

Next for the integer resonance in z, we find

ξ2 = 4η2ξ2c +
a2β2

x cot2(µx

2 )
4µ2

s

ξ4c (246)



23

∆µ = 2µz −
1
2
aβx
µs

cot(
µx
2

)ξ2c (247)

and

φ = arg
[
aβx cot(µx

2 )
4µs

ξ2c − iηξc

]
(248)

For the case where η = 0, the phase φ is 0 for µx > π
and π for µx < π. Computing ∆µ2 − ξ2, we find

µ2
2 = µ2

s +
aβx
4

cot(
µx
2

)ξ2c − η2ξ2c (249)

From this, we can see that there is an instability if

aβx
4

cot(
µx
2

)ξ2c − η2ξ2c < µ2
s (250)

When η = 0, this requires µx > π, i.e. the horizontal
betatron tune is above a half-integer. Increasing η moves
this instability to values of µx less than π.

Because in practice the synchrotron phase will not be
near π, we do not consider the νz half-integer resonance.

We summarize the results for ξ, ∆µ, and φ for each of
the resonances in Table III.

TABLE III: Resonances for Crab Cavity

reso. condition ∆µ (mod 2π) ξ2 φ µ̄

sum µx+µz=2πn µx + µz + ξc(Gx + ηαz) ξ2
c (aβx

µs
− 2η2) arg(aβx

µs
− η2 + iηGx) ξc(Gx − ηαz)

diff. µx−µz=2πn µx − µz + ξc(Gx − ηαz) ξ2
c (aβx

µs
+ 2η2) arg(−ηGx − i(aβ

µs
− η2)) ξc(Gx + ηαz)

int (x) µx = 2πn 2µx + 2ξcGx + ξ2
c

aβx

µ2
s

4βxHxξ2
c + 4aβxGx

µ2
s

ξ3
c +

a2β2
x

µ4
s

ξ4
c π 0

int (z) µz = 2πn 2µz − 1
2

aβx
µs

cot(µx
2

)ξ2
c 4η2ξ2

c +
a2β2

x cot2( µx
2 )

4µ2
s

ξ4
c arg(

aβx cot( µx
2 )

4µs
ξ2

c − iηξc) 0

1
2
-int(x) µx=π(2n+1) 2(µx−π)+2ξcGx− 1

4
aβxξ2

c 4βxHxξ2
c−aβxGxξ3

c + 1
16

a2β2
xξ4

c arg( 1
8
aβxξ2

c − Gxξc − iη) 0

IV. PERTURBATIVE EXPRESSIONS FOR
GLOBAL DAMPING AND DIFFUSION

We have given perturbative expressions for the eigen-
vectors of the one-turn map M near all of the linear
resonances. As discussed at the end of Section I C, we
use these eigenvectors to find the local damping and dif-
fusion coefficients which can then be integrated to give
the global values which determine the equilibrium invari-
ants. In this section we apply our perturbative expres-
sions for the eigenvectors to find perturbative expressions
for the invariants, damping and diffusion coefficients, and
ultimately equilibrium emittances and beam second mo-
ments. We work in betatron coordinates, so for the lo-
cal damping and diffusion matrices, we use Dβ and Bβ ,
which were defined in Eqs.(69) and (79).

A. Invariants

With the addition of coupling near a linear resonance,
the invariants Gx and Gz become perturbed to G1 and
G2. We compute these approximately by using the lowest
order perturbed eigenvectors ṽj0 derived in Section II.

1. Sum/Difference resonance

First consider the sum [Eqs.(151), (152), (169), and
(170)] and difference resonances [Eqs.(149), (150), (177),
and (178)]. We find

G1 = cosh2(
θ

2
)Gx + sinh2(

θ

2
)Gz + sinh(θ) G+

c ,

G2 = sinh2(
θ

2
)Gx + cosh2(

θ

2
)Gz + sinh(θ) G+

c ,

for the sum resonance, and

G1 = cos2(
θ

2
)Gx + sin2(

θ

2
)Gz − sin(θ)G−c , (251)

G2 = sin2(
θ

2
)Gx + cos2(

θ

2
)Gz + sin(θ)G−c , (252)

for the difference resonance. We can easily see that the
local invariant sum rules (60) are satisfied. Note that
in addition to mixing the uncoupled invariants Gx and
Gz, an additional term, G±c is picked up. This middle
term can be related to the additional invariants that exist
exactly on resonance (see [10]), which are mixed together
by the phase φ. These terms are given by

G+
c = −1

2
J(eiφv∗xv

T
−z + e−iφvxv

†
−z

+e−iφv∗−zv
T
x + eiφv−zv

†
x)J,

G−c = −1
2
J(eiφv∗xv

T
z + e−iφvxv

†
z
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+e−iφv∗zv
T
x + eiφvzv

†
x)J. (253)

Writing them out explicitly, we find

G±c =
(

02×2 Ḡ±c
Ḡ±c 02×2

)
, (254)

with these submatrices given by

Ḡ+
c =

1
2

 (−1+αxαz) cosφ+(αx+αz) sinφ√
βxβz

√
βz

βx
(αx cosφ+ sinφ)√

βx

βz
(αz cosφ+ sinφ)

√
βxβz cosφ

 , (255)

and

Ḡ−c =
1
2

− (αx−αz) cosφ+(1+αxαz) sinφ√
βxβz

√
βz

βx
(cosφ− αx sinφ)

−
√

βx

βz
(cosφ+ αz sinφ) −

√
βxβz sinφ

 . (256)

for the sum and difference resonances respectively. Note
that these additional coupling terms all contain a factor
of cosφ or sinφ. In the typical case, this term will oscil-
late many times around the ring. When used to construct
the global diffusion coefficient, this means that this term
will not contribute substantially. However, there are ex-
ceptions to this statement, and further, they are required
for computing the detailed local moment matrix Σ.

2. Integer/Half-integer Resonance

Now consider the integer and half-integer resonances.
The eigenvector is of the form (151). Consider the x
integer/half integer resonances. Then vj0 = vx and vk0 =
v−x. Constructing the invariant out of the eigenvector
gives

G1 = cosh θGx + sinh θGc, (257)

where here

Gc =


(−1+α2

x) cosφ+2αx sinφ
βx

αx cosφ+sinφ 0 0
αx cosφ+ sinφ βx cosφ 0 0

0 0 0 0
0 0 0 0

.
(258)

In these expressions, the coupling angle θ and phase φ are
the appropriate expression for the integer or half integer
resonance as the case may be. Note that we could also
obtain the additional coupling term Gc by setting βz =
βx and αz = αx in Eq.(255). Note that we only have two
terms in these expressions for the invariant, versus three
for the sum and difference resonances. This is because
the invariants corresponding to vx and v−x are identical.
For z we just replace all the x’s with z’s.

Note that for an integer or half-integer resonance, the
invariant remains non-zero only in the x or z on diagonal

block to the order we compute here. One could thus
interpret the new invariant as defining new β, α, and γ
rather than as a perturbed invariant. This allows us to
compare our results to Courant and Snyder [4]. If we
do this, we compare Eqs.(257) and (258) to Eq. (99) to
derive a perturbed beta function

β1 = βx(cosh θ + cosφ sinh θ), (259)

which reduces to βx when the coupling is turned off. The
value of φ varies around the ring via Eq. (197) from its
initial value as given in Table I. This is a well known
effect referred to as a beta-beat, the periodic oscillation
of the beta function resulting from a perturbation. Note
that the initial value will be different for the integer and
half-integer resonances. Also note that because cosh θ >
| sinh θ|, β1 will always be positive, although the range of
the oscillations becomes large as the instability (θ →∞)
is approached.

B. Diffusion Coefficients

From the invariants, we can find the local diffusion
coefficients by right-multiplying by the diffusion matrix
Dβ and taking the trace.

1. Sum/Difference Resonance

The results for the sum/difference resonance are

d+
1 = cosh2(

θ

2
)dx + sinh2(

θ

2
)dz + sinh(θ)d+

c ,

d+
2 = sinh2(

θ

2
)dx + cosh2(

θ

2
)dz + sinh(θ)d+

c ,

d−1 = cos2(
θ

2
)dx + sin2(

θ

2
)dz + sin(θ)d−c ,
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d−2 = sin2(
θ

2
)dx + cos2(

θ

2
)dz − sin(θ)d−c , (260)

with

d±c = Tr[G±c Dβ ]. (261)

To get the global diffusion coefficient d̄a, we must inte-
grate the local diffusion coefficients da around the ring.
For dx and dz this integration simply reproduces the
global uncoupled diffusion coefficients d̄x and d̄z. The
extra term, dc, which comes from the extra term in the in-
variants Gc, however, represents a new set of lattice func-
tions to be integrated. It would be substantial complica-
tion if this full integration were required since it would
require detailed knowledge of the lattice. Note however,
that as with Gc, all of the terms in dc are proportional to
cosφ or sinφ. As we transform the da around the ring, in
addition to the lattice functions βx,z and ηx,z evolving,
the phase φ will also evolve as was discussed in Section
II-F.

The net change in φ around the ring is µx−µz for the
sum resonance and µx + µz for the difference resonance.
We can write this is as

∆φ = 2πn+ [µx ∓ µz], (262)

where the square brackets represent taking a modulus of
2π. Near resonance this term is small. For synchrobe-
taron coupling, typically n is somewhat large, since νz is
close to zero and νx is typically much greater than 1. The
result of this argument is that the middle term in the lo-
cal diffusion coefficient dc will integrate to a small value
in the typical situation, especially so if we assume some
symmetry in the lattice.14 Thus, for our purposes here,
we ignore this extra term in our global expressions,15

d̄+
1 = cosh2(

θ

2
)d̄x + sinh2(

θ

2
)d̄z,

d̄+
2 = sinh2(

θ

2
)d̄x + cosh2(

θ

2
)d̄z,

d̄−1 = cos2(
θ

2
)d̄x + sin2(

θ

2
)d̄z,

d̄−2 = sin2(
θ

2
)d̄x + cos2(

θ

2
)d̄z.

14 In the case of x-y betatron coupling in which νx ≈ νy is possible,
this argument will need to be revised.

15 We note here that in case one wanted to compute these middle
terms exactly, then, cosφ and sinφ can be expanded in terms
of cosφ(s1), sinφ(s1) and cosine and sine of the phase advances
ψx12 and ψz12. We could then write out the expressions bc and
dc explicitly in terms of unperturbed lattice functions. Then, for
a given lattice, one could compute these integrals once and for
all, and not have to recompute different integrals, depending on
the form of the coupling, one would simply take different linear
combinations of these integrals depending on the value of φ(s1).

2. Integer/Half-integer Resonance

We now consider the diffusion coefficients for the in-
teger and half-integer resonances. For these resonances,
we find

dn2 = dz cosh θ + dc sinh θ, (263)

where

dc = Tr(Gnzc Dzz). (264)

with the results for x given by replacing z with x in these
expressions.

We must now integrate the local diffusion coefficient
around the ring to get the global diffusion coefficient. For
the case of x, applying the same argument as in the sum
and difference resonances, we find that the extra term
dc integrates to a small value and we disregard it. For
the longitudinal direction, however, there is no change in
φ around the ring, and thus we must keep dc, with its
initial value. Thus, for the global diffusion coefficients,
we take

d̄1 = cosh(θ)d̄x. (265)

It may also be useful to apply Eq. (162) or Eq. (163) for
the integer or half integer resonances to express in terms
of µ1 and ∆µ . This is for near the integer or half integer
x resonance and

d̄2 = (cosh θ + cosφ sinh θ)d̄z. (266)

near the integer z resonance. For the x resonances, the
d̄2 is not strongly effected, while for the z resonance, d̄1

is not strongly effect and we assume there is no change
in these quantities.

C. Local Damping Coefficients

Next we find the local damping coefficients. We do
this by constructing the matrix A = U−1BβU [Bβ is
defined in Eq.(79)] with U constructed from the per-
turbed eigenvectors for each resonance. From A we find
ba = Aaa +A−a−a.

1. Sum/Difference Resonance

The damping coefficients for the sum and difference
resonances are given by

b+1 = bxβ cosh2(
θ

2
)− bzβ sinh2(

θ

2
) + sinh(θ)b+c ,

b+2 = −bxβ sinh2(
θ

2
) + bzβ cosh2(

θ

2
)− sinh(θ)b+c ,

b−1 = bxβ cos2(
θ

2
) + bzβ sin2(

θ

2
) + sin(θ)b−c ,

b−2 = bxβ sin2(
θ

2
) + bzβ cos2(

θ

2
)− sin(θ)b−c , (267)
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with

bxβ = Tr[Bxx] = bx − ηbδx,

bzβ = Tr[Bzz] = bz + ηbδx, (268)

where

b+c =
1

2
√
βxβz

[(−(bx − bz + bδxη)((αx + αz)η + βxη
′)) cosφ

+((bx − bz)(−η + αxαzη + αzβxη
′) + bδx(βxβz + (1− αxαz)η2 − αzβxηη

′)) sinφ], (269)

b−c =
1

2
√
βxβz

[(bx − bz)((1 + αxαz)η + αzβxη
′)− bδx(−βxβz + η2 + αxαzη

2 + αzβxηη
′) cosφ

−(bx − bz − bδxη[((αx − αz)η + βxη
′] sinφ]. (270)

Again, as with the local diffusion coefficients, we find
an extra term in ba, in addition to the uncoupled damp-
ing coefficients bxβ and bzβ . Using the same argument as
for the diffusion coefficients, we find that this quantity
integrates to a small value and we will discard it in our
global expressions. In addition, note that b±c is propor-
tional to either 1/βz or bδx. For the case of synchrobeta-
tron coupling, both 1/βz and bδx are small, and so this
term is intrinsically small. The integration of bxβ and bzβ
give the global uncoupled damping decrements, χx and
χz. Thus, for our global coupled damping coefficients,
we take

χ+
1 = χx cosh2(

θ

2
)− χz sinh2(

θ

2
),

χ+
2 = −χx sinh2(

θ

2
) + χz cosh2(

θ

2
),

χ−1 = χx cos2(
θ

2
) + χz sin2(

θ

2
),

χ−2 = χx sin2(
θ

2
) + χz cos2(

θ

2
). (271)

The damping decrements for the sum resonance show
an interesting effect. One of χ1,2 will become negative
for a finite value of θ. Specifically, suppose that χz > χx
which is typically the case. Then χ1 vanishes when√

χz
χx

= coth(
θ

2
). (272)

For θ larger than this, χ1 becomes negative, and there
is an instability. This is analogous to the case where
the damping partition number D is greater than 1, in
which case, we can see from Eq.(108) that χx is likewise
negative, indicating an instability. We refer to this as an
“anti-damping instability” in this paper.

2. Integer/Half-integer Resonances

For the integer/half-integer resonance, we find that the
local damping coefficients are unchanged. This is clear

because the perturbation only changes the U matrix in
either the upper left or lower right 2×2 block, depending
on which resonance being considered. But this reduces
the problem to the 1-D case. Consider the νz integer or
half-integer resonance. The damping coefficient for mode
2 is given by

b2 = Tr(U−1
2 BzzU2) = Tr(Bzz) = bzβ , (273)

where U2 is the submatrix of U built out of ṽ20 and ṽ−20.
We have used the cyclic property of the trace. In other
words, the damping decrements are unchanged to lowest
order near the integer/half integer resonances.

D. Equilibrium Eigen-Emittances

We summarize the results for the diffusion and damp-
ing in Tables IV and V. The reader can verify that all
the quantities satisfy the sum rules discussed in Section
I D.

From the global quantities d̄1,2 and χ1,2, we find the
equilibrium average values of the invariants from Eq.(47).
We quote RMS eigen-emittances, which are 1/2 the value
of the average eigen-invariants.

For the sum resonance, we find

ε+1 =
cosh2 θ

2 d̄x + sinh2 θ
2 d̄z

4(cosh2 θ
2χx − sinh2 θ

2χz)
(274)

ε+2 =
sinh2 θ

2 d̄x + cosh2 θ
2 d̄z

4(− sinh2 θ
2χx + cosh2 θ

2χz)
(275)

while for the difference resonance, we find

ε−1 =
cos2 θ

2 d̄x + sin2 θ
2 d̄z

4(cos2 θ
2χx + sin2 θ

2χz)
(276)

ε−2 =
sin2 θ

2 d̄x + cos2 θ
2 d̄z

4(sin2 θ
2χx + cos2 θ

2χz)
(277)

Note that in the case where χx = χz, we find that

ε+1 = cosh2 θ

2
εx + sinh2 θ

2
εz (278)
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ε+2 = sinh2 θ

2
εx + cosh2 θ

2
εz (279)

for the sum resonance and

ε−1 = cos2
θ

2
εx + sin2 θ

2
εz (280)

ε−2 = sin2 θ

2
εx + cos2

θ

2
εz (281)

for the difference resonance. Thus, in this case, it makes
sense to talk about emittance coupling: the effect of the
coupling is simply to mix together the equilibrium emit-
tances. If we were talking about transverse x − y cou-
pling, χx = χz would indeed be approximately correct
in many situations and this gives a justification for using
that concept for betatron coupling. For the case here of
synchrobetatron coupling, typically χx ≈ χz/2, and thus
the concept of emittance coupling is not precise.

For the integer and half integer resonances, we saw
in Eq. (273) that the damping partition number is not
effected by the coupling to lowest order. The global dif-
fusion coefficient is affected. In fact it diverges at the
resonance. For the integer and half integer x resonances,
we find an emittance growth of

ε1
εx

=
d̄1

d̄x
= cosh θ (282)

with θ the appropriate coupling angle. εz is not strongly
affected, and we take ε2 = εz. As noted in Eq. (265),
one could also write this as

ε1
εx

=
∆µ
2µ1

(283)

for the integer resonance, or

ε1
εx

=
∆µ

2(µ1 − π)
(284)

for the half integer resonance.
Now, because µz is typically small, we only have an

integer resonance. As discussed, for this case, the cosφ
term doesn’t average away, and we are left with

ε2
εz

= cosh θ + cosφ sinh θ (285)

εx is not much affected here, and we take ε1 = εx. If
there were a half integer z resonance, or indeed, another
integer resonance where µz is near an integer other than
0, the second term in this equation would integrate to a
small value.

E. Sigma Matrices

In the previous subsection, we gave the expressions for
the equilibrium eigen-emittances near each of the reso-
nances. One may also wish to know the projected emit-
tances which are more closely related to the typically

measured quantities for a beam. Finally, we give expres-
sions for the second moments of the beam distribution
at equilibrium. For the sum and difference resonances,
using the invariants and Eq.(32), we can derive

Σ+ =
(
ε+x,prΣx Σ+

c

Σ+T
c ε+z,prΣz

)
, (286)

where

ε+x,pr =
1
2
〈g1〉+eq cosh2(

θ

2
) +

1
2
〈g2〉+eq sinh2(

θ

2
), (287)

ε+z,pr =
1
2
〈g1〉+eq sinh2(

θ

2
) +

1
2
〈g2〉+eq cosh2(

θ

2
), (288)

and

Σ− =
(
ε−x,prΣx Σ−c
Σ−Tc ε−z,prΣz

)
, (289)

where

ε−x,pr =
1
2
〈g1〉−eq cos2(

θ

2
) +

1
2
〈g2〉−eq sin2(

θ

2
), (290)

ε−z,pr =
1
2
〈g1〉−eq sin2(

θ

2
) +

1
2
〈g2〉−eq cos2(

θ

2
), (291)

with

Σ−c =
1
4

[
〈g1〉eq − 〈g2〉eq

]
sin(θ)(−JG−c J), (292)

and

Σ+
c =

1
4

[
〈g1〉eq + 〈g2〉eq

]
sinh(θ)(−JG+

c J). (293)

The uncoupled 2× 2 matrices Σx,z are given by

Σx,z =
(
βx,z αx,z
αx,z γx,z

)
. (294)

εx(,z),pr are the projected horizontal and longitudinal
emittances. From them, one can for example determine
the transverse beam size and momenta,

〈x2
β〉 = εx,prβx, (295)

〈x′2β 〉 = εx,prγx, (296)

and likewise for the bunch length and energy spread.
Note however that these are in betatron coordinates and
so differ from the physical variables by terms involving
the dispersion.

We have thus derived how these quantities are affected
by coupling. We can now find some useful relationships
among these quantities. First we have the obvious ones

ε±x,pr ∓ ε±z,pr = 〈gx〉±eq ∓ 〈gz〉
±
eq. (297)

We can also show that

χxε
−
x,pr + χzε

−
z,pr = χxεx + χzεz, (298)
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resonance mode d dc d̄

sum 1 dx cosh2 θ
2

+ dz sinh2 θ
2

+ dc sinh θ cosh2( θ
2
)d̄x + sinh2( θ

2
)d̄z

2 dx sinh2 θ
2

+ dz cosh2 θ
2

+ dc sinh θ Tr[G+
c Dβ ] sinh2( θ

2
)d̄x + cosh2( θ

2
)d̄z

difference 1 dx cos2 θ
2

+ dz sin2 θ
2

+ dc sin θ cos2( θ
2
)d̄x + sin2( θ

2
)d̄z

2 dx sin2 θ
2

+ dz cos2 θ
2
− dc sin θ Tr[G−

c Dβ ] sin2( θ
2
)d̄x + cos2( θ

2
)d̄z

int/ 1
2
-int (x) 1 dx cosh θ + dc sinh θ d̄x cosh θ

2 dz Tr[Gnx
c Dβ ] d̄z

int (z) 1 dx d̄x

2 dz cosh θ + dc sinh θ Tr[Gnz
c Dβ ] d̄z(cosh θ + cos φ sinh θ)

TABLE IV: This table contains the diffusion coefficients near each of the linear resonances. The d column gives the local
diffusion coefficient for modes 1 and 2. The dc column gives the formula for the extra term dc contained in the corresponding
local diffusion coefficient. Finally, the d̄ column contains the global diffusion coefficient which is given by integrating the local
quantity. The text discusses the approximations used for these expressions. The angle θ is given by tan−1(ξ/∆µ) for the
difference resonance and tanh−1(ξ/∆µ) for the other resonances where ξ and ∆µ are given in table I. The phase φ for the
integer z resonance is also given in table I.

resonance mode b bc χ

sum 1 bxβ cosh2 θ
2
− bzβ sinh2 θ

2
+ bc sinh θ χx cosh2( θ

2
)− χz sinh2( θ

2
)

2 −bxβ sinh2 θ
2

+ bzβ cosh2 θ
2
− bc sinh θ Eq.(269) −χx sinh2( θ

2
) + χz cosh2( θ

2
)

difference 1 bxβ cos2 θ
2

+ bzβ sin2 θ
2

+ bc sin θ χx cos2( θ
2
) + χz sin2( θ

2
)

2 bxβ sin2 θ
2

+ bzβ cos2 θ
2
− bc sin θ Eq.(270) χx sin2( θ

2
) + χz cos2( θ

2
)

int/ 1
2
-int 1 bxβ χx

2 bzβ χz

TABLE V: This table contains the damping coefficients near each of the linear resonances. The b column gives the local
damping coefficient for modes 1 and 2. The bc column tells where to find the formula for the extra term bc contained in
the corresponding local damping coefficient. Finally, the χ column contains the global damping decrement which is given by
integrating the local quantity. The approximations used for these expressions are discussed in the text. The angle θ is given
by tan−1(ξ/∆µ) for the difference resonance and tanh−1(ξ/∆µ) for the other resonances where ξ and ∆µ are given in table I.

and

χxε
+
x,pr − χzε

+
z,pr = χxεx − χzεz. (299)

Here, εx,z are the uncoupled emittances. These last two
equations are only strictly true if the middle term in the
global damping decrements is zero. However, this term
will often be small due to the oscillatory nature of the in-
tegrand as we have discussed previously. Compare these
sum rules to the sum rules for the equilibrium emittances
of the eigenmodes near a sum/difference resonance (Eqs.
(65)), one simply replaces χ1,2 with χx,z and 〈g1,2〉 with
εx,z,pr.

Finally, consider the equilibrium Σ matrix near an inte-
ger/half integer resonance. As noted with Eq. (259), one
can think of the effect of the coupling as causing a pertur-
bation to the lattice parameters. Thus, in computing Σ,
one must take two effects into account: the perturbation
to the lattice parameters, and the perturbation to the
diffusion coefficient. The perturbed diffusion coefficients
are given in Table IV, and the rest of the perturbed lat-
tice parameters can be found in the same way as in the
derivation of Eq. (259).

V. PLOTS AND DISCUSSION

We now have expressions for all the quantities needed
to explore questions of stability and equilibrium beam
distribution near each of the linear resonances for the
two examples. We draw our parameters from Table VI
which is based on the PEP-II storage ring. Damping
rates are converted to χx,z by multiplying by the revolu-
tion period. Given the equilibrium emittances εx and εz
we compute the integrated diffusion coefficients d̄x and
d̄z using d̄x,z = 4εx,zχx,z. Note the factor of two differ-
ence between the emittance and 〈gx,z〉eq. For the sake of
simplicity, we set αx = η′ = 0 in all examples.

A. Global Quantities Near Sum/Difference
Resonances

For the sum and difference resonances, in Figures 1
and 2, we plot the damping decrements χ1,2, the cou-
pled integrated diffusion coefficients d̄1,2 and the result-
ing equilibrium invariants 〈g1,2〉eq. In Figures 3 and 4, we
plot the projected emittances, εx,z,pr which are given by
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TABLE VI: Parameters used in our numerical examples based
on the PEP-II Low Energy Storage Ring.

parameter value

C 2199.33 m

αc 1.23× 10−3

χx 1.19× 10−4

χz 2.4× 10−4

εx 49.2× 10−9 m

εz 9.35× 10−6 m

d̄x 2.34× 10−11 m

d̄z 8.98× 10−9 m

β(scav) 20 m

α(scav) 0

β(scrab) 20 m

α(scrab) 0

η(scav) 0-3 m

η′(scav) 0

η(scrab) 0-3 m

η′(scrab) 0

ξc 0-.003 1/m

Eqs.(287), (288), (290), and (291). From these quanti-
ties, one can determine the equilibrium transverse beam
size and bunch length as given in Eqs.(295) and (296). In
Figures 5 and 6 we again plot the projected emittances
from Figures 3 and 4, but with 3-D plots showing the full
scale range.

B. Anti-damping Instability

An interesting effect that we have seen is that the
damping decrement can become negative near a sum res-
onance when the motion is otherwise stable. This region
of anti-damping is larger, the larger the ratio of χz and
χx, see Eq.(272). For the parameters used here, it is quite
a small region on the νx-νz plot for both of our exam-
ples. A natural way to affect this anti-damping region is
to control the ratio χz/χx through the damping partition
number D as we see from Eqs.(108) and (109),

χz
χx

=
Jz
Jx

=
2 +D
1−D

(300)

One can see from the values of χx,z in Table VI, that D
is quite small with D = 0.0056. To explore the effect of
changing D on the anti-damping instability, we multiply
χx by 1−D and χz by (2+D)/2 and plot χ1 for RF cavity
dispersion and a crab cavity for various values of D. The
results are given in Fig.7 for D = 0.25, 0.5, and 0.75.
The Hamiltonian dynamics instability is colored black,
whereas the anti-damping instability is colored white.

C. Dispersion at Crab Cavity, Numerical Results

Dispersion at the crab cavity affects all of the reso-
nances. However, for the crab cavity near the sum and
difference resonances, in our plots, we have set the dis-
persion to zero. For the case of νx near a half-integer, a
case of particular interest, we have explored the effect of
dispersion. In Fig.8, we plot stability diagrams (stable if
|λ| = 1, unstable otherwise) for the cases of no disper-
sion and a dispersion of 3 meter. We see that when the
dispersion is turned on, the integer and half-integer νx
resonances become visible, as well as a shifting of the in-
teger νz resonance. We have also plotted the equilibrium
horizontal emittance near the νx half-integer resonance as
well as the equilibrium longitudinal emittance near the
νz integer resonance. For the νx half-integer resonance,
since the width is largely independent of νs, but depends
on the dispersion, we have plotted the horizontal emit-
tance as a function of the tune νx and the dispersion η,
showing a broadening effect for larger dispersion.

Finally, we include an example of a numerical compar-
ison between the eigenvalues obtained using our pertur-
bation theory against those obtained numerically directly
from the one-turn matrix. In Fig.9 we plot the computed
versus numerical values of µ2 near the νz integer reso-
nance, as a function of νx including a dispersion function
of 0.1 meter at the crab cavity. The agreement is quite
reasonable.

D. Instabilities Near Half-Integer νx

We are particularly interested in the case of the be-
tatron tune just above the half integer because this is a
case that is commonly used in colliders such as PEP-II
and KEK-B. This means that we should pay attention
to the νx half-integer resonance. We see that there is
indeed such an instability for a dispersive RF cavity and
for a crab cavity. For the dispersive RF cavity if we set
αx = η′ = 0 in Eq.(219), we find an instability for

1
2
< νx <

1
2

+
1
2π

η2

Cαcβx
µ2
s (301)

For the crab cavity, we also find a νx half-integer reso-
nance. The condition is given by Eq.(245). When the
dispersion at the crab cavity is negligible, the condition
is

1
2
< νx <

aβxξ
2
c

8π
. (no dispersion) (302)

This is typically quite a narrow instability. When disper-
sion dominates, the condition becomes∣∣∣∣νx − 1

2

∣∣∣∣ < ηξc
2π

. (dispersion dominates) (303)

In this case, near νx = 1/2, applying Eq. (284), and
using ∆µ ≈ 2(µx − π), the emittance will be increased
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FIG. 1: In this figure, we plot global damping, diffusion and equilibrium invariant values for coupling due to a dispersion
of 1 meter at an RF cavity near the sum/difference resonances. The upper two rows are the sum resonance, and lower two
are the difference resonance. Parameters are otherwise drawn from Table VI based on the PEP-II LER. The quantities are
plotted as a function of the betatron tune νx and the synchrotron tune νs which is positive and equal to −νz, thus giving an
inversion of sum and difference resonances. χ1 and χ2 are global damping decrements expressed in Table V. d̄1 and d̄2 are
global diffusion coefficients expressed in Table IV, and 〈g1〉eq and 〈g2〉eq are one half the ratio of these quantities as given by

Eq.(47). All quantities have been divided by their uncoupled values so that the blue region with the value of 1 represents no
effect from coupling. The region of instability due to the Hamiltonian dynamics is black. There is also an extremely small
region of anti-damping instability outside the symplectic instability region for the sum resonance where the damping decrement
χ1 is negative. This region is indicated by white.
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FIG. 2: In this figure, we plot global damping, diffusion and equilibrium invariant values for coupling due to a crab cavity with
ξc = 0.003 near the sum and difference resonances. The dispersion at the crab cavity is set to 0 in this example. Because the
coupling strength ξ is inversely proportional to

√
νs, the instability broadens for smaller νs. χ1, χ2, d̄1, d̄2, 〈g1〉 and 〈g2〉 are

the same as in Fig.1. As in Fig. 1, the small region of anti-damping for χ1 near the sum resonance is colored white.
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FIG. 3: Projected emittances near the sum and difference resonances due to dispersion at the RF cavity. Paramaters are the
same as those in Figs.1. The upper two plots are for the sum resonance with ε+x,pr and ε+z,pr defined in Eqs.(287) and (288).
The lower two plots are for the difference resonance with ε−x,pr and ε−z,pr defined in Eqs.(290) and (291).

by a factor of

ε1
εx

=
1√

1−
(

ηξc

2π(νx−1/2)

)2
(304)

As an example, for the parameters in Table VI with a
dispersion of 1 meter at the crab cavity, when νx − 1/2
is 0.0016, there is an increase in emittance of 10% due to
this resonance.

In addition to the νx half integer resonance, because
the synchrotron tune is typically small, one is also con-

cerned with the νz integer resonance. In fact, this res-
onance is explored in [5]. Looking at Eq.(378), because
of the factor cot µx

2 we expect an instability for this res-
onance, although very near νx = 1

2 , it is quite narrow.
Adding dispersion changes this simple picture. As we see
in Fig.7, the dispersion moves the νz = 0 resonance into
the region νx <

1
2 , and for a fixed value of νx increases

its width in νs. The perturbed synchrotron tune due to
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FIG. 4: Projected emittances near the sum and difference resonances due to a crab cavity. The four plots have the same
meanings as in Fig.3. Parameters are the same as those in Figs.2.

the integer νz resonance is given by

ν2 =

√
ν2
s +

(
Cαcβx

4
cot(πνx)− η2

)(
ξc
2π

)2

(305)

from which we see that for νx just above 1/2, there can
be an instability when

νs <
ξc
2π

√
Cαcβx

4
(νx −

1
2
) + η2 (306)

which was also derived in [5]. For νx < 1
2 , we see that

this resonance can substantially increase the synchrotron
tune.

Associated with this integer νz resonance is an increase
or decrease of longitudinal emittance. Applying equation
(285), and considering the case where the dispersion at
the crab cavity is zero, we find that the longitudinal emit-
tance is multiplied by a factor of

ε2
εz

=
νs+[1 + sgn(νx − 1

2 )]Cαcβx

4νs
cot(πνx)

(
ξc

2π

)2

√
ν2
s + Cαcβx

4 cot(πνx)
(
ξc

2π

)2
.

(307)
We have used Eq. (162) and the fact that ∆µ ≈ 2µz for
the integer z resonance. The sgn (step) function comes
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FIG. 5: 3-D plots of projected emittances near the sum and difference resonances due to a dispersive RF cavity. The four plots
have the same meanings as in Fig.3. Parameters are the same as those in Figs.1.

FIG. 6: 3-D plots of projected emittances near the sum and difference resonances due to a crab cavity. The four plots have the
same meanings as in Fig.3. Parameters are the same as those in Figs.2.
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FIG. 7: Damping decrement near sum resonance for coupling due to a dispersive RF cavity (upper plots) and a crab cavity
(lower plots). The black region represents an instability in the Hamiltonian dynamics, whereas the white area represents a
negative value of χ1 and hence an anti-damping instability. We vary the damping decrement D. In the two left-most plots it is
0.25. For the center plots it is 0.5, and the right plots have 0.75. The plots of χ1 near the sum resonance in Figs.1 and 2 plot
the same quantities, except that in those cases, D ≈ 0 as discussed in the text. Increasing D increases the ratio of χz and χx

which widens the region where an anti-damping instability occurs.

from the cosφ term in (162), where φ involves cot(µx/2)
as we find from Table III. Note that the sgn function
does not make this expression discontinuous at νx = 1/2,
since cot(π/2) = 0 and so there is no perturbation there.

One may also be interested to know the effects of dis-
persion at an RF cavity when the νx is near a half in-
teger. For this case, we find a very weak νx half-integer
stop band. This instability occurs when

2πHx

Cαc
ν2
s > νx −

1
2

(308)

which is a small stop band both because of the ν2
s and

the Hx which is η2
c/βx when η′ = αx = 0, where ηc

is the dispersion at the RF cavity. Regarding the νz
integer resonance, we find that it is absent for coupling
due to a dispersive RF cavity. One can understand this
fact by observing that the strength of the perturbation
due to dispersion is proportional to ν2

s , so approaching
νs → 0 effectively turns off the perturbation and avoids
an instability.

Even when there is not an instability, we have seen
that the emittances can be affected near a resonance. For
the case of the νx half-integer resonance, the horizontal
emittance can become large, whereas for the νz integer
resonance, the longitudinal emittance (and correspond-
ingly bunch length and energy spread) can become large.
For the case of small synchrotron tune and betatron tune
just above the half-integer a combination of these two ef-
fects is expected, i.e. a combination of the bottom two
plots in Fig. 8.

E. Instabilities Near Integer νx

In case of a storage ring operated near an integer νx,
one needs to be concerned with four resonances: integer
νx and νz, and the sum or difference resonances. Refer
to the upper two plots in Fig.8 for a numerical example
of the instability region. From our analytical expressions
for the perturbed tunes, we learn that for small νs, a crab
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FIG. 8: These six plots relate to crab cavity coupling. The upper four plots are instability diagrams. The eigenvalues λj ,
have been computed numerically for each value of the tunes and if for each j, |λj | = 1, it is stable and colored white, whereas
|λj | 6= 1 is unstable and colored black. The left plot has no dispersion at the crab cavity, while the right plot has a dispersion
of 3 meters. The middle two plots show a magnified view of the upper two plots near νx = 1/2. Note that the νx half integer
resonance caused by dispersion is only visible upon magnification. The integer νx resonance also appears with dispersion as can
be seen from the thin black line near νx = 0 in the upper right plot. The bottom two plots give the horizontal and longitudinal
emittance growth factors defined in Eq.(47). Because χ1,2 = χx,z for integer and half-integer resonances, this is also given
by the ratios d̄1/d̄x and d̄2/d̄z where d̄1 and d̄2 are defined in Table IV. Explicit expressions for the emittance growth for
transverse and longitudinal are given in Eqs. (304) and (307). We have set the dispersion at the crab cavity to zero here. The
bottom left is plotted as a function of νx and νs, while the bottom right is plotted as a function of νx and dispersion at the
crab cavity in units of meters. The νx half-integer instability does not depend on νs.
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FIG. 9: Comparison of eigenvalue formula to direct numerical
calculation. Here, νx = 0.51, and we plot the absolute value
of ν2 = µ2/2π, which becomes imaginary (unstable) due to
the integer µs = 0 resonance. We have set the dispersion at
the crab cavity to be η = 0.1 m. The dashed red curve is the
numerical result, while the blue is Eq.(249).

cavity is particularly dangerous in this region because the
effective coupling strengths for the sum and difference
resonances ξ± scales as 1/

√
νs. Regarding the integer νz

resonance, νx above an integer is safer than below an in-
teger because the νz integer resonance has a particularly
large stop band just below integer νx coming from the
factor of cot(πνx) in Eq.(189). For νx above an integer,
this factor causes increased stability, even reducing equi-
librium longitudinal emittance, as seen in the dark blue
lower left region of the bottom left plot of Fig.8. How-
ever, because of the strong νx = −νz sum resonance, this
effect would be washed out, at least for νx near the inte-
ger. Nevertheless, this result suggests the possibility of
using coupling to increase stability and reduce emittance
through careful tuning near a coupling-induced integer or
half-integer resonance, perhaps in another context such
as transverse coupling.

F. Single Versus Multiple Resonances

In this paper, we have analyzed each resonance in iso-
lation. This should be accurate as long as the tunes are
such that they are much closer to one resonance than
any other. Particularly near νx = νs = 0 this can break
down. In this situation, the system can be near three
resonances, simultaneously: the integer νx, the integer
νz, and either the sum or difference resonance. In this
case, we expect that there may be greater errors in our
expressions. In the case that one of the resonances does
not cause an instability, but still can strongly affect the
tune, such as for the difference resonance or the cou-
pling νz integer resonance for νx < 1

2 , one could use the
perturbed, but not unstable tune as an input to deter-
mine the instability of the other tune. When the tunes
are equally near to multiple resonances, a more elaborate

analysis is necessary. We note that our perturbation the-
ory can accommodate this situation (e.g. the quadruple
degeneracy near νx = νz = 0) but we do not pursue it
further here.

VI. CONCLUSION

In this paper, we have shown a way to analyze the ef-
fects of coupling near linear resonances. If we focus on
4-D phase space, there are in general six such resonances
to be concerned about: the sum and difference resonances
along with the two integer (νx,νz) and two half-integer
(νx,νz) resonances. For the case of synchrobetatron cou-
pling, νz is typically much less than 1/2 and so there are
really five resonances to consider.

In the presence of damping and diffusion mechanisms,
such as synchrotron radiation, even near to such reso-
nances, we have argued that the beam distribution can
usually be described as a Gaussian function of the in-
variants of the one-turn map. Regarding the effect of
coupling on this near resonance distribution, one needs
to consider both the issues of stability and the effect on
the equilibrium emittances.

Instability can occur in one of two ways. First, the
coupling can cause one or two pairs of the eigenvalues to
become complex, which for a symplectic matrix means
that there will be a growing mode. Secondly, near a sum
resonance, the coupling can mix together the damping
rates in such a way that one of the modes has negative
damping, which also indicates an instability.

Even if instability can be avoided, coupling near a res-
onance can have a substantial effect on the equilibrium
emittances. This is particularly so if there is a large dis-
crepancy between the emittances, which is indeed the
typical case for synchrobetatron dynamics in which the
horizontal emittance is much smaller than the longitudi-
nal. For the case of PEP-II, εz/εx = 190. Intuitively, one
might expect, therefore, that synchrobetatron coupling
would have a major effect on transverse emittance, since
it is coupled to such a huge reservoir of longitudinal emit-
tance. This is indeed what we find for both the sum and
difference resonances. Near a sum resonance, although
both emittances blow up at the resonance, a little bit
off resonance one finds a large growth in the horizontal
emittance εx and a very small growth in the longitudinal
emittance εz. Near a difference resonance, we also find
major growth in εx whereas in this case there is a small
decrease in εz. The relationships between the emittances
and how a change in one affects a change in the other
can be understood by looking at the various sum rules
we have derived in section ID. We have also derived
(Eqs. (298) and (299)) sum rules for how the projected
emittances relate to each other. We find qualitatively
similar behavior for both the projected emittances and
the emittances of the eigen-modes.

One might generalize the intuitive concept of coupling
as a sort of equilibration between reservoirs and roughly
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state that when there is a large discrepancy between two
quantities, coupling can have a strong effect near a res-
onance. We have just mentioned this effect for the case
of the equilibrium emittances near sum/difference res-
onances. The other example where this is evident is in
the previously mentioned anti-damping instability near a
sum resonance. We have found that the larger the ratio
of the damping rates, the larger the region of tune space
that becomes unstable for a given coupling strength. A
natural way in which this ratio is altered is through the
damping partition number D. We have seen that increas-
ing D expands this region of the anti-damping instability.

It turns out, however that the intuition of the previous
paragraph does not apply near integer and half-integer
resonances. Although coupling can cause an instability
when one of the tunes is near an integer or half integer,
the damping rates are not affected much by this instabil-
ity and although the diffusion coefficient for the unstable
mode does get large and diverge at the instability, it does
not mix with the other (stable mode) diffusion coefficient.
Thus, although emittance is still affected by being near
an integer or half-integer resonance, it is not as strong of
an effect as with the sum and difference resonances where
disparity between transverse and longitudinal damping
and diffusion rates and emittances enhances the impact.

We have derived a perturbation theory which gives
expressions for the coupled damping and diffusion co-
efficients and equilibrium eigen-invariants and projected
emittances in the vicinity of the resonance. The key to
this effort was to take the degenerate one-turn map as
the unperturbed starting point and treat both coupling
and difference from resonance as perturbations. Once
the matrix elements of the perturbation are properly de-
fined, the results are quite similar to those for finding per-
turbed energies and eigenfunctions in degenerate pertur-
bation theory in quantum mechanics. The sign involved
in the definition of the “bra” vj (Eq.(16)) distinguishes
stable from unstable resonances: degeneracies involving
two positive or negative modes are stable, whereas degen-
eracies involving one negative and oned positive mode
are unstable. Thus, one finds stability at a difference
resonance (νx = νz mod. 2π) and instability at a sum
(νx = −νz mod. 2π), integer (νx,z = −νx,z = 0 mod.
2π) and half-integer (νx,z = −νx,z = 1/2 mod. 2π) reso-
nance.

One might be surprised to find out that coupling can
in fact cause an instability at an integer or half-integer
resonance. A pure coupling effect, as we have seen in the
dispersion free crab cavity, mixes transverse and longitu-
dinal dynamics: the perturbation has no elements in the
on-diagonal two by two blocks. Nevertheless, a careful
analysis, involving second order degenerate perturbation
theory, allowed the calculation of the width of this insta-
bility and the effect on damping and diffusion. It has the
unusual property that whether or not a given tune will
go unstable depends on the value of the other (stable)
tune.

An important example of a coupling-caused integer in-

stability is the integer resonance for the synchrotron tune
νs. Because RF systems naturally produce a small νs,
this resonance (near νs = 0) is always a possibility. We
find that for νx > 1/2 coupling can cause an instability
for small enough νs. For the case of dispersion at an RF
cavity, we found that this instability was not present. In
the case of a crab cavity, however, we do indeed have to
deal with this instability. As we have discussed, we can
understand this difference in behavior of the two cou-
pling sources by noting that coupling due to RF cavity
dispersion gets weaker for small νs whereas crab cavity
coupling tends to get stronger at small νs.

This work was motivated in part by planned instal-
lation of crab cavities in colliders such as KEK-B. To
minimize beam-beam effects, such colliders are typically
operated with a betatron tune νx just above a half inte-
ger. Although this is in the region where an instability
due to the νs integer resonance is possible, the stop band
width at νx = 1/2 is zero, growing with increasing νx.
This picture is complicated somewhat by the addition of
dispersion that moves the onset of instability to νx < 1/2
and increases the stop band width in νs for a fixed value
of νx as we have discussed.

In addition to this νs = 0 resonance, operating near
the half integer νx raises the issue of the νx half-integer
resonance. We have found that the crab cavity does cause
an instability for νx near a half-integer, but it is relatively
weak, with a width of ηξc where η is the dispersion at the
crab cavity and ξc is the crab cavity strength.

We can conclude that for νx near a half-integer, the
synchrobetatron resonances caused by a crab cavity are
relatively benign, although if νx is too close to the half-
integer and/or νs too close to zero, the dispersion at the
crab cavity may need to be minimized to maintain safe
operations and preserve small emittances.

As we have pointed out, near integer and half-integer
coupling instabilities, there is no “mixing” effect on the
emittances, as we see for the case with the sum/difference
resonance: the large disparity between horizontal and
longitudinal emittances does not contribute to an in-
creased coupling effect. From this perspective, it is fur-
ther seen that operating near half-integer νx is preferable
to integer νx. When νx is near an integer, because νs is
small, one must also contend with the sum or difference
resonances which can have major effects on horizontal
emittance.

We have focused on the case of synchrobetatron cou-
pling, giving details for a single crab cavity and a dis-
persive RF cavity. The same procedure applies to other
cases of synchrobetatron coupling as well as for trans-
verse betatron coupling. For more details of the trans-
verse coupling case, see [14].

In cases where the convenient starting point is already
coupled, one can still apply this analysis by working in
coordinates that remove this coupling. This is essentially
what we have done with dispersion. By using betatron
coordinates, we are able to start from an uncoupled map.
Thus, in a general situation, one would simply replace the
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matrix B with a more general decoupling matrix.
Although some of the derivations are somewhat in-

volved, the final results are relatively simple. The ad-
ditional mixing terms in the local damping and diffusion
coefficients are more complicated than one might hope
for, involving all the lattice functions, including disper-
sion and phase advances. However, as we have discussed,
in typical situations, these terms contribute little to the
global diffusion and damping, making the final results
particularly simple; one simply needs to compute the
global coupling angle θ for each resonance to find out
how the uncoupled transverse and longitudinal (or hori-
zontal and vertical for x-y coupling) global diffusion and
damping coefficients and emittances mix together.

Because of the relative simplicity of the final ana-
lytic expressions for equilibrium invariants and resonance
widths, understanding of how these important properties
depend on machine parameters is facilitated in a way
which would sometimes be more convenient than purely
numerical calculations.
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Appendix A: Invariants and Second Moment Matrix

We would like to show that the expressions given for
the invariants Ga in the text, do in fact satisfy the in-
variant condition. That is, we would like to show that

Ga = JUHaU
TJ (309)

satisfies

MTGaM = Ga (310)

Using the symplectic property of M , and Eq. (22), we
derive

MTGaM = MTJUHaU
TJM

= JM−1UHaU
TMT−1J

= JUe−ΛHae
−ΛUTJ

= JUHaU
TJ (311)

In the last step we have done the matrix multiplication(
e−iµ 0

0 eiµ

)(
0 1
1 0

)(
e−iµ 0

0 eiµ

)
=
(

0 1
1 0

)
(312)

This shows that the Ga given are in fact invariants.
Now we consider the beam distribution written in

terms of the invariants. We write a general (6-D) Gaus-
sian distribution as

f(~z) =
det(M)
(2π)3

e−
1
2~z

T M~z (313)

where we have normalized f so that
∫
f(~z)d~z = 1. By

performing the integration, one can show that the second
moment matrix is given by

Σjk = 〈zjzk〉 = M−1
jk (314)

In terms of the three invariants, we can write the distri-
bution as

f(~z) =
1

π3〈g1〉〈g2〉〈g3〉
exp

(
− g1
〈g1〉

− g2
〈g2〉

− g3
〈g3〉

)
(315)

Let us prove this. In particular, we must show that the
quantities we have written as 〈ga〉 in the above equation
are indeed given by

〈ga〉 =
∫
d~z gaf(~z) (316)

To show this, we introduce the matrix K given by

K =
1√
2


1 −i 0 0 0 0
−i 1 0 0 0 0
0 0 1 −i 0 0
0 0 −i 1 0 0
0 0 0 0 1 −i
0 0 0 0 −i 1

 (317)

Note that det(K) = 1. In fact, it is symplectic. Now,
consider the change of coordinates from ~z to the coordi-
nates ~V

~z = UK~V (318)

UK is in fact a real symplectic matrix. Its columns
are

√
2 times the real and imaginary parts of va. The

quadratic form ga becomes

ga = ~zTGa~z

= ~V TKTUTGaUK~V
= ~V TKTHaK~V
= ~V T Ia~V (319)

Where Ia is a matrix that is all zero’s except for a
2 × 2 identity matrix in the ath diagonal 2 × 2 block.
Thus, ga = V 2

a + V 2
−a (with a = 1, 2, 3 for ga, and

k = ±1,±2,±3 for Vk). Applying this change of vari-
ables to (316), we get∫

d~V
V 2
a + V 2

−a
π3〈g1〉〈g2〉〈g3〉

e
−

V 2
1 +V 2

−1
〈g1〉

−
V 2
2 +V 2

−2
〈g2〉

−
V 2
3 +V 2

−3
〈g3〉

= 〈ga〉 (320)

after doing the 6 1-D integrals.
Next we find expressions for the second moment ma-

trix. Looking at (315),(313) and (24), we identify

M =
2G1

〈g1〉
+

2G2

〈g2〉
+

2G3

〈g3〉
(321)
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Thus, to find the second moment matrix Σ, we must
invert this matrix. We claim that the inverse is given by

M−1 = −1
2
〈g1〉JG1J −

1
2
〈g2〉JG2J −

1
2
〈g3〉JG3J (322)

In order to prove this, we show the following:

JGaJGb = −δabIa (323)

where a and b run from 1 to 3. Now, Ga is written
explicitly as

Ga = JUHaU
TJ, (324)

Substituting this in and using the symplectic property of
U and the fact that J2 = −I, we get

JGaJGb = UHaJHbJU
−1 (325)

From this and the definition of Ha, (25), Eq. (323) fol-
lows by simple matrix multiplication. In particular, when
a = b, we find

σxJ2σxJ2 =
(

1 0
0 1

)
(326)

The minus sign comes from the two factors of i from the
Ha. Now, multiplication of (321) by (322) and repeated
use of Eq. (323), proves that (322) is indeed the inverse
matrix.

Appendix B: General 2nd Order Degenerate
Perturbation Theory

Let us suppose we have a matrix M that can be ex-
panded as

M =
∑
p

Mp (327)

where we consider Mp to be of order εp where ε is some
small parameter. We seek a perturbation expansion of
the eigenvectors and eigenvalues of M :

Mvk = λkvk (328)

with

vk =
∑
p

cpk0ṽkp (329)

and

λk =
∑
p

λkp (330)

We consider ṽkp and λkp to be of order εp. We use the
tilde in ṽkp because we would like to distinguish ṽk0 from
vk0. Let Zdg(k) be the indices such that for j ∈ Zdg(k),
λj0 = λk0. In other words, Zdg(k) is the set of indices

with eigenvalues that are degenerate with λk0. We let
{vk0} be an orthonormal complete set of eigenvectors of
M0. In particular, we assume that we can define covec-
tors vl0 such that

vl0vk0 = δlk (331)

How to do this for a symplectic matrix is discussed in the
main text. This means that we can expand an arbitrary
vector as

v =
∑
k

ckvk0 (332)

with

ck = vk0v (333)

We consider the vk0 to be the “uncoupled”, “unper-
turbed” eigenvectors. Within the perturbation matrices
M1 and M2, we consider there as being two different
types of perturbations. In the case that we consider them
both as 1st order (an important case will occur when we
consider it as 2nd order), we notate them as M1ξ and
M1δµ. When just M1δµ is added to M0, its effect is to
change the eigenvalues, but not the vk0. This is in ef-
fect how we define vk0. The addition of the perturbation
M1ξ serves to pick out a particular linear combination of
the vk0 which we notate as ṽk0, in addition to causing a
perturbation of these eigenvectors. However, it will be
the main purpose of this section to derive the ṽk0 for the
two cases where we have a M1δµ and a M2δµ, i.e. when
the purely eigenvalue changing perturbation is first order
and second order. It will turn out that this latter case is
important in the case of “coupling” causing an integer or
half integer resonance.

We now consider the eigenvalue equation setting equal
terms of the same order up to 2nd order:

p = 0 : M0ṽk0 =λk0ṽk0 (334)
p = 1 : M0ṽk1+M1ṽk0 =λk0ṽk1+λk1ṽk0
p = 2 : M0ṽk2+M1ṽk1+M2ṽk0 =λk0ṽk2+λk1ṽk1+λk0ṽk2

Consider the p = 0 equation. Expanding out the ṽk0
and using the 0th order eigenvector equation, we get∑

j

cjk0λj0vj0 = λk0
∑
j

cjk0vj0 (335)

Multiplying on the left by vl0 gives

clk0λl0 = clk0λk0 (336)

which implies that either λl0 = λk0, or clk0 = 0. This
is what we expect since for l ∈ Zdg(k), λl0 = λk0 and
otherwise clk0 = 0.

Next we consider p = 1. Expanding the ṽk and again
using the 0th order eigenvector equation gives∑

j

cjk1λj0vj0 +M1

∑
j

cjk0vj0 (337)

= λk0
∑
j

cjk1vj0 + λk1
∑
j

cjk0vj0
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We now multiply on the left by vl0. The result is

clk1λl0 +
∑
j

cjk0Mlj = λk0c
l
k1 + λk1c

l
k0 (338)

where we have defined

Mlj = vl0M1vj0 (339)

Now, suppose that l ∈ Zdg(k). Then λl0 = λk0 and two
of the terms cancel. We are left with∑

j

cjk0Mlj = λk1c
l
k0 l ∈ Zdg(k) (340)

We will use this equation to analyze the sum and differ-
ence resonances. In the case where there is no degeneracy,
Zdg(k) = {k} and we get the usual result from 1st order
non-degenerate perturbation theory:

λk1 = Mkk (341)

Next suppose that l /∈ Zdg(k). Then λl0 6= λk0 and
clk0 = 0. Then Eq. (338) gives

clk1 =

∑
j c
j
k0Mlj

λk0 − λl0
l /∈ Zdg(k) (342)

Finally, we consider p = 2. Expanding out the ṽkp, using
the M0 eigenvalue equation and left multiplying by vl0

gives

clk2λl0 +
∑
j

cjk1Mlj +
∑
j

cjk0M2,lj

= λk0c
l
k2 + λk1c

l
k1 + λk2c

l
k0 (343)

where we have defined

M2,lj ≡ vl0M2vj0. (344)

Now, suppose that l ∈ Zdg(k). Then λl0 = λk0. We can
then write

clk0λk2 =
∑
j

cjk1Mlj+
∑
j

cjk0M2,lj−λk1clk1 l ∈ Zdg(k)

(345)
There are two different contexts in which one might use
this equation. The first is that the clk0 have already been
determined by the lower order equations and this be-
comes an equation for just λk2. This is the case if M1

breaks the degeneracy. In this case λk1 is nonzero. We
then think of this equation as adding small terms to the
eigenvectors and eigenvalues. Another important possi-
bility is where M1 does not break the degeneracy. This
happens when all the Mlk’s are zero for l ∈ Zdg(k). This
means that λk1 = 0. Then, after using Eq. (338), (345)
becomes an eigenvalue equation for clk0 and λk2:

∑
j

 ∑
n/∈Zdg(k)

MnjMln

λk0 − λn0
+M2,lj

 cjk0 = λk2c
l
k0

l ∈ Zdg(k) (346)

This is our main result which we use to analyze the inte-
ger and half-integer resonances caused by coupling.

If we take the case where there is no degeneracy, this
reduces to

λk2 =
∑
n 6=k

MnkMkn

λk0 − λn0
+M2,kk (347)

which, if we also set M2,kk = 0 gives the usual expres-
sion for the second order shift in the eigenvalue for non-
degenerate perturbation theory.

Now, let l /∈ Zdg(k). Then, as before, λl0 6= λk0 and
clk0 = 0. Solving for clk2 gives

clk2 =

∑
j c
j
k1Mlj +

∑
j c
j
k0M2,lj − λk1c

l
k1

λk0 − λl0
(348)

l /∈ Zdg(k)

Appendix C: Relationship between ξ+ and ξ−

Suppose we have a general matrix Q with elements

Q =
(
q11 q12
q21 q22

)
(349)

Now, compute the quantities

1
2

( i 1 )Q
(

1
i

)
=

1
2
[(q21−q12)+i(q11+q22)]

1
2

(−i 1 )Q
(

1
i

)
=

1
2
[(q21+q12)+i(−q11+q22)]

Now, defining

Ax,z =

(√
βx,z 0

−αx,z√
βx,z

1√
βx,z

)
(350)

and identifying

Q = ATx JBAz (351)

where B is the upper-right 2 × 2 block of M1 or P , we
can see that

|M12|2 − |M−12|2 = det(Q) (352)

But, since det(Ax,z) = det(J) = 1, we get that det(Q) =
det(B), and hence

ξ2− − ξ2+ = 4det(B) (353)

Appendix D: Further Derivations for the Coupling
Integer/Half Integer Resonances

Suppose that the transfer matrix M is close to the µz
integer resonance. Then the eigenvalue equation can be
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written in the form16(
Mx B
C I +D

)(
u
v

)
= (1 + δλ)

(
u
v

)
(354)

where we are looking for the eigenvalues near 1. u and v
are 1× 2 column matrices, and we assume that B, C, D
and δλ are small. If the upper equation is solved for u,
we find

u = −[Mx − I(1 + δλ)]−1v (355)

Substituting this into the lower equation and taking low-
est order in the small quantities (i.e. ignoring δλ in above
equation), we get

[D − C(Mx − I)−1B]v = δλv (356)

Thus, we must find eigenvalues and eigenvectors of this
2 × 2 matrix. If we change into the basis in which M is
diagonal, and taking into account the half-integer reso-
nance as well, in which I → −I, we get

M12M21
λ20−λ10

M1−2M21
λ20−λ10

+M−12M2−1
λ20−λ−10

+M−1−2M2−1
λ20−λ−10

+M22 +M2−2

M12M−21
λ20−λ10

M1−2M−21
λ20−λ10

+M−12M−2−1
λ20−λ−10

+M−1−2M−2−1
λ20−λ−10

+M−22 +M−2−2


(357)

For the integer resonance, this simplifies to
|r12|2

1−e−iµx −
|r−12|2
1−eiµx

+r22
ir21r1−2 cot(µx

2 ) + r2−2

−ir∗21r∗1−2 cot(µx

2 ) + r−22

|r12|2
1−eiµx −

|r−12|2
1−e−iµx

+r−2−2


(358)

for the half integer it is
−|r12|2
1+e−iµx + |r−12|2

1+eiµx

−r22
ir21r1−2 tan(µx

2 )− r2−2

−ir∗21r∗1−2 tan(µx

2 )− r−22

−|r12|2
1+eiµx + |r−12|2

1+e−iµx

−r−2−2


(359)

Now, for a matrix, (
a b
c d

)
(360)

the eigenvalues can be written as

δλ± =
1
2

[
a+ d± (a− d)

√
1 +

4bc
(a− d)2

]
(361)

and the (unnormalized) eigenvectors as

v± =

(
1
2c

[
(a− d)± (a− d)

√
1 + 4bc

(a−d)2

]
1

)
(362)

In order to be consistent with the notation for the simpler
resonances, we make the following definitions

∆µ = −ie−iµ0(a− d) (363)

ξ = 2|b| (364)

and

φ = arg(eiµ0b) (365)

where µ0 is 0 for the integer resonance and π for the half
integer. This phase definition being consistent depends
on the fact that c∗ = b which is easily verified for each
of the two cases above. The perturbed phase advance is
given by

µ2 =
∆µ
2

√
1− ξ2

∆µ2
(366)

for the integer resonance and

µ2 = π + ∆µ2

√
1− ξ2

∆µ2
(367)

for the half integer resonance. The perturbed eigenvector
is given by

v2 = cosh(
θ

2
)vz − ie−iφ sinh(

θ

2
)v−z (368)

with

tanh(θ) =
ξ

∆µ
(369)

Writing out all of these quantities explicitly, and after
some algebra, we find for the integer resonance

∆µ = 2µz − 2ir22ξ − (|r12|2 + |r−12|2) cot(
µx
2

) (370)

ξ = 2
∣∣∣r2−2 + ir1−2r21 cot(

µx
2

)
∣∣∣ (371)

and

φ = arg[r2−2 + ir1−2r21 cot(
µx
2

)] (372)

For the half integer we get

∆µ = 2(µz−π)−2ir22ξ+(|r12|2+|r−12|2) tan(
µx
2

) (373)

ξ = 2
∣∣∣r2−2 − ir1−2r21 tan(

µx
2

)
∣∣∣ (374)

and

φ = arg[r2−2 − ir1−2r21 tan(
µx
2

)] (375)

In each case, we can combine ξ and ∆µ to find the
perturbed value of µ2 using (366) and (367). We ignore
the issue of the sign here and compute µ2

2:



43

16 Thanks to B. Freivogel for pointing out this alternative derivation
of the 2nd order degenerate perturbation theory results.

µ2
2 = (µz − ir22ξ)2 − (µz − ir22ξ)(|r12|2 + |r1−2|2) cot(

µx
2

)− |r2−2ξ|2

+
1
4
(|r12|2 − |r1−2|2) cot2(

µx
2

) +
1
2
Im(r∗2−2ξr12r1−2) cot(

µx
2

) (int z) (376)

(µ2 − π)2 = [(µz − π)− ir22ξ]2 + ((µz − π)− ir22ξ)(|r12|2 + |r1−2|2) tan(
µx
2

)− |r2−2ξ|2

+
1
4
(|r12|2 − |r1−2|2) tan2(

µx
2

)− 1
2
Im(r∗2−2ξr12r1−2) tan(

µx
2

) (
1
2
int z) (377)

Note that for both cases µ2 reduces to µz when the per-
turbation is turned off.

Now, we consider a useful special case. Suppose that
the perturbation M1ξ only has off-block diagonal ele-
ments. This implies that r22ξ = r2−2ξ = 0. Further
suppose that |r12|2 = |r−12|2. This is equivalent to
det(B) = 0, where B is the off-block diagonal matrix
in either M1ξ or P . If these two conditions hold, the
expressions for µ2 simplify considerably. They become

µ2
2 = µ2

z − 2µz|r12|2 cot(
µx
2

) (378)

(µ2 − π)2 = (µz − π)2 + 2(µz − π)|r12|2 tan(
µx
2

)

for the integer and half integer respectively.

The expressions for x are given by interchanging 1 and
2, and x and z.

Finally, consider the quantity µ̄ which we expect to be
0 for the integer and half-integer resonances. It is pro-
portional to the trace of (357). Computing this quantity,
we find that it is not zero. A careful analysis, however,
reveals that it is always higher order than the lowest or-
der terms kept and can thus be seen as a part of the
higher order terms in the expansion of eiµ which should
be dropped.
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