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Abstract

We study conditions under which a perturbation in boundary condi-

tions of a cavity causes two modes with close frequencies to coalesce into

elliptically polarized eigenmodes. We find that a surface impedance that

is complex and varies with position along the cavity wall can give rise

to elliptically polarized modes. For a simple two dimensional model our

analytical perturbation results agree well with numerical simulations. We

further demonstrate that a small variation in cavity shape can suppress

mode ellipticity. Finally, we discuss the excitation of elliptical modes by

bunch trains passing through the linac cavities in the ILC.
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Elliptically Polarized Modes in RF Cavities

G. Stupakov and K. Bane

1 Introduction

Elliptically polarized eigenmodes have recently been found in computer simula-
tion for the prototype RF structures for the linac of the International Linear Col-
lider (ILC)[1]. These cavities have three couplers located at various azimuthal
positions on the cavity wall in a way that breaks the azimuthal symmetry of the
cavity. The modes are dipole modes, and the concern is that horizontal oscilla-
tion of a leading bunch in a bunch train can couple, through such modes, into
the vertical plane and spoil the projected emittance of trailing bunches in the
train. In this report, motivated by the numerical observation, we use perturba-
tion theory to understand the basic physical mechanism leading to the existence
of elliptically polarized modes. Then, for a concrete example, our theoretical
results are applied to a simplified model of an RF cavity.

It is well known that the eigenmodes of the electromagnetic field in a cavity
with perfectly conducting walls have linear polarization (see e.g. [2]). This
means that the trajectory drawn by the end point of the vector of electric (or
magnetic) field oscillating at a given location in the cavity (at the eigenfrequency
of the mode) is a straight line. This is due to the fact that the equations for the
eigenmodes have real coefficients when the boundary conditions are real. The
solution to these equations can always be chosen as a real vectorial function,
which corresponds to linear polarization1.

The conductivity of metallic walls is normally finite but large, and its effect
can be taken into account with the so called Leontovich boundary condition
[2], which involves complex numbers. Strictly speaking, such a boundary condi-
tion gives rise to elliptically polarized eigenmodes; however, for non-degenerate
modes the ellipticity is very small, on the order of the ratio of the skin depth
to the reduced wavelength of the mode. On the same order is the ratio of the
damping decrement of the mode to its frequency; hence the ellipticity is also on
the order of the inverse quality factor Q of the mode.

The situation may be different if due to a symmetry in cavity shape there
are degenerate modes. For example, in a cylindrically-symmetric cavity the
transverse modes of different polarizations are always degenerate. In this case,
in principle, a coupling introduced by the wall resistivity may result in a large
elliptic polarization of the modes when resistivity is taken into account. As

1In the case of degenerate modes, the choice of eigenfunctions is not unique; however, they
can always be chosen in such a way that each degenerate mode is linearly polarized.
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we will show below, however, this can happen only when the wall resistivity is
non-uniform over the wall. Although in practice a variation in wall conductivity
is unlikely to be encountered, RF couplers can be thought of as sites of differing
effective conductivity. We will accept this viewpoint in our analysis below.

We begin in Section 2 of this report by presenting a general analysis based
on perturbation theory. We show how the boundary conditions affect mode
coupling and under what conditions elliptic modes can be observed. In Section
3, this analysis is applied to the case of TM11 modes in a cylindrical cavity. In
Section 4 a numerical result for the case of nonuniform boundary conditions is
obtained and compared with the analytical theory. The effect of slight boundary
distortion is also explored. Finally, in Section 5 we discuss implications of
elliptically polarized modes on ILC performance. Note that throughout this
report Gaussian units will be used.

2 Perturbation Theory and Eigenmodes

Let us consider an RF cavity and assume that the cavity’s eigenmodes, in the
approximation perfectly conducting walls, are known. For the sth eigenmode
we denote the frequency by ωs, and the electric and magnetic fields by Es and
Hs. We assume a time variation in the fields ∝ e−iωt.

To take into account metallic walls with finite conductivity, one can use the
Leontovich boundary condition at the walls: [2]

Et = ζHt × n , (1)

where Et and Ht are the tangential components of the electric and magnetic
fields and n is a unit vector directed into the metal; ζ = (1 − i)

√

ω/8πσ, with
σ the wall conductivity. This condition is valid if the skin depth corresponding
to the frequency ω is much smaller than the wavelength of the mode.

In this paper, however, we will use the boundary condition Eq. (1) in a
more general sense understanding the complex constant ζ as a phenomenological
parameter responsible for possible losses in the wall. With such a parameter, for
example, one can model coupling devices which connect the cavity to external
waveguides. In this case ζ takes nonzero values only at the location of the coupler
with the real part of ζ responsible for the energy loss transmitted through the
coupler (hence Re ζ > 0) and the imaginary part due to the reactive component
of the coupling.

We will use perturbation theory to calculate the effect of the generalized
boundary condition (1) on the eigenmodes of the cavity. Our analysis is based
on the method presented in Ref. [3] which will be outlined below. The pertur-
bation theory is valid if the frequency change of the modes due to the boundary
perturbation, ∆ωs, is small: |∆ωs/ωs| � 1.

From the point of view of electromagnetic theory the boundary condition
Eq. (1) can equivalently be represented as a surface magnetic current ι flowing
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in the vicinity of perfectly conducting walls

ι = −
c

4π
ζn × [n × H]|wall . (2)

This current has dimensions of magnetic charge per unit time per unit length.
Let us assume that the current ι oscillates at frequency ω. It will excite

an electromagnetic field E in the cavity that can be represented as a sum of
eigenmodes (more precisely, the sum represents only the transverse part of the
excited field, see [3]):

E =
∑

s

AsEs , (3)

where the coefficients As are given by

As =
iωs

ω2 − ω2
s

bs , (4)

with

bs =
1

Ns

∫

ι · Hs dS , (5)

and the mode norm Ns

Ns =
1

4π

∫

E
2
s dV . (6)

The integration in Eq. (5) is performed over the boundary surface, that in Eq.
(6) over the volume of the cavity.

Equations (3)-(6) can be used to find the frequency change from ωs to ω due
to the surface impedance ζ. First, we consider this calculation in the case of a
nondegenerate mode which we denote by s = 0. In this case the dominant term
in the sum in Eq. (3) will be A0E0, with magnetic current ι = A0ι0, where

ι0 = −
c

4π
ζn × [n × H0]|wall . (7)

Rewriting Eq. (5) as

b0 =
A0

N0

∫

ι0 · H0 dS , (8)

and substituting into Eq. (4) (with s = 0), we obtain an equation for frequency
of the perturbed mode ω:

ω2 − ω2
0 =

iω0

N0

∫

ι0 · H0 dS . (9)

One can use this expression e.g. for calculating frequency shift of a mode due
to wall resistivity or due to a small perturbation in cavity shape (the Slater
formula) [3].

For the purposes of this paper, we need to generalize the above derivation to
the case when there are two modes, 1 and 2, with close unperturbed frequencies
ω1 and ω2 (|ω1−ω2| � ω1). Let us assume that the dominant contribution to the
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field comes from these two modes; we can write Eq. (3) as E = A1E1 +A2E2.
The magnetic current in the eigenmode is given by

ι = A1ι1 +A2ι2 , (10)

with
ιs = −

c

4π
ζn × [n × Hs]|wall , s = 1, 2 . (11)

Introducing the four coefficients

bsp =
1

Ns

∫

ιp · Hs dS , s, p = 1, 2 , (12)

we write, corresponding to Eq. (4), the following two equations:

ω2 − ω2
s

iωs

As =

2
∑

p=1

bspAp , s = 1, 2 . (13)

The two solutions ω of this system give the eigenfrequencies of the two per-
turbed modes, and the eigenvectors will be a linear combination of the original
unperturbed modes. The equations can be used if the difference |ω1−ω2| � |ω|;
it is also applicable for the degenerate case when ω1 = ω2.

In the next section we will apply these equation for the analysis of TM11

modes in a cylindrical cavity.

3 Cylindrical Cavity

We consider now a TM11 mode in a cylindrical cavity of radius a, with the z axis
directed along the axis of the cylinder. To simplify the analysis we will assume
that kz = 0, which means that the electromagnetic field has only the components
Ez, Hr and Hθ which do not depend on z. This reduces our problem to two
dimensions in the plane perpendicular to the z axis. The integration over the
volume V in the equations of the previous section should be understood now as
integration over the cylindrical cross-section and the integration over the surface
S is now understood as integration over the boundary of this cross-section—the
circle of radius a.

There are two TM11 degenerate modes with orthogonal polarizations in the
cylindrical cavity with perfectly conducting walls. The Ez field in the modes is
given by the following equation

Ez = J1

(ν11r

a

)

{

cos θ

sin θ

}

, (14)

where ν11 is the first root of the Bessel function J1 (we choose our overall
coefficient to be 1). The frequency of these modes is ω1 = ω2 = cν11/a. The
azimuthal component of magnetic field in the modes is given by

Hθ =
ic

ω

∂Ez

∂r
=
icν11
ωa

J ′
1

(ν11r

a

)

{

cos θ

sin θ

}

= iJ ′
1

(ν11r

a

)

{

cos θ

sin θ

}

, (15)
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where the prime denotes the derivative with respect to the argument. The norm
of the modes given by Eq. (6) is

N1,2 =
1

4π

∫

E2
zr drdθ =

1

4

∫ a

0

J2
1

(ν11r

a

)

r dr = −
a2

8
J0(ν11)J2(ν11) . (16)

The two modes are linearly polarized. This means that the vector of the
magnetic field at a given location oscillates in time in such a way that its end
point moves along a straight line (the polarization line). The polarization lines
for the two modes are perpendicular to each other.

Let us now assume that there is a surface impedance which depends on the
position on the wall ζ(θ). Using the theory of the previous section we will
calculate the perturbed eigenmodes and eigenfrequencies of the two degenerate
modes described above.

The magnetic current of the surface, given by Eq. (11), now has only a θ
component:

ιθ =
c

4π
ζ(θ)Hθ . (17)

Using Eqs. (15), (16) and (17) we can calculate the coefficients bsp in Eq. (12):

bsp =
2cJ ′

1
2
(ν1)

πaJ0(ν1)J2(ν1)
hsp , (18)

where

h11 =

∫ 2π

0

dθζ(θ) cos2 θ ,

h12 = h21 =

∫ 2π

0

dθζ(θ) cos θ sin θ ,

h22 =

∫ 2π

0

dθζ(θ) sin2 θ . (19)

Introducing ∆ω = ω−ωs and using ω2 −ω2
s ≈ 2ωs∆ω we can write Eq. (13) in

the following dimensionless form

ΛAs =

2
∑

p=1

hspAp , (20)

where

Λ =
∆ω

ω

πν1J0(ν1)J2(ν1)

iJ ′
1
2(ν1)

. (21)

Solving the system of equations (20) and finding two eigenvalues Λ1,2 gives
the frequency shifts ∆ω1,2 of the two modes. The corresponding eigenvectors
{A1, A2} define the coupling of the original linearly polarized modes in the new
perturbed eigenmodes. Note, that elliptic polarization of the modes occurs only
if the ratio A1/A2 is a complex number.
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If ζ does not depend on θ, then it can be eliminated from the system by
the transformation Λ → Λζ. The resulting system of linear equations is sym-
metric with real coefficients, and has real eigenvectors corresponding to linearly
polarized perturbed eigenmodes. Hence even a complex surface conductivity
does not guarantee elliptical polarization of modes, unless the conductivity is
non-uniform along the surface.

As a specific example, consider now the case where two short strips of the
wall, of angular length ∆θ � π, have surface conductivities ζ1 and ζ2, respec-
tively (see Fig. 1). The angular distance between the segments is equal to α.

α

∆θ

∆θ

x

y

Figure 1: The geometry of the 2D round cavity with two conducting short
segments shown in color.

The matrix elements are now approximately equal to

h11 = ∆θ(ζ1 + ζ2 cos2 α) ,

h12 = h21 = ∆θζ2 cosα sinα ,

h22 = ∆θζ2 sin2 α . (22)

Eq. (20) can be solved analytically, yielding eigenvalues

Λ1,2 =
∆θ

2

(

ζ1 + ζ2 ±
√

ζ2
1 + 2ζ2ζ1 cos 2α+ ζ2

2

)

, (23)

with corresponding eigenvectors

{A1, A2} =

{

−
1

ζ2 sin 2α

(

ζ1 + ζ2 cos 2α∓
√

ζ2
1 + 2ζ2ζ1 cos 2α+ ζ2

2

)

, 1

}

.

(24)
A complex value of the eigenvector means that the resulting eigenmode is

elliptically polarized—the end point of the magnetic field moves with time along
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an ellipse. The two important parameters of this polarization ellipse are the axes
ratio R (≤ 1) and the tilt angle ψ relative to the x axis. They can be expressed
in terms of the absolute value |A| and the argument δ of the ratio A = A1/A2,
A = |A|eiδ :

R =

∣

∣

∣

∣

S+ − S−

S+ + S−

∣

∣

∣

∣

, tan 2ψ =
2|A| cos δ

|A|2 − 1
, (25)

where S± =
√

|A|2 + 1 ± 2|A| sin δ.
To illustrate how the polarization ellipse parameterR depends on parameters

ζ1, ζ2, and the angle α we carried out calculations for the case when the surface
impedances of the two segments have the same absolute value and differ only in
phase: ζ1 = eiφζ2, where φ is a real parameter. Fig. 2 shows the dependence of
R on the angle α for several values of φ. It is seen from this figure that depending

0 0.25 0.5 0.75 1
Α�Π

0

0.25

0.5

0.75

1

R

Figure 2: The dependence of the axes ratio R versus the angle α for several
values of φ, from φ = 0.1 to φ = 0.9 with the step 0.1 (curves with smaller
values of φ have peaks closer to the center).

on the ratio of the surface conductivities, one can always find a position for the
segments which gives the maximum ellipticity factor R. The peaks for maximal
R are rather narrow, however. Note also that for the case α = 90◦ the ellipticity
is always zero (linear polarization).

4 Simulations

For numerical simulations we used the Matlab toolbox, Pdetool. It is a 2D finite
element, partial differential equation solver. We use it to solve the Helmholtz
equation for Ez:

∇2Ez + λEz = 0 (26)
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with boundary conditions. The solutions of Eq. 26 are eigenfunctions Ezn with
eigenvalues λn = ω2

n/c
2. For our model calculations the beam pipe has radius

a = 0.5 (dimensionless). For boundary condition we take Ez = 0 everywhere
except for two strips of length ∆θ = 18◦, whose centers are located at angles
θ = 0◦ and θ = α = 44◦ with respect to the x-axis (see Fig. 1). For the
upper/lower strip we choose parameter ζ = 0.0185(0.88 ± i). Both boundary
conditions indicate loss, though one strip is inductive, the other capacitive. The
parameters α and ζ were chosen to give modes with substantial ellipticity. For
the calculation 50,000 mesh points were used (part of the mesh is shown in
Fig. 3). Note that our numerical method does not assume that ζ (or ∆θ) is
small, and hence goes beyond the range of applicability of the perturbation
theory.

Figure 3: Mesh used in one quarter of the domain of calculation.

The numerical calculation yields two lowest dipole modes with eigenvalues:2

λ1 = 58.745(1.00001 − 0.00027i) and λ2 = 58.745(1.00020 − 0.00029i); the
equivalent Q’s of the modes (Q = Re (λ)/Im (λ)) are Q1 = 3700 and Q2 = 3400.
In Fig. 4 density plots of the numerically obtained Im (Ez) (left) and Re (Ez)
(right) for one of the modes are given. Violet indicates positive and blue negative
field values. Note that according to the Panofsky-Wenzel theorem the transverse
wake force is just proportional to the gradient of the field plotted here.

In the case of linearly polarized modes the real and imaginary parts of the
solution would be oriented in the same or opposing direction. From Fig. 4 we
see that this is not the case; and since the two parts of Ez are comparable in
amplitude, we expect this mode to have significant polarization ellipse parameter
R. We fit both parts of Ez to

AJ1

(ν11r

a

)

cos(θ − δ)

2Note that the mode frequencies are shifted up slightly from the ideal, perfectly conducting
case, where λ = (ν11/a)2 = 58.728. This is primarily an artifact of the boundary actually
used in the simulation—a 180 sided inscribed, equilateral polygon, rather than a circle.
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y

x

Figure 4: Numerically obtained density plots of Im (Ez) (left) and Re (Ez)
(right) for a first dipole mode for our model problem (round pipe case). Violet
(blue) indicates positive (negative) field values. The node lines of the analytical
fits (at angles θ = δ + π/2) are also shown.

for amplitude A and orientation angle δ. The fits are good, with a maximum
deviation < 1%. [Note that in Fig. 4 the node lines of the analytical fits (at
angle θ = δ + π/2) are also displayed.] Then using Eqs. 25, we obtain the
polarization ellipse parameters R = 0.64 and tilt angle ψ = −16◦. Note that the
second eigenmode has the same R though with the tilt angle rotated by π/2.

If we reduce the strip length by a factor of 3 to ∆θ = 6◦ and scale the
boundary condition up by a factor of 3 we might expect to obtain similar results.
In fact, however, the numerically obtained Q’s of the two modes are no longer
approximately equal (Q1 = 5500, Q1 = 2600); in addition, R = 0.52 and
ψ = −42◦. These results are not in agreement with our analytical perturbation
calculation. We find that, for short boundary strips, the step-like change in
boundary condition at the edge of the strips invalidates the applicability of the
perturbation calculation. This is due to the fact that the magnetic field H in
the vicinity of the strips differs from the value in the unperturbed mode even
though |ζ| � 1. A modified perturbation theory can be developed which takes
this effect into account and is based on the smallness of the parameter ∆θ � 1
only. Such a theory, however, is beyond the scope of this paper. For longer
strips the edge conditions become less important, and our perturbation method
still holds.

4.1 Elliptically Distorted Boundary

In reality structures are never perfectly round, and we can imagine that a small
change in the boundary shape can have a big effect on the rotating mode proper-
ties. Let us consider a slightly elliptical boundary. Slater’s perturbation formula
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for frequency change due to a small boundary change is given (in 2D) by

δλ

λ
=

∫

∆A
(E2 −B2) da
∫

A
E2 da

, (27)

with the numerator an integration over the area changed by the modification
∆A, and the denominator an integration over the entire cavity area A. Let us
consider a round structure of radius a distorted to an upright ellipse with x and
y axes a(1 + ε) and a, with ε a small parameter. According to Slater’s formula,
for this case, the frequency splitting of two TM11 modes becomes ∆λ/λ = ε.
For a slightly elliptical structure, with perfect boundary conditions, the Pdetool
program yields a frequency shift that is in good agreement with this result; for
example, for ε = 10−3 the program yields ∆λ/λ = 1.004× 10−3.

The equations of the perturbation theory for the case of elliptically distorted
boundaries become

ΛsAs =
2

∑

p=1

hspAp , (28)

where

Λs =
∆ω − δω

(e)
s

ω

πν1J0(ν1)J2(ν1)

iJ ′
1
2(ν1)

, (29)

with δω
(e)
s = (δλ/λ)ω being the frequency change of the mode due to ellipticity

of the cross section. The coefficients hsp in this equation can still be calculated
from Eqs. (19) due to the assumed smallness of the boundary distortion.

In Table 1 we present numerical results for our model problem, but now
with slightly distorted elliptical boundaries, for several values of ε. Given are the
relative frequency splitting Re (∆λ/λ) and the Q’s of the modes; the polarization
ellipse parameters R and the tilt angle ψ for one mode (for the other mode, R is
the same but ψ is rotated by π/2). We see that frequency splitting is minimized
and R is maximized in the round case (ε = 0). Also, as expected, R is significant
only for ε . 1/Q. We also see that for elliptical boundaries, the Q’s of the two
modes can become quite dissimilar.

In Fig. 5 we plot R from the table (the plotting symbols). Superimposed
is the analytical perturbation solution, Eqs. (28) and (29). We see remarkably
good agreement.

5 Discussion

The ILC RF structure, for which elliptically polarized modes were numerically
found, has three couplers that break the cylindrical symmetry of the cavity:
one fundamental mode coupler (downstream, at azimuthal angle θ = 0) and
two identical higher mode couplers (one upstream at θ = −30◦ and one down-
stream at θ = −145◦). Assuming our 2D analysis qualitatively holds also for
this 3D geometry, we can say that our basic requirement for elliptically polarized
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Table 1: Numerical results for our model problem with an elliptically distorted
boundary. Parameters are α = 44◦, ∆θ = 18◦, ζ = 0.0185(0.88 ± i). The
boundary ellipse is upright with x and y axes a(1 + ε) and a. Given are the
relative frequency split Re (∆λ/λ), the Q’s of the modes; the ellipticity R and
the tilt angle ψ for one mode (for the other mode R is the same, but with ψ
rotated by π/2).

ε [10−3] Re (∆λ/λ) [10−3] Q1 [103] Q2 [103] R −ψ1 [deg]

−2.0 1.6 5.8 2.5 0.10 86
−1.0 0.6 7.6 2.3 0.19 76
−0.5 0.2 12.1 2.1 0.02 59

0.0 0.2 3.7 3.4 0.64 16
0.5 0.8 3.0 4.3 0.22 5
1.0 1.4 2.9 4.5 0.14 3
2.0 2.4 2.8 4.8 0.08 2

modes is satisfied: the “impedance” varies in a complex way with θ (the funda-
mental mode and higher mode couplers are completely different objects). Note,
however, that the ILC structure is a 3D object, and the conditions for finding
elliptically polarized modes are likely more varied in a 3D structure than for our
2D model. For example, for two identical boundary strips in the 2D problem,
we can already see from the mirror symmetry of the structure that rotating
modes do not exist; in the equivalent 3D case, however, if one boundary strip
is upstream and the other downstream we no longer have such symmetry, and
elliptically polarized modes are not a priori precluded.

If a bunch excites an elliptically polarized mode one needs to wait some
time before a test particle will experience an elliptically polarized kick. The
reason is that there are two elliptically polarized eigenmodes with nearly the
same frequencies. The field excited by the bunch will be a superposition of
the elliptic modes that is initially linearly polarized. After time t ∼ π/(2∆ω),
however, the relative phase of the modes starts to deviate significantly from its
initial value, and the total field becomes elliptically polarized. For example,
considering the nominal (round, ε = 0) case in Table 1, we see that only after
ωt ≈ 2500 behind the exciting bunch will this happen. For the ILC example,
where the bunch spacing is 308 ns, and the dipole mode frequency is 1.8 GHz, if
the mode is excited by the first bunch in a train this point is reached at 220 ns.
Since Q ≈ 3500, the damping time is 620 ns. Thus the wakefield reaches to
only ∼ 4 bunches behind the exciting bunch. In simulations for the real ILC
9-cell structure design many dipole modes are found with Q’s typically ∼ 104

[1]; for those that are elliptically polarized, the effect will move further back in
the bunch train than calculated here.

We saw that if the cavity is out-of-round by more than an equivalent ε ∼ 0.5×
10−3, then elliptical polarization is suppressed. If the Q of a mode is 10 times
larger, as the simulations suggest, an out-of-roundness ∼ 10−4 is already enough
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Figure 5: Polarization ellipse amplitude ratio R vs boundary ellipse parameter
ε.

to preclude elliptical modes. Thus, in the real ILC cavities with manufacturing
errors it is very possible that elliptical modes are precluded.

Finally we should mention that, from our point of view, elliptically polar-
ized modes are quite interesting in themselves as a physical phenomenon. As
a practical problem for the ILC, however, linearly polarized modes (with the
polarization plane tilted relative to the x and y axes), which occur whenever
there is broken symmetry in the cavity are just as dangerous for coupling x
beam motion into the y plane.

6 Conclusion

In this paper we have studied conditions under which a perturbation in boundary
conditions causes two modes with close frequencies to coalesce into elliptically
polarized eigenmodes. We have found that a surface impedance that has a
complex value and varies along the cavity wall leads to such elliptically polarized
modes. For a simple two dimensional model our numerical simulations agree
well with the analytical results of perturbation theory in its region of validity.
We have also demonstrated that even a small variation in the cavity shape
can suppress the ellipticity of such modes. And finally, we have discussed the
excitation of elliptical modes by bunch trains passing though the linac cavities
in the ILC.
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