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We performed an experimental study of charge identification of heavy ions from

helium to carbon having energy of about 290 MeV/u using an emulsion chamber.

Emulsion was desensitized by means of forced fading (refreshing) to expand a dy-

namic range of response to highly charged particles. For the track reconstruction

and charge identification, the fully automated high speed emulsion read-out system,

which was originally developed for identifying minimum ionizing particles, was used

without any modification. Clear track by track charge identification up to Z=6 was

demonstrated. The refreshing technique has proved to be a powerful technique to

expand response of emulsion film to highly ionizing particles.
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1 Introduction

Recent development of the nuclear emulsion technology is remarkable. Despite

its excellent performance as a particle detector with sub-micron resolution and

ability to record a very short track in 4π solid angle, nuclear emulsion became

an obsolete technology in late 60’s in the nuclear and elementary particle

experiments. The time consuming measurement of tracks with a manually

handled microscope mainly overwhelmed the advantages of nuclear emulsion,

and yielded its position as a major detector to emerging new technologies at

that time such as bubble chamber and electronic counter. However the recent

success of developing an automated image processing system (Ultra Tracking

Selector - UTS [1]) for nuclear emulsion and its event reconstruction soft-

ware package (NETSCAN [2]) changed the situation drastically. This system

opened up a road to apply nuclear emulsion to a large-scale elementary parti-

cle experiment which requires a high statistics data. The successful application

of the system to the DONUT experiment [3] resulted in the discovery of tau

neutrino. This success has brought the old technology back to the frontier of

the field of elementary particle experiments.

Motivated by this remarkable progress in the nuclear emulsion technology, we

recently started a project to apply it to study the interactions of relativistic

heavy ions in matter. Heavy ions of several hundred MeV/u are important

sources for cancer therapy [4]. The 12C ion beam of this energy range has been

used in practical treatments for more than 10 years at the Heavy Ion Medical

Accelerator in Chiba (HIMAC), Japan. Despite this practical usage of heavy

ions to radiotherapy, it is still considered fundamental to fully understand their

interactions with matter. Especially the understanding of fragments from the
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interaction has a critical importance in improving the ion therapy technology

and, because of its high spatial resolution and capability to record short tracks,

nuclear emulsion can be one of the most suitable devices for this study.

However there is a challenge to be overcome when we try to apply this new

technology to study fragmentations from ion interactions. Charge identifica-

tion of ions in nuclear emulsion is essential for the study, though its automated

procedure has not been established yet. It is well known that the grain den-

sity of a track in emulsion is approximately proportional to the energy loss

of charged particle. Based on this fact, in old days, charge identification was

done by means of manual measurements [5] which counts developed grains.

There were also several attempts to automate the process using photometric

methods [6] and image analysis taken with CCD [7]. Recently several authors

of the current report demonstrated that pions and protons near the mini-

mum ionizing region can be separated using information related to the grain

density [8] in Opera films - a nuclear emulsion film developed for the OPERA

experiment [9]. The NETSCAN system automatically provides this grain den-

sity related information when it reconstructs tracks. Although this technique

has been developed for particles with Z=1, it also can be applied for charge

identification of ions if we can use nuclear emulsion which would not saturate

its response to highly ionizing particles like ions. Therefore the key technology

we need to develop is a realization of non-saturating Opera films for highly

ionizing particles and an automated procedure of charge identification using

them.

To realize a emulsion film of above mentioned quality, we studied a possibil-

ity to utilize the so-called refreshing technique. Refreshing is a technology to

erase tracks in emulsion film by means of forced fading. Fading occurs in any
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type of photographic film with the passage of time. It is caused by destruction

of latent image center in a silver bromide crystal by oxidation. It is known

that, by adding 5-methylbenzotriazole to emulsion, forced fading (i.e., to ac-

celerate fading) can be realized under high temperature and high humidity

environment [10]. Opera film has this feature of forced fading. This implies

that, adjusting the amount of forced fading of track images in the film by con-

trolling temperature and humidity, the saturation of grain density by passage

of ions can be resolved.

In this paper we report the results of our study for applying the refreshing

technique to Opera films in order to extend its dynamic rage of the response

for energy loss by ionization. We also show experimental results of charge

identification of ions from Z=2 to 6 with energy of ∼290 MeV/u (βγ ∼0.8)

using refreshed Opera films.

2 Setup and Beam exposure

The experiment was performed using the secondary beam line of HIMAC [11]

at NIRS (National Institute of Radiological Sciences). The schematic view of

secondary beam line is shown in Fig.1. The primary 12C beam of 290 MeV/u

from HIMAC was extracted to the secondary beam line and transported to

the beryllium production target with thickness of 2 mm. Various types of

nuclear fragments having almost equal velocity with the primary beam were

produced by fragment reactions. The selection of a specific type of nuclide

for the secondary beam line was done by tuning the current of the double

bending magnets, which have a degrader in between, and the position of the

momentum slit.
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In the current experiment we exposed an emulsion chamber, which consists

of stacked Opera films, to the secondary beams of 3He, 7Li, 9Be and 11B with

∼290 MeV/u. We also exposed the primary 12C of 290 MeV/u by removing the

production target in the secondary beam line. The beam parameter for each

nuclide were tuned to maximize its purity. For this tuning the ∆E counter

and the time-of-flight system, which were standardly equipped in the beam

line, were utilized. The achieved purity and the nominal center value of energy

for each beam are summarized in Table 1. As seen in the table there is at the

maximum 4% difference in the beam velocities. This is due to our approach

of beam tuning. Because it was not mandatory to adjust to equal all beam

energies in the current study of charge identification, we set a higher priority

on attaining the maximum beam purity. Despite this beam tuning approach,

the attained results were ∼60% for 9Be and ∼80% for 7Li. The reason of low

purity for these nuclides is that, because of relatively small difference in their

charge to mass ratios, they tend to contaminate each other.

A schematic drawing of the emulsion chamber is shown in Fig.2. It is composed

of stacked 32 sheets of Opera film. To guarantee a uniform response to beam

particles these sheets were selected from a single batch of film production.

A film sheet has 44 µm thick emulsion layers coated on both sides of a 205

µm thick TAC (cellulose triacetate) base. The surface measures 102 mm ×
127 mm. Each sheet was packed with aluminum-coated film and thermosealed

under vacuum. On the front surface (i.e., the upper-stream side of the beam

line) of emulsion chamber, an extra film called changeable sheet was set. At

the emulsion chamber exposure to each nuclide beam of 3He, 7Li, 9Be, 11B and

12C, this sheet was replaced with a new one. During the data analysis stage,

we used these changeable sheets for a reference to identify each beam track in
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emulsion chamber.

One of the most critical parameters for exposing emulsion chamber to beam

was the beam density. Exposure to a beam of too high density causes overlap-

ping of particles, which makes the track reconstruction at the analysis stage

difficult. To avoid this problem we kept the beam density in the order of 103

tracks/cm2 in the current experiment. It took about 6 hours to complete the

exposure of emulsion chamber to all beam types, though the most time was

consumed for tuning the parameters of the secondary beam line.

3 Desensitization: Refreshing and Development

After the exposure of emulsion chamber to the HIMAC secondary beams, we

transported emulsion chamber to Scanning Laboratory of Nagoya University

to study the performance of the refreshing technique for charge identification.

As described in the introduction, refreshing makes the sensitivity of emulsion

lower and provides a possibility to avoid the saturation of response to highly

charged particles. According to the report [10], the refreshing of Opera film

for three days under the environment of 30 oC and relative humidity of 98%

resulted in more than 70% of decrease in the grain density of tracks created

by minimum ionizing particles. It was also reported that an increase of fog

in the film was not observed by this refreshing. Here fog is due to accidental

grains randomly distributed in the film and it causes a problem during the

track recognition if its density is too high.

As shown in Fig. 2, we chose the first 16 film sheets in emulsion chamber

and classified them into four groups (i.e., each group has four film sheets).

7



Following the report quoted above, we refreshed the first group with 30 oC. We

also refreshed other two groups with 38 oC and 45 oC. The fourth group was not

refreshed and used as a reference. During the refreshing process the films were

kept in a light-shielded environmental chamber for three days. The chamber

was controlled to humidity of 98±1% and to the specified temperature with

an accuracy of ±0.1 oC. After completing the refreshing, all film sheets were

processed in the exactly same condition with respect to the development time

and temperature.

4 Track Reconstruction and Pulse Height Measurement

We used UTS to read out a track image in the refreshed films. UTS creates

16 layers of tomographic CCD images from a 44 µm thick emulsion layer of

the film. Based on these tomographic images, the image processor in UTS

automatically recognizes track segments in an emulsion layer as three dimen-

sional vectors. The UTS system has the field view of 150 µm × 120 µm and

processes three views per second. The detection efficiency of a track segment

was 98%. The area of 5 mm × 5 mm was scanned on both of the two emulsion

layers from the uppermost sheet to the 16th sheet along the direction of each

incident beam. During a scan the angles and positions of each track segment

were recorded. After the scanning, two corresponding track segments in the

emulsion layers of both sides were connected across the TAC base - a new track

segment thus created is called a base track. By connecting based tracks which

lay within a certain road, NETSCAN constructed a beam track. The tracks

are unambiguously identified in the consecutive emulsion sheets with 99.5%

probability. During this process NETSCAN also tried to align the geometrical
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position of films and generated alignment parameters. These parameters were

utilized to the fine-tuning of track reconstruction at the later stage. The ac-

curacy of alignment of emulsion sheets with respect to each other and to the

changeable sheet thus obtained were 2 µm after internal calibration of cham-

ber using beam tracks. The loss of 12C beam tracks due to the fragmentation

in the thickness of 16 film sheets is estimated to be 2%.

During the recognition of a track segment, UTS also recorded information

related to the grain density of the segment. This information consists of the

number of tomographic CCD image layers having pixels associated with the

track segment. The size of one pixel in CCD image was 0.29 µm × 0.23 µm.

This grain density related information is called pulse height (PH) - this name

comes from the fact that on and off of a pixel is measured by digitized output

of CCD. If a particle creates a track image on all sixteen tomographic layers,

then the PH value is 16 (i.e., saturated). For particles with Z=1 the PH is not

usually saturated but for highly ionizing particles like ions it is 16 for most

cases. This implies that PH is not a good measure for identifying the charge

of ions.

In the current study we used information called volume pulse height (VPH)

to identify ions’ charge. It is well known that the thickness of track increases

with the charge of particle [5]. By defining VPH as the sum of the number of

pixels associated with each recognized track in all sixteen layers of tomographic

CCD images (Fig.3), VPH reflects the width of tracks. It measures the grain

density of a track segment in the three dimensional space along the track. The

VPH value of a base track is the addition of VPHs on both emulsion layers.

Applying the refreshing technique (i.e., desensitized the film) it is expected

that we can eliminate associated pixel hits created by δ-rays from ions. This
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expands the dynamic range of VPH and, by tuning the refreshing condition,

we can maximize the charge separation.

5 Results and Discussion

The emulsion sheets refreshed in different temperature conditions have dif-

ferent sensitivity to ions. By selecting an appropriate refresh temperature it

is possible to maximize the separation of one type of ion to others. Combin-

ing films which are refreshed in various temperatures, it is possible to realize

emulsion chamber which has a wide dynamic range of the charge separation

of ions. Taking this in mind, we studied the response of the refreshed films

to the exposed ion beams. We averaged the VPH values of 4 sheets (VPHav.4,

total length in emulsion is 0.35 mm for each track) refreshed in the same

temperature condition as

VPHav.4 ≡
∑N

i=1 VPHi

N
,

where VPHi is the volume pulse height on i-th sheet. N denotes the num-

ber of sheets on which track were detected (maximum 4). Fig.4 shows the

distribution of VPHav.4 for each ion beam at four refreshing conditions (i.e.,

non-refresh, 30 oC, 38 oC and 45 oC). As seen in the figure, VPH increases with

the charge of ions. This shows that VPH measures the ionization of ions with-

out a saturation. The figure also shows that the average VPH values decrease

with increasing the refreshing temperature for all ions. This demonstrates that

the films were more desensitized by refreshing with a higher temperature.
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To study quantitatively the overall performance of charge separation, we av-

eraged VPH values of 16 sheets (VPHav.16, total length in emulsion is 1.4 mm

for each track). Here 16 sheets consists of four films from each four refreshing

conditions. Fig.5 shows the distribution of VPHav.16 for each beam. As seen

in the figure the 9Be data has one main peak of beryllium and two sub-peaks

corresponding to lithium and boron. Also the 7Li data has a sub-peak corre-

sponding to beryllium. The height ratios of these sub-peaks to the main peaks

are consistent with the purity of the beam shown in Table 1. Therefore we

can consider that these sub-peaks are from the contaminations in main beam.

The clear separation of peaks observed in Fig.5 demonstrates an excellent

capability of the refresh technique for charge identification.

To quantify the charge identification capability, we calculated the significance

of separations between the peak of VPHav.4 by one nuclide and others. Here

the significance was defined as (p(1)− p(2))/
√

σ2
p(1) + σ2

p(2), where p(1(2)) and

σp(1(2)) denotes center value and standard deviation for nuclide 1(2) respec-

tively. The results are summarized in Table 2 and Table 3. In these calculations

the cut of 190 ≤ VPHav.16 ≤ 225 for 9Be and the cut of V PHav.16 ≤ 190 for

7Li were applied to eliminate the beam contamination. As seen from the table,

the higher the refresh temperature, the larger the significance of separation.

However the separation was not improved significantly in higher temperature

over 38 oC, because the increase of the fog density during the refreshing pro-

cess deteriorated the quality of track measurement. In Table 4 we show the

fog density observed in different refreshing temperature. The results in the

table suggest that the refreshing temperature of 45 oC (and higher) should be

avoided in a practical application.
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To study the performance of the refreshing technique further we carried out

the charge identification of beam particle based on the maximum likelihood

method. It is possible to consider that the VPHav.4 distributions shown in Fig.4

give response functions of refreshed films to various ions. We denote observed

VPHav.4 for the beam type (charge z) by the films in the refresh conditions t

as VPHt. Here t runs from 1 to 4, and covers the conditions of non-refreshed,

refreshed at 30 oC, 38 oC and 45 oC. Assuming these VPHav.4 distributions

Gaussian, the observed response functions R of charge z by the film with the

refresh condition t can be expressed as

Rz,t(VPHt) ≡ 1

σz,t

√
2π

e
− (VPHt−µz,t)

2

2σ2
z,t ,

where Rz,t(VPHt) is normalized to unity in the whole range of VPHt. The

value of µz,t and σ(z, t) for each response function are given in Table 2.

If we regard the above response function as a function of charge z, then it can

be interpreted as the probability function of the particle of charge z giving

VPHt in the film refreshed by the condition of t. Replacing µz,t to µt(z) and

σz,t to σt(z), we can define the probability function as

Pt(z, VPHt) ≡ 1

σt(z)
√

2π
e
− (VPHt−µt(z))2

2σ2
t
(z) .

Using this probability function we can define the likelihood function as

L(z) ≡
4∏

t=1

Pt(z, VPHt) .

We now can estimate the charge of a given track by varying the z and to

find the value which gives the maximum of the above likelihood function.

The distribution of estimated z for each beam is shown in Fig.6-(a) in linear
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scale and Fig.6-(b) in logarithmic scale. We can estimate the error of charge

identification based on this maximum likelihood using the results from the

carbon beam. As shown in Table 1, we know that the purity of the carbon

beam is 100%. According to the result seen in Fig.6-(a) and Fig.6-(b), the

probability that carbon is wrongly identified as boron is 5.7%.

The above study demonstrates that the likelihood analysis of volume pulse

height measured in emulsion sheets having refreshed in various condition is a

powerful tool for charge identification. In the study, we used in total 16 sheets,

which corresponds to the track length of only 1.4 mm. In a practical applica-

tion, we can utilize much larger number of films, which promises much higher

performance of charge identification. It is also worth to emphasize the unique

characteristics of the refreshing technique. Refreshing can be applied after the

exposure of emulsion film to beam. This implies that, after the beam exposure,

it is possible to tune the response of emulsion chamber to ionizing particles

according to the goal of data analysis. This provides a large flexibility when

we consider a charge identification measurement using emulsion chamber.

6 Conclusions

It has been demonstrated that forced fading of nuclear emulsion film called re-

freshing is a powerful technique to expand the dynamic range of film’s response

to highly ionizing particles. The dynamic range of the film can be optimized

by controlling the refreshing temperature. Using the Opera film, which has

the refreshing capability, we could identify the charge of 3He, 7Li, 9Be, 11B,

whose energies were around 290 MeV/u. Combining pulse height information

from the films refreshed at the temperatures of 30 oC, 38 oC and 45 oC, the
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significance of separation between various nuclides were >4.6 sigma for 3He to

7Li, 4.8 sigma for 7Li to 9Be, 3.0 sigma for 9Be to 11B, and 2.3 sigma for 11B

to 12C. A higher temperature gave better separation of highly charged parti-

cles, though it was not possible to go beyond 45 oC because the increasing of

film’s fog density deteriorated the quality of track measurement. The charge

identification based on maximum likelihood method using information of vol-

ume pulse height was a powerful tool. In the study we used information of the

pulse height from a small portion (1.4 mm) of the entire track of a particle. In

a practical application, it is possible to utilize much larger part of the track,

which promises much better performance of charge identification. An emulsion

chamber having combination of films refreshed under various conditions can

be envisaged as a powerful device for charge identification of highly ionizing

particles.
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Table 1

Beam property

nuclide E(MeV/u) βγ purity(%)

3He 276 0.82 >90

7Li 277 0.82 ∼80

9Be 272 0.82 ∼60

11B 269 0.81 >90

12C 290 0.84 100
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Table 2

Center value of volume pulse height with sigma () after Gaussian fit

nuclide average of 16 all sheets not refreshed 30 oC 38 oC 45 oC

3He - 256.7 (7.4) 126.9 (11.1) 81.5 (12.9) -

7Li 174.4 (5.2) 284.7 (6.7) 189.7 (7.8) 155.6 (9.7) 69.3 (12.0)

9Be 209.8 (5.3) 299.5 (8.1) 223.0 (7.8) 202.9 (8.3) 114.7 (11.5)

11B 230.9 (4.8) 312.2 (9.1) 240.2 (7.6) 223.3 (7.8) 148.6 (11.0)

12C 246.4 (4.7) 318.5 (8.8) 256.5 (9.0) 242.1 (8.6) 170.0 (9.9)
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Table 3

Significance of discrimination

nuclide average of 16 all sheets not refreshed 30 oC 38 oC 45 oC

(sigma) (sigma) (sigma) (sigma) (sigma)

3He to 7Li - 2.8 4.6 4.6 -

7Li to 9Be 4.8 1.4 3.0 3.7 2.7

9Be to 11B 3.0 1.0 1.6 1.8 2.1

11B to 12C 2.3 0.5 1.4 1.6 1.4
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Table 4

Fog density

not refreshed 30 oC 38 oC 45 oC

Fog density (/1000 µm3) 3.1±0.4 4.8±0.4 5.7±0.5 12.4±0.7
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Figure captions

Fig.1

Schematic view of the secondary beam line at NIRS-HIMAC.

Fig.2

Schematic view of emulsion chamber structure.

The uppermost four subsequent sheets in emulsion chamber were not re-

freshed.

From 5th to 8th, 9th to 12th and 13th to 16th sheets from up-stream were

refreshed in 30 oC, 38 oC and 45 oC respectively.

Fig.3

Schematic view of tomographic CCD images.

Sixteen layers of tomographic images along the tracks are taken with UTS.

Size of one pixel in CCD image is corresponding to 0.29 µm × 0.23 µm.

Fig.4

Distribution of volume pulse height using four subsequent sheets having each

refresh temperature. (a) not refreshed, (b) 30 oC, (c) 38 oC and (d) 45 oC.

From top to bottom results of 3He,7Li,9Be,11B and 12C beams are shown.

In (d) 3He has no signal because helium tracks cannot be detected in the

emulsion sheets refreshed.

Fig.5

Distribution of volume pulse height using all sixteen sheets.

From top to bottom results of 3He,7Li,9Be,11B and 12C beams are shown.

3He has no signal because helium tracks cannot be detected in the emulsion

sheets refreshed in 45 oC.

Fig.6
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Distribution of estimated charge.

From top to bottom results of 3He,7Li,9Be,11B and 12C beams are shown.

Signals corresponding to Z=4 in 7Li beam, Z=3 and 5 in 9Be beam and Z=3

and 4 in 11B beam are due to contamination of wrong charge particles in sec-

ondary beam. (a)linear scale, (b)logarithmic scale.
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Fig. 4.
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Fig. 5.
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Fig. 6.
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