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Abstract

Rare B decays permit stringent tests of the Standard Model and allow searches
for new physics. Several rare radiative-decay studies of the B meson from
the BABAR collaboration are described. So far no sign for new physics was
discovered.

1 Introduction

At the SLAC PEP-II B-Factory, the BABAR detector collected so far more than

250M BB pairs, created by e+e− collisions at the Υ (4S) resonance. This data

set makes searches for rare decays feasible at branching fractions (BF) of 10−4

or less. This talk concentrates on radiative B decays. Additional results from

BABAR were discussed elsewhere at this conference. 1)



2 Fully- and Semi-inclusive B → Xsγ, B → K∗(892)γ & B → K∗

2 (1430)γ

The lowest-order Feynman diagram of b → sγ is a one-loop electromagnetic

penguin, in which non-Standard Model (non-SM) virtual particles (like the

Higgs) might influence the decay rate. Measuring the energy distribution of

the b quark inside the B meson helps extract |Vub| from B → Xulν. The decay

b → sγ was studied in inclusive and exclusive modes using ∼ 89M BB pairs.

In the so-called “fully-inclusive” measurement only the photon of B →

Xsγ needs to be detected, but large background has to be suppressed. In the

“semi-inclusive” measurement, the B → Xsγ BF is determined from 38 exclu-

sive states with about 45% of the total rate estimated to be missing.

The Eγ spectra from the two B → Xsγ analyses are shown in Fig.1.

The K∗γ peak, prominent at high Eγ for the semi-inclusive analysis, is not vis-

ible for the inclusive analysis due to resolution constraints. Fig.2 left plots the

fully-inclusive partial BFs against the value of the lower cut in Eγ . The overall

semi-inclusive BF, when extrapolated to Eγ > 1.6 GeV, agrees with the SM

prediction and with the results from other experiments (Fig.2 right). 2, 3)
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Figure 1: Photon energy spectrum from fully- (left, in Υ (4S) frame) and semi-
inclusive B → Xsγ analyses (right, in B frame, with theory spectra overlaid).
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Figure 2: Partial BFs versus lower cut in Eγ (left) and overall BF measure-
ments (right) of B → Xsγ for Eγ > 1.6 GeV.



Non-perturbative hadronic effects complicate the theoretical calculations

of exclusive decays like B → K∗(892)γ and B → K∗

2 (1430)γ, so that the

measurements are currently more accurate than the predictions. A summary

of the results is shown in Fig.3. 4, 5)

Figure 3: Branching fractions of B → K∗(892)γ and B → K∗

2 (1430)γ.

3 B → Xsll, B → K(∗)ll and B → (ρ, ω)γ

The decay b → sll has been measured semi-inclusively (B → Xsll) on 89M

BB pairs, and exclusively (B → K(∗)ll) on 229M BB pairs. The former

measurement is again based on a sum of exclusive states, with about half of

the total rate missing, and its BF 6) of (5.6 ± 1.5 ± 0.6 ± 1.1) × 10−6 for

mll > 0.2 GeV/c2 agrees well with the SM prediction. The exclusive decay

results are shown in Fig.4 left. 7)

The decay b → dγ has been studied in 221M BB pairs by searching for

B → (ρ, ω)γ. These decays go primarily through penguin diagrams, but also

through W -exchange or W -annihilation. The background originates mainly

from qq (=udsc) events. The BF results are summarized in Fig.4 right. 8)

Figure 4: BF measurements and SM predictions for K(∗)ll (left) and B →
(ρ, ω)γ decays (right).



4 B0 → D∗0γ and B0 → φγ

The B0 → D∗0γ decay with SM predictions around 10−6 is dominated by

W -exchange. The final B candidates from 88M BB pairs are described by

mES =
√

E∗2
beam − p∗2B and ∆E∗ = E∗

B − E∗

beam, with E∗

beam being the center-

of-mass (CM) beam energy, and E∗

B and p∗2B the B candidate’s CM energy and

momentum. Background, mainly from BB decays, is estimated to be 9.4± 1.7

events in the mES-∆E signal box. Thirteen observed data events (Fig.5 left)

lead to a BF upper limit of 2.5× 10−5 at 90% confidence level (CL). 9)

The experimental signature of the B0 → φγ decay is clean, but the SM

prediction of the BF is very low with 3.6×10−12. Candidates are selected from

124M BB pairs. In the signal region, a qq (BB) background of 6.0±1.0 (<0.1)

events is expected. Eight events observed in data (Fig.5 right) result in a BF

upper limit of 8.5 × 10−7 at 90% CL. 10)
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Figure 5: mES-∆E plane of real data for B0 → D∗0γ (left) and B0 → φγ
(right). In both plots the signal box is indicated on the right side.
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