Measurement of CP Asymmetry in B0 ---> F0 K0(S), B0 ---> Phi K0 And B0 ---> K+ K- K0(S) Decays

by P. E. Kutter

on behalf of the BaBar Collaboration

Contributed to DPF 2004: Annual Meeting of the Division of Particles and Fields (DPF) of the American Physical Society (APS), 08/26/2004--8/31/2004, Riverside, California

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Work supported by Department of Energy contract DE-AC02-76SF00515.

۳.,

MEASUREMENT OF *CP* ASYMMETRY IN $B^0 \rightarrow f_0 K_s^0, B^0 \rightarrow \phi K^0$ AND $B^0 \rightarrow K^+ K^- K_s^0$ DECAYS

PAUL E. KUTTER'

The Department of Physics, University of Wisconsin at Madison, Madison, Wisconsin 53706-1390 USA[†]

We present results on time-dependent *CP* asymmetries in $f_0(980)(\rightarrow \pi^+\pi^-)K_S^0$ and $B^0 \rightarrow K^+K^-K^0$. The measurements use a data sample consisting of approximately $209(f_0(980)(\rightarrow \pi^+\pi^-)K_S^0)$ and $227(B^0 \rightarrow K^+K^-K^0)$ million B-meson pairs recorded at the $\Upsilon(4S)$ resonance with the BABAR detector at the PEP-II Bmeson Factory at SLAC. From a time-dependent maximum likelihood fit, we measure for $B^0 -$, $f_0(980)(\rightarrow \pi^+\pi^-)K_S^0$: the mixing-induced *CP* violation parameter $S_{f_0K} = -0.95^{+0.32}_{-0.23}$ (stat) ± 0.10 (syst) and the direct *CP* violation parameter $C_{f_0K} = -0.24 \pm 0.31$ (stat) ± 0.15 (syst). From a simultaneous fit to $B^0 \rightarrow \phi K_S^0$ and $B^0 \rightarrow \phi K_L^0$ decays, we find: $S_{\phi K_S^0} = -S_{\phi K_L^0} = +0.50 \pm 0.25$ (stat) $^{+0.07}_{-0.04}$ (syst) and $C_{\phi K} = 0.00 \pm 0.23$ (stat) ± 0.05 (syst). For $B^0 \rightarrow K^+K^-K_S^0$ decays with $B^0 \rightarrow \phi K_S^0$ decays excluded, we find: $S_{KKK}(no \phi K_S^0) = -0.42 \pm 0.17$ (stat) ± 0.04 (syst) and $C_{KKK}(no \phi K_S^0) = +0.10 \pm 0.14$ (stat) ± 0.06 (syst). From the $B^0 \rightarrow K^+K^-K_S^0$ decays with $B^0 \rightarrow \phi K_S^0$ decays excluded, we extract the fraction of *CP*-even final states from angular moments $f_{even} = 0.89 \pm 0.08 \pm 0.06$.

1. Introduction

In the Standard Model (SM), CP violation arises from a single phase in the threegeneration Cabibbc-Kobayashi-Maskawa quark-mixing matrix '. Possible indications of physics beyond the SM may be observed in the time-dependent CP asymmetries of B decays dominated by penguin-type diagrams to states such as f_0K^{0a} , ϕK^0 and $K^+K^-K^{0\ 2}$. Neglecting CKM-suppressed amplitudes, these decays carry the same weak phase as the decay $B^0 \rightarrow J/\psi K^0$ ³. As a consequence, their mixinginduced CP-violation parameter is expected to be $-\eta_f x \sin 2\beta = -\eta_f x 0.725 \pm 0.037$ ⁴ in the SM, where η_f is the CP eigenvalue of the final state f, which is +1 for $f_0 K_s^0$, -1 for ϕK_s^0 and +1 for ϕK_L^0 . If $K^+K^-K_s^0$ decays proceed through a P(S)-

^{*}Onbehalf of the BaBar Collaboration

[†]Department of Physics, 1150 University Ave., Madison, WI 53706, USA

^aThroughout the paper f_0 refer to the $f_0(980)$ and its decay to $\pi^+\pi^-$. In addition, charge conjugate decay modes are assumed unless explicitly stated.

wave leading to a CP-odd (even) final state, we expect $\eta_f = (-)1$. There is no direct *CP* violation expected in these decays since they are dominated by a single amplitude in the SM. Due to the large virtual mass scales occurring in the penguin loops, additional diagrams with non-SM heavy particles in the loops and **new** *CP*violating phases may contribute. Measurements of *CP* violation in these channels and their comparisons with the SM expectation are therefore sensitive probes for physics beyond the SM. The time-dependent *CP* asymmetry is obtained by measuring the proper time difference *At* between a fully reconstructed neutral *B* meson (B_{CP}) decaying into $f_0K_s^0$ or $K^+K^-K^0$, and the partially reconstructed recoil B meson (B_{tag}) . The asymmetry in the decay rate $f_+(f_-)$ when the tagging meson is a B^0 (\overline{B}^0) is given as

۳.,

$$\mathbf{f}_{\pm}(\Delta t) = \frac{\mathrm{e}^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 \pm S_f \sin\left(\Delta m_d \Delta t\right) \mp C_f \cos\left(\Delta m_d \Delta t\right) \right],$$

where τ_{B^0} is the B^0 lifetime and Δm_d is the $B^0 - \overline{B}^0$ mixing frequency. The parameter S is non-zero if there is mixing induced CP violation, while a non-zero value for C would indicate direct CP violation. We present an update of measurements of the CP asymmetry parameters in $f0K_s^0$, in ϕK^0 , and in $K^+K^-K_s^0$ decays with ϕK_s^0 events removed, with almost twice the statistics of the previous BABAR results ^{5,6,7}. For $K^+K^-K_s^0$ decays with ϕK_s^0 decays excluded, we find the fraction of P-wave decays using an angular-moment analysis and cross-check it with **an** isospin analysis ⁸; we then extract the SM parameter sin 2β .

2. Analysis Method

This analysis is based on about 209 $(f0K_s^0)$ and 227 $(\phi K_s^0$ and $K^+K^-K_s^0)$ million $B\overline{B}$ pairs collected with the BABAR detector ⁹ at the PEP-II asymmetric-energy e^+e^- storage rings at SLAC, operating on the $\Upsilon(4S)$ resonance. We reconstruct B^0 candidates from combinations of two tracks and either a K_s^0 decaying to $\pi^+\pi^-$ or a K_L^0 . The K^+K^- candidates are considered a ϕ if they satisfy $1.005 < m(K^+K^-) < 1.035 \text{GeV}/c^2$. Reconstruction is described in more detail in 10,11,12 . See Table 1 for the signal efficiencies and number of events that **pass all** selection criteria. The time difference At is obtained from the measured distance between the z positions (along

Table 1. CP asymmetry parameters and yields from find 3 extended maximum likelihood fits, as well as the approximate signal efficiency as determined from simulation, and the **number** of events entering the fits. ϕK_S^0 and ϕK_L^0 are fitted simultaneously, and share common absolute values for S and C. The first errors are statistical, and the second are systematic.

	S	С	Yield	$\epsilon(\%)$	Fit Sample Size
$f_0 K_s^0$	$-0.95^{+0.32}_{-0.23} \pm 0.10$	$-0.24 \pm 0.31 \pm 0.15$	152 ± 19	39	12,586
ϕK_S^0	$+0.50 \pm 0.25^{+0.07}_{-0.04}$	$0.00 \pm 0.23 \pm 0.05$	114 ± 12	40	4,300
ϕK_L^0	$-0.50 \pm 0.25^{+0.04}_{-0.07}$		98±18	20	8,238
$\overline{K^+K^-K^0_c}(\operatorname{no} \phi)$	$-0.42 \pm 0.17 \pm 0.04$	$+0.10 \pm 0.14 \pm 0.06$	452 ± 28	26	27.368

and a second second

the beam direction) of the B_{CP} and B_{tag}^0 decay vertices, and the boost $\beta \gamma = 0.56$ of the e^+e^- system ^{2,13}. A multivariate tagging algorithm determines the flavor of the B_{tag}^0 ¹⁴. We use unbinned extended maximum likelihoods fit to extract the event yields and the *CP* parameters; this is described in detail in ^{10,11,12}. The ϕK_s^0 and ϕK_L^0 events are fitted with a single simultaneous maximum likelihood fit; they share the same absolute value for S and C.

3. Systematics

The following contributes to systematic error: uncertainties in the **At** resolution, the beam spot position, and detector alignment; the effect of doubly CKM-suppressed decays ¹⁵; bias due to the fit procedure; errors for the *CP* content of the background; uncertainties in the PDF parameterization; and the uncertainties on the lifetime and mixing frequency of the *B*. For the ϕK^0 analysis, the error due to S-wave contamination is estimated to be less than 6.6%. For the KKK_s^0 analysis, we estimate the error due to possible intermediate D-wave decays into $K^+ K^-$ or decays proceeding through an I = 1 resonance into $K^{\pm}K_s^0$ to be 4%. We estimate the uncertainty due *to* potential contributions from decays proceeding through isovector resonances into $K^+K_s^0$ to be 4.6%. Systematic errors are described in more detail in ^{10,11,12}.

4. Results

Table 1 shows results of the extended maximum likelihood fits. All yields are consistent with the previously measured branching fractions ^{5,16,7}. The time-dependent asymmetry distributions are presented in Fig. 1.

Fig. 1. The time-dependent asymmetry distributions $A_{B^0/\bar{B}^0} = (N_{\bar{B}^0} - N_{\bar{B}^0})/(N_{B^0} + N_{\bar{B}^0})$ for $f_0K_S^0$ (a), ϕK_S^0 (b), ϕK_L^0 (c) and $K^+K^-K_S^0$ with no ϕK_S^0 decays (d). The signal-to-background ratio is enhanced with a cut on the signal probability.

The fraction of P-wave decays of $K^+K^-K_s^0$ is extracted using an angular moment analysis ¹⁷ which examines the distribution of the cosine of the helicity angle θ_H between the K^+ and B^0 directions in the K^+K^- center of mass frame. We use a comparison of event rates of two isospin-equivalent channels ⁸: $B^+ \to K^+K_s^0K_s^0$ and $B^0 \to K^+K^-K_s^0$ to verify this measurement ¹². More information on the moment analysis may be found in ¹². Using this estimate and setting C = 0 in the fit, we find a value for $\sin 2\beta$:

 $f_{even} = 0.89 \pm 0.08 \pm 0.06,\tag{1}$

응송한 이 제가 비원 제 🛣 동안 부탁 실제되었다. 김 지 🖉 제품

 $(\sin 2\beta)_{KKK(no \phi)} = S_{KKK(no \phi)} / (1 - 2f_{even}) = 0.55 \pm 0.22 \pm 0.04 \pm 0.11, (2)$

where the first errors are statistical, the second systematic, and the last error on $(\sin 2\beta)_{KKK(no \phi)}$ is due to uncertainty on the *CP* content.

5. Summary

In a sample of $209(f_0K_s^0)$ and $227(K^+K^-K^0)$ million $B\overline{B}$ mesons, we have obtained measurements of the CP content and CP parameters in decays to $f_0K_s^0$, to ϕK^0 and to $K^+K^-K_s^0$ excluding ϕK_s^0 decays. All of our results for S and C are consistent with the Standard Model, and are in agreement with our previously published values ^{5,6,7}; we see no evidence for mixing-induced CP violation. For $K^+K^-K_s^0$, from the distribution of the helicity angle in the K^+K^- frame, we extract the fraction of P-wave decays. The result is consistent with our cross-check and previous measurements based on isospin symmetry ^{7,18}, and confirms the dominance of CPeven final states. The obtained value for $(\sin 2\beta)_{KKK}(\operatorname{no} \phi)$ is consistent with the SM expectation and previous measurements ^{7,18}.

one expectation and previous measurement

References

- N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
- 2. BABAR Collaboration, B. Aubert et al., Phys. Rev. D 66, 032003 (2002).
- A.B. Carter and A.I. Sanda, Phys. Rev. D 23, 1567 (1981); I.I. Bigi and A.I. Sanda, Nucl. Phys. B 193, 85 (1981); Y. Grossman and M.P. Worah, Phys. Lett. B 395, 241 (1997); R. Fleischer, Int. J. Mod. Phys. A 12, 2459 (1997); D. London and A. Soni, Phys. Lett. B 407, 61 (1997).
- 4. The Heavy Flavor Averaging Group (HFAG), http://www.slac.stanford.edu/xorg/hfag/
- 5. B. Aubert et al. [BABAR Collaboration], hep-ex/0406040. Submitted to PRL.
- 6. B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 93 071801 (2004)
- 7. B. Aubert et al. [BABAR Collaboration], hep-ex/0406005. Submitted to PRL.
- 8. A. Garmash et al. [Belle Collaboration], Phys. Rev. D 69, 012001 (2004).
- 9. B. Aubert et al. [BABAR Collaboration], Nucl. Instrum. Meth. A 479, 1 (2002).
- 10. B. Aubert et al. [BABAR Collaboration], hep-ex/0408095.
- 11. B. Aubert *et al.* [BABAR Collaboration], hep-ex/0408072.
- 12. B. Aubert et al. [BABAR Collaboration], hep-ex/0408076.
- 13. BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 281802 (2002).
- 14. **BABAR** Collaboration, B. Aubert *et al.*, 'Improved Measurement of Time-Dependent CP Violation in $B^0 \rightarrow (\bar{c}c)K^0$ Decays', Contribution to ICHEP 2004.
- 15. O. Long, M. Baak, R. N. Cahn and D. Kirkby, Phys. Rev. D 68, 034010 (2003).
- 16. B. Aubert el al. [BABAR Collaboration], Phys. Rev. D 69, 011102 (2004).
- 17. G. Costa et al., Nucl. Phys. B 175, 402 (1980).
- 18. K. Abe et al. [Belle Collaboration], Phys. Rev. Lett. 91, 261602 (2003).