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Abstract 

This article explores the interaction between a monochromatic plane wave 
laser beam and a relativistic electron in the presence of a thin dielectric 
transparent boundary. It is found that the sign of the interaction between 
the laser and the electron in the downstream space is determined by the 
optical phase delay of the laser caused by the boundary, and that it can add 
to or cancel the interaction in the upstream space. Both the inverse- 
transition radiation picture and the electric field path integral method show 
this result.   
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Introduction 

The thin infinite boundary geometry for laser-driven particle acceleration is an effective 
and simple method to satisfy the Lawson-Woodward theorem, and was successfully 
employed in the first proof-of-principle experiment for laser acceleration in vacuum [1].  
Although the interaction between the laser and the electron in this geometry is poor, due 
to its simplicity the infinite thin boundary scheme is ideal for studying the basic physical 
mechanisms for laser-driven particle acceleration in vacuum. In essence, different 
materials for the thin boundary allow us to explore three different boundary conditions 
for the electromagnetic field: 

• Reflective 
• Absorptive 
• Transparent 

Figure 1 illustrates the three cases of interest. For the proof-of-principle experiment a 
reflective gold-coated Kapton tape was employed as a boundary, corresponding to Figure 
1(a).   
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Fig. 1: laser acceleration from a (a) reflective boundary, (b) absorptive 
“black” boundary, and (c) a lossless transparent boundary 

 
Cases (a) and (b) have been explored in a previous article [2], and it was found that for 
relativistic electrons the expected energy gain from the laser is  
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where q is the electric charge of the particle,  is the amplitude of the electric field of 

the laser plane wave having the form 
0E

( ) ( ) ( )LL trkPEtrE ϕωρ +−⋅= 00 cosˆ, rrrr
, λ  is the laser 

wavelength, α is the laser-electron beam crossing angle, ρ  is the polarization angle of 
the laser, and Lϕ  is the initial optical phase of the laser. 
 
It was found that for the reflective boundary the Inverse Radiation method and the Path 
Integral method predict the same electron energy gain of equation 1, regardless of the 
boundary orientation. For the case of the absorbing boundary however, the Inverse 
Radiation picture for calculating energy gain does not apply. 
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In this article we analyze the expected energy gain for relativistic electrons from a 
transparent boundary by both the Inverse Radiation method and the Path Integral method. 
For simplicity we will focus at boundaries oriented at near-Brewster angle for the laser 
plane wave, such that there is no reflected laser beam. 
 
 
The Path Integral Method 

For the analysis we will use the geometry depicted in Figure 2. 
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ẑ

ŷ
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 Fig. 2: The laser-electron beam interaction in the presence of three 
different dielectric layers 

 
The three laser plane waves in media 1,2 and 3 are given by 
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where  is the amplitude of the electric field in vacuum and 0E jj χε += 1  are the relative 

dielectric permittivities. Here the indices of refraction are jjn ε~ (as commonly done, I 
assume that the magnetic permeability of the dielectric material is no different from that 
in vacuum; 0~ μμ j ). As shown in Figure 2, jθ is the angle of the plane wave in medium j 
with respect to the z-axis.  is defined by k ck ωλπ == 2  where λ is the wavelength in 
vacuum. For continuity of the fields at the boundary z=0 we require that 12 φφ =  and at 
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z=a we require that 333222 coscos φθφθ +⋅=+⋅ nkanka . Let the initial laser phase be 

Lφφ =1 . The phase of the plane wave in medium 3 becomes  
 

( 133223 coscos ) φθθφ +−= nnka       3 
 
In our case we will assume vacuum both upstream and downstream of the plate. Hence 

, 131 == nn 131 == εε , Lθθθ ≡= 31 , and define nn ≡2 , εε ≡2 , mθθ ≡2 . Therefore the 
fields can be expressed as 
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Interaction in the upstream space 

From Figure 2 we can see that the electric field component parallel to the electron beam 
trajectory is αsin1EEz −=′  where ψθα −= L . Therefore  
 

( )( ) ( )( )Lz tzxkEtzzxE φωθθα +−+−=′ cossincossin,, 0    5 
 
The electron beam orbit is described by ( ) ψtanzzx = . Therefore the parallel electric 
field component is described by 
 

( )( ) ( )( )LLLz tzkEtzzxE φωθψθα +−+−=′ costansincossin,, 0   6 
 
Assuming uniform electron velocity the time t can be expressed as ( ) ψβ cosczzt = . 
This gives 
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Therefore the work done on the particle by this field is 
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In the relativistic limit where 2211~ γβ −  and 1<<α  UΔ becomes 
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which is, not surprisingly, the same energy gain as the one calculated from the reflective 
or absorptive boundary. At the optimum crossing angle of γα 1±= the energy gain has a 
maximum value of  
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Interaction in the medium 

Inside the medium the electric field component parallel to the electron beam is  
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where ψθα −= mm , and mθ is related to θ  by Snell’s law. By analogy to the upstream 
case the work done on the particle in this region is 
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which simplifies to 
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We assume that the laser crossing angle is optimized for the interaction in the vacuum 

γα 1= . Then the interaction in the medium 2UΔ  has a maximum value of 
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As shown in Figure 3 f(n) is smaller than 1 and drops with increasing index n. As can be 
seen from the plots for γ =50, γ =100 and γ =1000 f(n) shows only a very weak 
dependence on γ. 
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Fig. 3:  f(n) versus n for various values of γ 
 
Therefore under these circumstances γmax,1max,2 ~ UU ΔΔ  and the maximum interaction 
in the medium is much smaller than the maximum interaction in the vacuum. Notice that 
this value for the energy gain is independent of the thickness of the dielectric plate. 
 
 
Interaction in the downstream space 

Here the parallel electric field component is given by 
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and the work done on the particle is 
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The total energy gain is the sum of the interactions in the three regions 

. However as observed before 321 UUUU Δ+Δ+Δ=Δ max,1max,2 UU Δ<<Δ and the 
contribution from the energy gain in the medium can be neglected. Hence the total energy 
gain is approximately 31~ UUU Δ+ΔΔ . 
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Notice that the energy gain still has the same linear dependence on the wavelength λ and 
on the electric field amplitude , and shows the same dependence on the laser-crossing 
angle as the energy gain from the reflective or absorptive boundary of equation 1. The 
difference lies in the term shown in brackets in equation 18. This term shows the 
interference of two phase terms, one of which depends on the optical phase retardation 
caused by the boundary. To illustrate this it is convenient to rewrite equation 17 as 
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where the optical phase retardation term retφ  is  
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Notice that retφ  is proportional to the relative plate thickness with respect to the 
wavelength λφ a∝ret . When γα 1~  the first term is very small and can be neglected. 
 

( Lmnka )θθφ coscos~ret −        21 
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Fig. 4: Comparison between the energy gain from a reflective boundary 
(dashed line) and the energy gain from a transparent boundary (solid line) 
as a function of the optical phase delay  

 
 
Figure 4 illustrates the effect of the optical phase retardation on the energy gain from 
transparent boundaries. Whenever the sign of the field is reversed the energy gain in the 
upstream and in the downstream region add constructively. The maximum value for the 
total energy gain is 
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The Inverse-Radiation method 

As discussed elsewhere [2] this method is based on Poynting’s Theorem and assumes no 
transfer of energy from or to the medium itself. Under these circumstances the energy 
gain can be shown to be [3,4] 
 

( ) ( )( ) ωωω
π

ddsEE
Z

U
S

TRL∫ ∫
∞

∞−

⋅−=Δ *

0

1 rr
     23 

 
where LE

r
 is the laser field and TRE

r
is the particle’s wake field.  In this instance TRE

r
 

corresponds to the transition radiation from a dielectric plate. This particular transition 
radiation problem has been analyzed by various authors in the past [5].  In our particular 
case we are not interested in the most general expression of TRE

r
 and can derive a 

simplified form for the field. Using the same approach as in [5] by performing a plane 
wave decomposition of the fields to find the transition radiation field. First we find the 
plane wave spectrum of the field of a uniformly moving particle of charge q. Inside a 
medium the potentials have to satisfy 
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We perform a Fourier transformation on equation 24 and find that 
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 Using Φ−= ~~~ kiAiE

r
ω  we find for the plane wave spectrum of the particle’s electric field  
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where jj χε += 1  and cZ μ=0 is the vacuum impedance. jpE ,

~  represents the plane wave 
spectrum of the particle’s field in the medium j. To match the boundary conditions at the 
front and back interfaces of the dielectric plate we add a set of plane waves (the 
homogeneous solutions to equation (24) as shown in Figure 5 
 

ψ

z

x

0=z az =

3E

1E

2E

1ε 2ε
3ε

ψ

z

x

0=z az =

3E

1E

2E

1ε 2ε
3ε

 
 

Fig.5: Transition radiation from a plate; Plane wave field components 
 
 
The plane waves satisfy 0=⋅∇ E

r
 or alternatively 0~ =⋅ Ek

r
. Furthermore their 

amplitudes will be chosen such that the electric field boundary conditions at z=0 and at 
z=a are satisfied. These are 
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In terms of the plane wave components these boundary conditions become 
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We are interested in the plane waves that will overlap with the laser field that is 
horizontally polarized and traveling in the x-z plane. Hence we are not interested in the 
values of yE1

~  and yE3
~ . Furthermore only the horizontally traveling plane wave 

components, for which , can overlap with the laser in the far field. Therefore for 
this special set of plane waves the boundary conditions simplify to 

0=yk

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )∫∫

∫∫

∫∫

∫∫

=

−⋅

=

−⋅

=

−⋅

=

−⋅

=

−⋅

=

−⋅

=

−⋅

=

−⋅

+=+

+=+

+=+

+=+

az
zx

trki
xpx

az
zx

trki
xpx

az
zx

trki
zpz

az
zx

trki
zpz

z
zx

trki
xpx

z
zx

trki
xpx

z
zx

trki
zpz

z
zx

trki
zpz

ddkdkeEEddkdkeEE

ddkdkeEEddkdkeEE

ddkdkeEEddkdkeEE

ddkdkeEEddkdkeEE

ωω

ωεωε

ωω

ωεωε

ωω

ωω

ωω

ωω

rrrr

rrrr

rrrr

rrrr

2,23,3

2,223,33

0
2,2

0
1,1

0
2,22

0
1,11

~~        ~~

~~     ~~

~~          ~~

~~       ~~

29 

 
The plane waves are of the form ( ) ( )jckkkfE εωδω 22,~ −⋅=

rrr
. Hence integrating over 

 eliminates the delta functions appearing in the field components and we obtain zk
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where zxxz vkvvr −= ω  and 222
xjj kc −= εωκ  is the  value where the delta 
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 is zero. Since we assume that the plane wave fields zE1
~ and 

xE1
~  are moving to the left (see Figure 5) we take only the negative root 1κ−=zk  while 

for the fields in the downstream space zE3
~ and xE3

~  that are moving to the right we take 
the positive root 3κ+=zk . For the fields inside the plate we have to assume that there are 
components traveling in both directions. Therefore it will be convenient to label the plane 
wave components in medium 2 separately 
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The set of equations in 30 has to be valid for all x and t. This is satisfied when the 
arguments of the Fourier transformations are equal for all  and xk ω . Hence 
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Since the homogeneous plane wave solutions satisfy 0~ =⋅ Ek

r
 we can relate jzE~ to jxE~  by  

  

jx
z

x
jz E

k
kE ~~ −=          33 
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Now we use the specific values of jzk κ±=  to express the planar field components and 
keep track of the sign of  manually, depending on the direction of the plane wave 
component. We have 
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It is convenient to define the following 
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where zxxz vkvvr −= ω (as defined before). With these definitions and the relation of 
the components of equation 34 the boundary conditions of equation 32 become 
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We now have a set of four linear equations and four unknowns. Using the first pair we 
can express pxE2

~  and nxE2
~  in terms of xE1

~  
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We can do a similar thing with the second pair of boundary conditions and express pxE2

~  

and nxE2
~  in terms of xE3

~ . 
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Combining equations 36 and 37 and eliminating  and  we can find the 
amplitudes  and . For  we find  

pxE2 nxE2

xE1 xE3 xE3
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where 1122 κεκε ±=±E , 222111 εε bsbsp −= , and ( )2211
2

2

2
bhbhkq x −=

κ
ε . 

 
Special case 

We are interested in a special case where the angle of the laser and the electron trajectory 
are near Brewster’s angle. This ensures full transmission of the laser field to the 
downstream space and hence maximizes the energy gain of the electron beam within the 
suitable phase conditions. Also, although equation 38 is general we will focus on the 
relativistic limit for the particle’s velocity and will assume a small angle difference 
between the laser propagation direction and the electron’s trajectory. 
 
We use the same notation for the angles of interest as in Fig. 2. At Brewster’s angle, and 
assuming that mediums 1 and 3 are vacuum n=θtan  and nm 1tan =θ . We introduce a 
new angle ψθα −=′  and since we are interested in the field overlapping with the laser 
we are interested in the region where 1<<′α . Since we defined ck ω=  the x-

components of the k-vectors in the different media are jjjx knk θsin, = where jjn ε= is 
the index of refraction of the medium in question.  With these definitions we also find the 
z-components jjj kn θκ cos= .  
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With these definitions we find that 
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We can find small-angle approximations for p and q. These are 
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where vc =β is the speed of the particle and is the vacuum impedance. Using the 
Brewster angle conditions we can substitute 

0Z
nnmm ±=± θθε tantan  and the values of p 

and q and θκ cos1 k= we obtain for equation 41 
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which simplifies to 
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For relativistic particles where 1~β  and for small laser crossing angle αψθ += , 

1<<α  the coefficient r  becomes 
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where, as assumed elsewhere in this paper ck ω=  is the wavenumber in vacuum. Note 

that in the medium 1, vacuum, θθκ sincos1 22
1 kkk =−⋅= . Since the total plane wave 

amplitude at angle θ  is θcos33 xEE =  equation 44 becomes 
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This is a curious result that says that at Brewster’s angle there is no reflected transition 
radiation component. Intuitively one would expect this since the p-polarized plane wave 
components from the particle’s field should suffer no reflection from the boundaries at 
Brewster’s angle. 
 
In the far field, at a location ( )φα ,, ′∞→R  the electric field is related to the plane wave 
spectrum 3

~E of equation 46 by 
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Evaluating equation 47 we get 
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As in the previous section we define the laser-crossing angle as ψθα −= L  and assume 
that 1<<α . For the plane wave laser field in the downstream region given by equation 2 
the far-field is   
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Now we can use the overlap integral of equation 23 to find the energy gain predicted by 
the inverse-radiation picture and find that  
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but since ( ) ( ) ret12 ~coscos φθθκκ Lmnkaa −=−  (see equation 21) and Lret φφφ +=3 (see 
equation 3) 
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which becomes 
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which is in agreement with the energy gain formula of equation 19 derived from the path 
integral method. 
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