Observation of B^{0} Meson Decay to $a_{1}^{ \pm}(1260) \pi^{\mp}{ }^{*}$

B. Aubert, R. Barate, M. Bona, D. Boutigny, F. Couderc, Y. Karyotakis, J. P. Lees, V. Poireau, V. Tisserand, and A. Zghiche Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
E. Grauges

Universitat de Barcelona Fac. Fisica. Dept. ECM Avda Diagonal 647, 6a planta E-08028 Barcelona, Spain
A. Palano and M. Pappagallo

Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
J. C. Chen, N. D. Qi, G. Rong, P. Wang, and Y. S. Zhu Institute of High Energy Physics, Beijing 100039, China
G. Eigen, I. Ofte, and B. Stugu

University of Bergen, Institute of Physics, N-5007 Bergen, Norway
G. S. Abrams, M. Battaglia, D. N. Brown, J. Button-Shafer, R. N. Cahn, E. Charles, C. T. Day, M. S. Gill, Y. Groysman, R. G. Jacobsen, J. A. Kadyk, L. T. Kerth, Yu. G. Kolomensky, G. Kukartsev, G. Lynch, L. M. Mir, P. J. Oddone, T. J. Orimoto, M. Pripstein, N. A. Roe, M. T. Ronan, and W. A. Wenzel Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
M. Barrett, K. E. Ford, T. J. Harrison, A. J. Hart, C. M. Hawkes, S. E. Morgan, and A. T. Watson University of Birmingham, Birmingham, B15 2TT, United Kingdom
K. Goetzen, T. Held, H. Koch, B. Lewandowski, M. Pelizaeus, K. Peters, T. Schroeder, and M. Steinke Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
J. T. Boyd, J. P. Burke, W. N. Cottingham, and D. Walker University of Bristol, Bristol BS8 1TL, United Kingdom
T. Cuhadar-Donszelmann, B. G. Fulsom, C. Hearty, N. S. Knecht, T. S. Mattison, and J. A. McKenna

University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
A. Khan, P. Kyberd, M. Saleem, and L. Teodorescu

Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
V. E. Blinov, A. D. Bukin, V. P. Druzhinin, V. B. Golubev, A. P. Onuchin, S. I. Serednyakov, Yu. I. Skovpen, E. P. Solodov, and K. Yu Todyshev Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
D. S. Best, M. Bondioli, M. Bruinsma, M. Chao, S. Curry, I. Eschrich, D. Kirkby, A. J. Lankford, P. Lund, M. Mandelkern, R. K. Mommsen, W. Roethel, and D. P. Stoker University of California at Irvine, Irvine, California 92697, USA
S. Abachi and C. Buchanan

University of California at Los Angeles, Los Angeles, California 90024, USA
S. D. Foulkes, J. W. Gary, O. Long, B. C. Shen, K. Wang, and L. Zhang University of California at Riverside, Riverside, California 92521, USA
H. K. Hadavand, E. J. Hill, H. P. Paar, S. Rahatlou, and V. Sharma University of California at San Diego, La Jolla, California 92093, USA
J. W. Berryhill, C. Campagnari, A. Cunha, B. Dahmes, T. M. Hong, D. Kovalskyi, and J. D. Richman University of California at Santa Barbara, Santa Barbara, California 93106, USA
T. W. Beck, A. M. Eisner, C. J. Flacco, C. A. Heusch, J. Kroseberg, W. S. Lockman, G. Nesom, T. Schalk, B. A. Schumm, A. Seiden, P. Spradlin, D. C. Williams, and M. G. Wilson

University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
J. Albert, E. Chen, A. Dvoretskii, D. G. Hitlin, I. Narsky, T. Piatenko, F. C. Porter, A. Ryd, and A. Samuel California Institute of Technology, Pasadena, California 91125, USA
R. Andreassen, G. Mancinelli, B. T. Meadows, and M. D. Sokoloff University of Cincinnati, Cincinnati, Ohio 45221, USA
F. Blanc, P. C. Bloom, S. Chen, W. T. Ford, J. F. Hirschauer, A. Kreisel, U. Nauenberg, A. Olivas, W. O. Ruddick, J. G. Smith, K. A. Ulmer, S. R. Wagner, and J. Zhang University of Colorado, Boulder, Colorado 80309, USA
A. Chen, E. A. Eckhart, A. Soffer, W. H. Toki, R. J. Wilson, F. Winklmeier, and Q. Zeng Colorado State University, Fort Collins, Colorado 80523, USA
D. D. Altenburg, E. Feltresi, A. Hauke, H. Jasper, and B. Spaan Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
T. Brandt, V. Klose, H. M. Lacker, W. F. Mader, R. Nogowski, A. Petzold, J. Schubert, K. R. Schubert, R. Schwierz, J. E. Sundermann, and A. Volk Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
D. Bernard, G. R. Bonneaud, P. Grenier, ${ }^{\dagger}$ E. Latour, Ch. Thiebaux, and M. Verderi Ecole Polytechnique, LLR, F-91128 Palaiseau, France
D. J. Bard, P. J. Clark, W. Gradl, F. Muheim, S. Playfer, A. I. Robertson, and Y. Xie University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
M. Andreotti, D. Bettoni, C. Bozzi, R. Calabrese, G. Cibinetto, E. Luppi, M. Negrini, A. Petrella, L. Piemontese, and E. Prencipe Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
F. Anulli, R. Baldini-Ferroli, A. Calcaterra, R. de Sangro, G. Finocchiaro, S. Pacetti, P. Patteri, I. M. Peruzzi, ${ }^{\ddagger}$ M. Piccolo, M. Rama, and A. Zallo Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
A. Buzzo, R. Capra, R. Contri, M. Lo Vetere, M. M. Macri, M. R. Monge, S. Passaggio, C. Patrignani, E. Robutti, A. Santroni, and S. Tosi Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
G. Brandenburg, K. S. Chaisanguanthum, M. Morii, and J. Wu

Harvard University, Cambridge, Massachusetts 02138, USA
R. S. Dubitzky, J. Marks, S. Schenk, and U. Uwer

Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
W. Bhimji, D. A. Bowerman, P. D. Dauncey, U. Egede, R. L. Flack,
J. R. Gaillard, J .A. Nash, M. B. Nikolich, and W. Panduro Vazquez Imperial College London, London, SW7 2AZ, United Kingdom
X. Chai, M. J. Charles, U. Mallik, N. T. Meyer, and V. Ziegler

University of Iowa, Iowa City, Iowa 52242, USA
J. Cochran, H. B. Crawley, L. Dong, V. Eyges, W. T. Meyer, S. Prell, E. I. Rosenberg, and A. E. Rubin Iowa State University, Ames, Iowa 50011-3160, USA
A. V. Gritsan

Johns Hopkins Univ. Dept of Physics E Astronomy 3400 N. Charles Street Baltimore, Maryland 21218
M. Fritsch and G. Schott

Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
N. Arnaud, M. Davier, G. Grosdidier, A. Höcker, F. Le Diberder, V. Lepeltier, A. M. Lutz, A. Oyanguren, S. Pruvot, S. Rodier, P. Roudeau, M. H. Schune, A. Stocchi, W. F. Wang, and G. Wormser

Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université Paris-Sud 11, Centre Scientifique d'Orsay, B.P. 34, F-91898 ORSAY Cedex, France
C. H. Cheng, D. J. Lange, and D. M. Wright

Lawrence Livermore National Laboratory, Livermore, California 94550, USA
C. A. Chavez, I. J. Forster, J. R. Fry, E. Gabathuler, R. Gamet, K. A. George, D. E. Hutchcroft, D. J. Payne, K. C. Schofield, and C. Touramanis University of Liverpool, Liverpool L69 7ZE, United Kingdom
A. J. Bevan, F. Di Lodovico, W. Menges, and R. Sacco Queen Mary, University of London, E1 4NS, United Kingdom
C. L. Brown, G. Cowan, H. U. Flaecher, D. A. Hopkins, P. S. Jackson, T. R. McMahon, S. Ricciardi, and F. Salvatore University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
D. N. Brown and C. L. Davis

University of Louisville, Louisville, Kentucky 40292, USA
J. Allison, N. R. Barlow, R. J. Barlow, Y. M. Chia, C. L. Edgar, M. P. Kelly, G. D. Lafferty, M. T. Naisbit, J. C. Williams, and J. I. Yi University of Manchester, Manchester M13 9PL, United Kingdom
C. Chen, W. D. Hulsbergen, A. Jawahery, C. K. Lae, D. A. Roberts, and G. Simi University of Maryland, College Park, Maryland 20742, USA
G. Blaylock, C. Dallapiccola, S. S. Hertzbach, X. Li, T. B. Moore, S. Saremi, H. Staengle, and S. Y. Willocq University of Massachusetts, Amherst, Massachusetts 01003, USA
R. Cowan, K. Koeneke, G. Sciolla, S. J. Sekula, M. Spitznagel, F. Taylor, and R. K. Yamamoto Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
H. Kim, P. M. Patel, C. T. Potter, and S. H. Robertson McGill University, Montréal, Québec, Canada H3A $2 T 8$
A. Lazzaro, V. Lombardo, and F. Palombo Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
J. M. Bauer, L. Cremaldi, V. Eschenburg, R. Godang, R. Kroeger,
J. Reidy, D. A. Sanders, D. J. Summers, and H. W. Zhao

University of Mississippi, University, Mississippi 38677, USA
S. Brunet, D. Côté, M. Simard, P. Taras, and F. B. Viaud Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
H. Nicholson

Mount Holyoke College, South Hadley, Massachusetts 01075, USA
N. Cavallo, ${ }^{\S}$ G. De Nardo, D. del Re, F. Fabozzi, ${ }^{\S}$ C. Gatto, L. Lista, D. Monorchio, D. Piccolo, and C. Sciacca Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
M. Baak, H. Bulten, G. Raven, and H. L. Snoek

NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
C. P. Jessop and J. M. LoSecco

University of Notre Dame, Notre Dame, Indiana 46556, USA
T. Allmendinger, G. Benelli, K. K. Gan, K. Honscheid, D. Hufnagel, P. D. Jackson, H. Kagan, R. Kass, T. Pulliam, A. M. Rahimi, R. Ter-Antonyan, and Q. K. Wong Ohio State University, Columbus, Ohio 43210, USA
N. L. Blount, J. Brau, R. Frey, O. Igonkina, M. Lu, R. Rahmat, N. B. Sinev, D. Strom, J. Strube, and E. Torrence University of Oregon, Eugene, Oregon 97403, USA
F. Galeazzi, A. Gaz, M. Margoni, M. Morandin, A. Pompili,
M. Posocco, M. Rotondo, F. Simonetto, R. Stroili, and C. Voci

Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
M. Benayoun, J. Chauveau, P. David, L. Del Buono, Ch. de la Vaissière, O. Hamon, B. L. Hartfiel, M. J. J. John, Ph. Leruste, J. Malclès, J. Ocariz, L. Roos, and G. Therin

Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
P. K. Behera, L. Gladney, and J. Panetta

University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
M. Biasini, R. Covarelli, and M. Pioppi

Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
C. Angelini, G. Batignani, S. Bettarini, F. Bucci, G. Calderini, M. Carpinelli, R. Cenci, F. Forti, M. A. Giorgi,
A. Lusiani, G. Marchiori, M. A. Mazur, M. Morganti, N. Neri, E. Paoloni, G. Rizzo, and J. Walsh

Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
M. Haire, D. Judd, and D. E. Wagoner

Prairie View Aछ'M University, Prairie View, Texas 77446, USA
J. Biesiada, N. Danielson, P. Elmer, Y. P. Lau, C. Lu, J. Olsen, A. J. S. Smith, and A. V. Telnov Princeton University, Princeton, New Jersey 08544, USA
F. Bellini, G. Cavoto, A. D’Orazio, E. Di Marco, R. Faccini, F. Ferrarotto, F. Ferroni, M. Gaspero, L. Li Gioi, M. A. Mazzoni, S. Morganti, G. Piredda, F. Polci, F. Safai Tehrani, and C. Voena Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
M. Ebert, H. Schröder, and R. Waldi

Universität Rostock, D-18051 Rostock, Germany
T. Adye, N. De Groot, B. Franek, E. O. Olaiya, and F. F. Wilson Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
S. Emery, A. Gaidot, S. F. Ganzhur, G. Hamel de Monchenault, W. Kozanecki, M. Legendre, B. Mayer, G. Vasseur, Ch. Yèche, and M. Zito

DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
W. Park, M. V. Purohit, A. W. Weidemann, and J. R. Wilson

University of South Carolina, Columbia, South Carolina 29208, USA
M. T. Allen, D. Aston, R. Bartoldus, P. Bechtle, N. Berger, A. M. Boyarski, R. Claus, J. P. Coleman, M. R. Convery, M. Cristinziani, J. C. Dingfelder, D. Dong, J. Dorfan, G. P. Dubois-Felsmann, D. Dujmic, W. Dunwoodie, R. C. Field, T. Glanzman, S. J. Gowdy, M. T. Graham, V. Halyo, C. Hast, T. Hryn'ova, W. R. Innes, M. H. Kelsey, P. Kim, M. L. Kocian, D. W. G. S. Leith, S. Li, J. Libby, S. Luitz, V. Luth, H. L. Lynch, D. B. MacFarlane, H. Marsiske, R. Messner, D. R. Muller, C. P. O’Grady, V. E. Ozcan, A. Perazzo, M. Perl, B. N. Ratcliff, A. Roodman, A. A. Salnikov, R. H. Schindler, J. Schwiening, A. Snyder, J. Stelzer, D. Su, M. K. Sullivan, K. Suzuki, S. K. Swain, J. M. Thompson, J. Va'vra, N. van Bakel, M. Weaver, A. J. R. Weinstein, W. J. Wisniewski, M. Wittgen, D. H. Wright, A. K. Yarritu, K. Yi, and C. C. Young Stanford Linear Accelerator Center, Stanford, California 94309, USA
P. R. Burchat, A. J. Edwards, S. A. Majewski, B. A. Petersen, C. Roat, and L. Wilden Stanford University, Stanford, California 94305-4060, USA
S. Ahmed, M. S. Alam, R. Bula, J. A. Ernst, V. Jain, B. Pan, M. A. Saeed, F. R. Wappler, and S. B. Zain State University of New York, Albany, New York 12222, USA
W. Bugg, M. Krishnamurthy, and S. M. Spanier University of Tennessee, Knoxville, Tennessee 37996, USA
R. Eckmann, J. L. Ritchie, A. Satpathy, C. J. Schilling, and R. F. Schwitters University of Texas at Austin, Austin, Texas 78712, USA
J. M. Izen, I. Kitayama, X. C. Lou, and S. Ye University of Texas at Dallas, Richardson, Texas 75083, USA
F. Bianchi, F. Gallo, and D. Gamba

Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
M. Bomben, L. Bosisio, C. Cartaro, F. Cossutti, G. Della Ricca, S. Dittongo, S. Grancagnolo, L. Lanceri, and L. Vitale Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
V. Azzolini and F. Martinez-Vidal

IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
Sw. Banerjee, B. Bhuyan, C. M. Brown, D. Fortin, K. Hamano,
R. Kowalewski, I. M. Nugent, J. M. Roney, and R. J. Sobie University of Victoria, Victoria, British Columbia, Canada V8W 3P6
J. J. Back, P. F. Harrison, T. E. Latham, and G. B. Mohanty

Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
H. R. Band, X. Chen, B. Cheng, S. Dasu, M. Datta, A. M. Eichenbaum, K. T. Flood, J. J. Hollar, J. R. Johnson, P. E. Kutter, H. Li, R. Liu, B. Mellado, A. Mihalyi, A. K. Mohapatra, Y. Pan, M. Pierini, R. Prepost, P. Tan, S. L. Wu, and Z. Yu University of Wisconsin, Madison, Wisconsin 53706, USA
H. Neal

Yale University, New Haven, Connecticut 06511, USA

Abstract

We present a measurement of the branching fraction of the decay $B^{0} \rightarrow a_{1}^{ \pm}(1260) \pi^{\mp}$ with $a_{1}^{ \pm}(1260) \rightarrow \pi^{\mp} \pi^{ \pm} \pi^{ \pm}$. The data sample corresponds to $218 \times 10^{6} B \bar{B}$ pairs pro-

duced in $e^{+} e^{-}$annihilation through the $\Upsilon(4 S)$ resonance. We measure the branching fraction $\mathcal{B}\left(B^{0} \rightarrow a_{1}^{ \pm}(1260) \pi^{\mp}\right) \mathcal{B}\left(a_{1}^{ \pm}(1260) \rightarrow \pi^{\mp} \pi^{ \pm} \pi^{ \pm}\right)=(16.6 \pm 1.9 \pm 1.5) \times 10^{-6}$, where the first error quoted is statistical and the second is systematic.

Submitted to Physics Review Letter

The rare decay $B^{0} \rightarrow a_{1}^{ \pm}(1260) \pi^{\mp}$ is expected to be dominated by $b \rightarrow u \bar{u} d$ contributions. For the branching fraction of this decay mode an upper limit of 49×10^{-5} at the 90% C.L. has been set by CLEO [1]. Bauer et al. have predicted a branching fraction of the decay $B^{0} \rightarrow a_{1}^{-}(1260) \pi^{+}$of 38×10^{-6} within the framework of the factorisation model and assuming $\left|V_{u b} / V_{c b}\right|=0.08$ [2]. The study of this decay mode is complicated by the large discrepancies between the parameters of the $a_{1}(1260)$ meson obtained from analyses involving hadronic interactions [3] and τ decays [4]. The decay $B^{0} \rightarrow a_{1}^{ \pm}(1260) \pi^{\mp}$, in addition to the decays $B^{0} \rightarrow \pi^{+} \pi^{-}, B^{0} \rightarrow \rho^{ \pm} \pi^{\mp}$, and $B^{0} \rightarrow \rho^{+} \rho^{-}$, can be used to give a new measurement of the Cabibbo-Kobayashi-Maskawa angle α of the Unitarity Triangle [5].

We present a measurement of the branching fraction of the decay $B^{0} \rightarrow a_{1}^{ \pm}(1260) \pi^{\mp}$ with $a_{1}^{ \pm}(1260) \rightarrow \pi^{\mp} \pi^{ \pm} \pi^{ \pm}$. The $a_{1}(1260) \rightarrow 3 \pi$ decay proceeds mainly through the intermediate states $(\pi \pi)_{\rho} \pi$ and $(\pi \pi)_{\sigma} \pi[6]$. No attempt is made to separate the contributions of the dominant P -wave $(\pi \pi)_{\rho}$ and the S -wave $(\pi \pi)_{\sigma}$ in the channel $\pi^{+} \pi^{-}$. Only a systematic uncertainty is estimated due to the difference in the selection efficiency. Possible background contributions from B^{0} decays to $B^{0} \rightarrow a_{2}^{ \pm}(1320) \pi^{\mp}$ and $B^{0} \rightarrow \pi^{ \pm}(1300) \pi^{\mp}$ are investigated.

The data were collected with the $B A B A R$ detector $[7]$ at the PEP-II asymmetric $e^{+} e^{-}$collider [8]. An integrated luminosity of $198 \mathrm{fb}^{-1}$, corresponding to 218 million $B \bar{B}$ pairs, was recorded at the $\Upsilon(4 S)$ resonance ("on-resonance", center-of-mass energy $\sqrt{s}=10.58 \mathrm{GeV}$). An additional $15 \mathrm{fb}^{-1}$ were taken about 40 MeV below this energy ("offresonance") for the study of continuum background in which a light or charm quark pair is produced instead of an $\Upsilon(4 S)$.

Charged particles are detected and their momenta measured by the combination of a silicon vertex tracker, consisting of five layers of double-sided silicon detectors, and a 40-layer central drift chamber, both operating in the 1.5-T magnetic field of a superconducting solenoid. The tracking system covers 92% of the solid angle in the center-of-mass frame.

Charged-particle identification (PID) is provided by the average energy loss ($\mathrm{d} E / \mathrm{d} x$) in the tracking devices and by an internally reflecting ring-imaging Cherenkov detector (DIRC) covering the central region. A K / π separation of better than four standard deviations (σ) is achieved for momenta below $3 \mathrm{GeV} / c$, decreasing to 2.5σ at the highest momenta in the B decay final states.

Monte Carlo (MC) simulations of the signal decay modes, continuum, $B \bar{B}$ backgrounds and detector response [9] are used to establish the event selection criteria. The MC signal events are simulated as B^{0} decays to $a_{1}(1260) \pi$ with $a_{1} \rightarrow \rho \pi$. For the $a_{1}(1260)$ meson parameters we take the mass $m_{0}=1230 \mathrm{MeV} / c^{2}$ and $\Gamma_{0}=400 \mathrm{MeV} / c^{2}[6,10]$.

We reconstruct the decay $a_{1}^{ \pm}(1260) \rightarrow \pi^{\mp} \pi^{ \pm} \pi^{ \pm}$with the following requirement on the invariant mass: $0.83<$ $m_{a_{1}(1260)}<1.8 \mathrm{GeV} / c^{2}$. The intermediate dipion state is reconstructed with an invariant mass between 0.51 and 1.1 GeV / c^{2}. We impose several PID requirements to ensure the identity of the signal pions. For the bachelor charged track we require an associated DIRC Cherenkov angle between -2σ and $+5 \sigma$ from the expected value for a pion. With this requirement all but 1.4% of any background from $a_{1}(1260) K$ is removed.
A B meson candidate is characterized kinematically by the energy-substituted mass $m_{\mathrm{ES}}=$ $\sqrt{\left(s / 2+\mathbf{p}_{0} \cdot \mathbf{p}_{B}\right)^{2} / E_{0}^{2}-\mathbf{p}_{B}^{2}}$ and energy difference $\Delta E=E_{B}^{*}-\frac{1}{2} \sqrt{s}$, where the subscripts 0 and B refer to the initial $\Upsilon(4 S)$ and to the B candidate in the lab-frame, respectively, and the asterisk denotes the $\Upsilon(4 S)$ frame. The resolutions in m_{ES} and in ΔE are about $3.0 \mathrm{MeV} / c^{2}$ and 20 MeV respectively. We require $|\Delta E| \leq 0.2 \mathrm{GeV}$ and $5.25 \leq m_{\mathrm{ES}} \leq 5.29 \mathrm{GeV} / c^{2}$. To reduce fake B meson candidates we require a B vertex χ^{2} probability >0.01. The cosine of the angle between the direction of the π meson from $a_{1}(1260) \rightarrow \rho \pi$ with respect to the flight direction of the B in the $a_{1}(1260)$ meson rest frame is required to be between -0.85 and 0.85 to suppress combinatorial background. The distribution of this variable is flat for signal and peaks near ± 1 for this background.

To reject continuum background, we use the angle θ_{T} between the thrust axis of the B candidate and that of the rest of the tracks and neutral clusters in the event, calculated in the center-of-mass frame. The distribution of $\cos \theta_{T}$ is sharply peaked near ± 1 for combinations drawn from jet-like $q \bar{q}$ pairs and is nearly uniform for the isotropic B meson decays; we require $\left|\cos \theta_{T}\right|<0.65$. The remaining continuum background is modeled from off-resonance data. We

[^0]use MC simulations of $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$decays to look for $B \bar{B}$ backgrounds, which can come from both charmless and charm decays. We find that the decay mode $B^{0} \rightarrow D^{-} \pi^{+}$, with $D^{-} \rightarrow K^{+} \pi^{-} \pi^{-}$or $D^{-} \rightarrow K_{S}^{0} \pi^{-}$, are the dominant $B \bar{B}$ backgrounds to ultimate final states different than the signal. The decay modes $B^{0} \rightarrow a_{2}^{ \pm}(1320) \pi^{\mp}$ and $B^{0} \rightarrow \pi^{ \pm}(1300) \pi^{\mp}$ have the same final daughters as the signal. We suppress these with the angular variable \mathcal{A}, defined as the cosine of the angle between the normal to the plane of the 3π resonance and the flight direction of the bachelor pion evaluated in the 3π resonance rest frame. Since the $a_{1}(1260), a_{2}(1320)$ and $\pi(1300)$ have spins of 1,2 and 0 respectively, the distributions of the variable \mathcal{A} for these three resonances differ. We require $|\mathcal{A}|<0.62$.

We use an unbinned, multivariate maximum-likelihood fit to extract the yields of $B^{0} \rightarrow a_{1}^{ \pm}(1260) \pi^{\mp}$, $B^{0} \rightarrow a_{2}^{ \pm}(1320) \pi^{\mp}$ and $B^{0} \rightarrow \pi^{ \pm}(1300) \pi^{\mp}$. The likelihood function incorporates five variables. As mentioned above, we describe the B decay kinematics with two variables: ΔE and m_{ES}. We also include the invariant mass of the 3π system, a Fisher discriminant \mathcal{F}, and the variable \mathcal{A} (though the later provides little discrimination after the requirement mentioned above). The Fisher discriminant combines four variables: the angles with respect to the beam axis, in the $\Upsilon(4 S)$ frame, of the B momentum and B thrust axis, and the zeroth and second angular moments $L_{0,2}$ of the energy flow around the B thrust axis. The moments are defined by

$$
\begin{equation*}
L_{j}=\sum_{i} p_{i} \times\left|\cos \theta_{i}\right|^{j} \tag{1}
\end{equation*}
$$

where θ_{i} is the angle with respect to the B thrust axis of track or neutral cluster i, p_{i} is its momentum, and the sum excludes tracks and clusters used to build the B candidate.

We have on average 1.4 candidates per event and we select the B candidate with the smallest χ^{2} formed from the ρ mass. The efficiency of the best candidate algorithm is 94%.

Since the correlation between the observables in the selected data and in MC signal events is small, we take the probability density function (PDF) for each event to be a product of the PDFs for the separate observables. The product PDF for event i and hypothesis j, where j can be signal $a_{1}^{ \pm}(1260) \pi^{\mp}, a_{2}^{ \pm}(1320) \pi^{\mp}$ and $\pi^{ \pm}(1300) \pi^{\mp}$ backgrounds, continuum background or $B \bar{B}$ background (2 types), is given by:

$$
\begin{equation*}
\mathcal{P}_{j}^{i}=\mathcal{P}_{j}\left(m_{\mathrm{ES}}\right) \cdot \mathcal{P}_{j}(\Delta E) \cdot \mathcal{P}_{j}(\mathcal{F}) \cdot \mathcal{P}_{j}\left(m_{a_{1}}\right) \cdot \mathcal{P}_{j}(\mathcal{A}) \tag{2}
\end{equation*}
$$

The probability that inside the signal event the primary pion from the B candidate is confused with a pion from the $a_{1}(1260)$ is negligible because of the high momentum of the primary pion in $\Upsilon(4 S)$ frame. There is the possibility that a track from a $a_{1}^{ \pm}(1260) \pi^{\mp}, a_{2}^{ \pm}(1320) \pi^{\mp}$ and $\pi^{ \pm}(1300) \pi^{\mp}$ event is exchanged with a track from the rest of the event. These so-called self cross feed (SCF) events are considered as background events. The likelihood function for the event i is defined as

$$
\begin{align*}
\mathcal{L}^{i} & =\sum_{k=1}^{3}\left(n_{k} \mathcal{P}_{k}+n_{k}^{S C F} \mathcal{P}_{k}^{S C F}\right)+n_{q \bar{q}} \mathcal{P}_{q \bar{q}} \tag{3}\\
& +n_{B \bar{B} 1} \mathcal{P}_{B \bar{B} 1}+n_{B \bar{B} 2} \mathcal{P}_{B \bar{B} 2}
\end{align*}
$$

where n_{k} and $n_{k}^{S C F}(k=1,3)$ are the signal and SCF yields for $a_{1}^{ \pm}(1260) \pi^{\mp}, a_{2}^{ \pm}(1320) \pi^{\mp}$, and $\pi^{ \pm}(1300) \pi^{\mp}$, respectively, $n_{q \bar{q}}$ is the number of continuum background events, $n_{B \bar{B} 1}$ is the number of $B \bar{B}$ background events $D^{-} \pi^{+}$with $D^{-} \rightarrow K^{+} \pi^{-} \pi^{-}$and $n_{B \bar{B} 2}$ is the number of $B \bar{B}$ background events $D^{-} \pi^{+}$with $D^{-} \rightarrow K_{S}^{0} \pi^{-} . \mathcal{P}_{k}$ is the PDF for correctly reconstructed MC signal events $; \mathcal{P}_{k}^{S C F}$ is the PDF for SCF events, $\mathcal{P}_{q \bar{q}}$ is the PDF for continuum background events, and $\mathcal{P}_{B \bar{B} 1}$ and $\mathcal{P}_{B \bar{B} 2}$ are the PDFs for the two types of $B \bar{B}$ backgrounds, all evaluated with the observables of the i th event.

We write the extended likelihood function for all events as :

$$
\begin{equation*}
\mathcal{L}=\exp \left(-\sum_{j} n_{j}\right) \prod_{i}^{N} \mathcal{L}^{i} \tag{4}
\end{equation*}
$$

where n_{j} is the number of events of hypothesis j found by the fitter, and N is the number of events in the sample. The first factor takes into account the Poisson fluctuations in the total number of events.

We determine the PDFs for signal and $B \bar{B}$ backgrounds from MC distributions in each observable. For the continuum background we establish the functional forms and initial parameter values of the PDFs with off-resonance data.

The PDF of the invariant mass of the $a_{1}(1260)$ meson in signal events is parameterized as a relativistic Breit-Wigner line-shape with a mass dependent width which takes into account the effect of the mass-dependent ρ width [11]. The PDFs of the invariant masses of the $a_{2}(1320)$ and $\pi(1300)$ mesons are parameterized by triple Gaussian functions.

The m_{ES} and ΔE distributions for signal are parameterized as double Gaussian functions. The ΔE distribution for continuum background is parameterized by a linear function. The combinatorial background in m_{ES} is described by a phase-space-motivated empirical function [12]. We model the Fisher distribution \mathcal{F} using a Gaussian function with different widths above and below the mean. The \mathcal{A} distributions are modeled using polynomials.

In the fit there are fourteen free parameters: six yields, the signal $a_{1}(1260)$ mass and width, and six parameters affecting the shape of the combinatorial background. Table I lists the results of the final fits. Fitted values of $a_{1}(1260)$ mass and width have statistical errors only.

TABLE I: Signal yield, detection efficiency (ϵ), statistical significance (with systematic uncertainties), branching fraction, and the mass and width of the $a_{1}(1260)$ meson.

Fit quantity	$a_{1}^{ \pm}(1260) \pi^{\mp}$
Signal yield	421 ± 48
$\epsilon(\%)$	11.7
Stat. sign. (σ)	9.2
$\mathcal{B}\left(\times 10^{-6}\right)$	$16.6 \pm 1.9 \pm 1.5$
$m\left(a_{1}(1260)\right)$	$1229 \pm 21 \mathrm{MeV} / c^{2}$
$\Gamma\left(a_{1}(1260)\right)$	$393 \pm 62 \mathrm{MeV} / c^{2}$

Equal production rates to $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$pairs are assumed. We find no evidence of the decay $B^{0} \rightarrow \pi^{ \pm}(1300) \pi^{\mp}$, and therefore we have not included this component in the final fit. The yield of the decay $B^{0} \rightarrow a_{2}^{ \pm}(1320) \pi^{\mp}$ is 8.3 ± 23.6 events.

FIG. 1: Projections of a) ΔE, b) m_{ES}, c) $m_{a_{1}}$, and d) \mathcal{F}. Points represent on-resonance data, dotted lines the continuum and $B \bar{B}$ backgrounds, and solid lines the full fit function. These plots are made with a cut on the signal likelihood which includes about 40% of the signal.

We find a signal yield bias of $+3.8 \%$ by generating and fitting MC simulated samples containing signal and background populations expected for data. We find that $-\ln L_{\max }$ from the on-resonance data lies well within the distribution of $-\ln L_{\max }$ from these simulated samples. The signal reconstruction efficiency is obtained from the
fraction of signal MC events passing the selection criteria, adjusted for the bias in the likelihood fit. The statistical significance is taken as the square root of the difference between the value of $-2 \ln L$ for zero signal and the value at its minimum.

In Fig. 1 we show the $\Delta E, m_{\mathrm{ES}}, m_{a_{1}}$, and \mathcal{F} projections made by selecting events with a signal likelihood (computed without the variable shown in the figure) exceeding a threshold that optimizes the expected sensitivity. The enhancement at $1.7 \mathrm{GeV} / c^{2}$ in Fig. 1(c) comes from $D^{-} \pi^{+}$background.

In Fig. 2 we show the distribution of the ratio of the likelihood for signal events $\mathrm{L}(\mathrm{Sg})$ and the sum of likelihoods for signal and all types of background $[\mathrm{L}(\mathrm{Sg})+\mathrm{L}(\mathrm{Bg})]$ for on-resonance data and for Monte Carlo events generated from PDFs. We see good agreement between the model and the data. By construction the background is concentrated near zero, while the signal appears as an excess of events near one.

FIG. 2: Likelihood ratio $\mathrm{L}(\mathrm{Sg}) /[\mathrm{L}(\mathrm{Sg})+\mathrm{L}(\mathrm{Bg})]$. Points represent the data, the solid histogram is from Monte Carlo samples of background plus signal, with the background component shaded.

Most of the systematic errors on the signal yield that arise from uncertainties in the values of the PDF parameters have already been incorporated into the overall statistical error, since they are floated in the fit. We determine the sensitivity to the other parameters of the signal and background PDF components by varying these within their uncertainties.

The uncertainty in our knowledge of the efficiency is found to be 3.2%. The systematic error on the fit yield is 6.2%, which is obtained by varing the PDF parameters within their uncertainties. We estimate the uncertainty in the number of $B \bar{B}$ pairs to be 1.1%. The uncertainty in the fit bias correction is 1.9%, taken as half of the fit bias correction. Published world averages [6] provide the B daughter branching fraction uncertainties. The systematic errors on $a_{1}(1260) K$ cross-feed background and on SCF are both estimated to be 1.4%. The potential background contribution from B^{0} decays to $\rho^{0} \rho^{0}, \rho^{0} \pi^{+} \pi^{-}$and 4π is estimated assuming the branching fractions of 1,2 , and 2 in 10^{-6} respectively [13]. The associated systematic uncertainty is 3.9%. The systematic effect due to differences between data and MC for the $\cos \theta_{\mathrm{T}}$ selection is 1.8%. A systematic uncertainty of 2.5% is estimated for the difference in reconstruction efficiency in the decay modes through the dominant P -wave $(\pi \pi)_{\rho}$ and the S -wave $(\pi \pi)_{\sigma}$. The contribution of interference between $a_{2}(1320)$ and $a_{1}(1260)$ is negligible. In fact, varying the $a_{2}(1320) \pi$ background with different selection criteria on the angular variable \mathcal{A} gives no significant change to the efficiency-corrected signal yield of $a_{1}(1260) \pi$. We find also that the systematic effect due to different form factors in MC signal simulation is
negligible. The total systematic error is 9.1%.
In conclusion, we have measured the branching fraction $\mathcal{B}\left(B^{0} \rightarrow a_{1}^{ \pm}(1260) \pi^{\mp}\right) \mathcal{B}\left(a_{1}^{ \pm}(1260) \rightarrow \pi^{\mp} \pi^{ \pm} \pi^{ \pm}\right)=$ $(16.6 \pm 1.9 \pm 1.5) \times 10^{-6}$. Assuming $\mathcal{B}\left(a_{1}^{ \pm}(1260) \rightarrow \pi^{\mp} \pi^{ \pm} \pi^{ \pm}\right)$is equal to $\mathcal{B}\left(a_{1}^{ \pm}(1260) \rightarrow \pi^{ \pm} \pi^{0} \pi^{0}\right)$, and that $\mathcal{B}\left(a_{1}^{ \pm}(1260) \rightarrow(3 \pi)^{ \pm}\right)$is equal to 100% [6], we obtain $\mathcal{B}\left(B^{0} \rightarrow a_{1}^{ \pm}(1260) \pi^{\mp}\right)=(33.2 \pm 3.8 \pm 3.0) \times 10^{-6}$ The decay mode, observed for the first time, is seen with a significance of 9.2σ, which includes systematic uncertainties.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), Marie Curie EIF (European Union), the A. P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.
[1] CLEO Collaboration, D. Bortoletto et al., Phys. Rev. Lett.B 62, 2436 (1989).
[2] M. Bauer, B.Steich and M. Wirbel, Z. Phys. C 34, 103 (1987).
[3] J. Pernegr et al., Nucl. Phys. B 134, 439 (1978); C. Daum et al., Phys. Lett.B 89, 281 (1980); D. V. Amelin et al., Phys. Lett.B 356, 595 (1995).
[4] D. M. Asner et al., Phys. Rev. D 61, 012002-1 (1999); P. Abreu et al., Phys. Lett.B 426, 411 (1998).
[5] R. Aleksan et al., Nucl. Phys. B 361, 141 (1991); M. Gronau and J. Zupan, Phys. Rev. D 73, 057502 (2006).
[6] Particle Data Group, S. Eidelman et al., Phys. Lett.B 592, 1 (2004).
[7] The BABAR Collaboration, B. Aubert et al., Nucl. Instr. Meth. A 479, 1 (2002).
[8] PEP-II Conceptual Design Report, SLAC Report No. SLAC-R-418, 1993.
[9] The BABAR detector MC simulation is based on GEANT4: S. Agostinelli et al., Nucl. Instr. Meth. A 506, 250 (2003).
[10] EvtGen particle decay simulation package, David J. Lange, Nucl. Instr. Meth. A 462, 1 (2001)
[11] WA76 Collaboration, T. A. Armstrong et al., Z. Phys. C 48, 213 (1990)
[12] With $x \equiv m_{\mathrm{ES}} / E_{b}$ and ξ a parameter to be fit, $f(x) \propto x \sqrt{1-x^{2}} \exp \left[-\xi\left(1-x^{2}\right)\right]$. See ARGUS Collaboration, H. Albrecht et al., Phys. Lett.B 241, 278 (1990).
[13] The BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett.B 94,131801 (2005).

[^0]: \dagger Also at Laboratoire de Physique Corpusculaire, Clermont-Ferrand, France
 \ddagger Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
 §Also with Università della Basilicata, Potenza, Italy

