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Abstract

Applying tomographic techniques to study the longitudinal phase space of the elec-

tron beam in future energy recovery linacs presents a challenge as it requires non-

destructive diagnostics and the manipulations of the phase space are restricted by

the energy recovery. The different methods of tomographic reconstruction and pre-

vious experiments at the BNL DUV-FEL facility are presented. Different schemes

to utilize tomography for an ERL are proposed, including nondestructive trans-

verse and longitudinal beam profile measurements and the necessary phase space

transformations to generate the tomographic projections.
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1 Introduction

The concept of energy recovery linacs (ERL) makes much higher average beam

currents possible than what can be achieved with conventional linear accel-

erators because the energy stored in the accelerated beam is almost entirely

recovered as rf power by recirculating the beam back into the accelerating

structure at the opposite phase. This scheme has been demonstrated as a

driver for a high power infrared FEL with several mA of average beam cur-

rent [1] and is proposed for 4th generation light sources [2] and electron-cooling

of ion beams [3].

The operation and optimization of an ERL machine requires detailed measure-

ments of the electron beam properties. These measurements are challenging

because the necessary energy recovery of the beam permits only the use of

non-interceptive diagnostics. Measuring the longitudinal beam phase space

properties enables a better understanding of the energy recovery process and

the bunch compression and decompression within the recirculating loop. Lon-

gitudinal phase space tomography [4–7] has been demonstrated as a tool to

characterize this distribution in detail for linear accelerators where interceptive

methods are applicable.

This paper is organized into an overview on tomographic methods, recent

applications at the BNL DUV-FEL, various possible implementations of to-

mography at ERLs, and a summary.

2



2 Longitudinal phase space tomography

The basic idea behind tomographic reconstruction methods is to measure

one-dimensional projections of a two-dimensional distribution under differ-

ent angles of observation or after applying different transformations to the

distribution. In the case of the longitudinal time-energy distribution of an

electron beam, the procedure is to apply a time-energy chirp with an accel-

erating structure set to different phases or gradients and then to measure

the resulting energy spectrum in a dispersive section of the accelerator. From

the reconstructed phase space the slice energy spread, the time-energy cor-

relation, and the beam current distribution can be extracted. The method

is inherently a multi-shot technique because the set of projections cannot be

measured at once and therefore requires a stable and reproducible beam. No

additional instrumentation besides a spectrometer is needed. However, this

limits the locations where the phase space distribution can be reconstructed

to the entrance of the accelerating structure used to apply the chirp.

The main three reconstruction techniques, filtered back-projection (Radon

transform), algebraic reconstruction technique (ART) [8], and maximum en-

tropy method (MENT) [9,10] are based on the beam transport map between

the location where the phase space is reconstructed and where the projections

are measured. The filtered back-projection is defined for a full set of rota-

tions of a geometric object. The beam transformations therefore have to be

described as rotations. If the transformations are created by a varying chirp

only, the limited angle of rotations makes extrapolations necessary. The two

other methods can be formulated for arbitrary linear and nonlinear trans-

formations and they work with incomplete sets of projections. Due to their
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iterative algorithms, prior knowledge of the distribution and constraints on

the solution can be implemented.

2.1 Algebraic reconstruction method

The two-dimensional distribution is defined as an image with density values

gl for each pixel l. For each projection pi, a matrix ai connects the pixels with

the bins j in the respective projection i by

pi,j =
∑

l

ai,jlgl . (1)

The matrix ai itself is calculated from the linear or nonlinear beam transport

function. The reconstructed image g is obtained by iterating an initial guess

g(0) with

g(k+1)
q = g(k)

q +
∑

j

[
ai,jq

(
pi,j −

∑

l

ai,jlg
(k)
l

)
/

∑

l

ai,jl

]
/

∑

j

ai,jq (2)

for all projections i until convergence is achieved. During the iterations the

non-negativeness of the solution g can be forced by setting negative values to

zero. However, noise and inconsistencies in the measured projections can lead

to streak artifacts in the solution due to the additive nature of the algorithm.

2.2 Maximum entropy method

The maximum entropy method described here is based on the extended MENT

algorithm in [10], but generalized from rotations to arbitrary nonlinear trans-

formations. The idea is to find a distribution for the phase space f(x, y) that
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generates the measured projections, but minimizes the amount of information

in the solution. This is achieved by minimizing the discriminatory function

K(f, f ∗) =
∫

f(x, y) log
f(x, y)

ef ∗(x, y)
dx dy (3)

with f ∗(x, y) containing prior knowledge of the solution. The bins j in projec-

tion i are modelled from the phase space with

mij =
∫

χij (Mi(x, y)) f(x, y) dx dy . (4)

The nonlinear map Mi(x, y) transforms the original phase space point (x, y)

into the phase space point where the projection is measured. The function

χij(x, y) describes a stripe area along the x-direction in the phase space and

has a value of one where it contributes to bin j in projection i and of zero

otherwise. The solution is expressed as

f(x, y) = f ∗(x, y)
Np∏

i=1

Ns∑

j=1

Λijχij(Mi(x, y)) . (5)

The parameters Λij which maximize the entropy are found by an iterative

Gauss-Seidel procedure with Λ
(n+1)
ij = Λ

(n)
ij mij/m

(n)
ij for mij 6= 0 and un-

changed otherwise. The coefficients Λ
(0)
ij are initialized to zero for mij = 0

and to one otherwise. One cycle of the iteration uses all projections one after

the other. The iteration converges after a few cycles. The multiplicative struc-

ture of the solution guarantees it to be nonnegative and stripe artifacts like

in ART cannot occur.
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3 DUV-FEL results

This section gives examples of applying the different measurement and re-

construction methods at the BNL DUV-FEL facility. This accelerator [11]

provides a high brightness electron beam generated by a Ti:Sapphire driven

photoinjector for a high gain harmonic generation FEL [12]. Two SLAC-type

linac sections accelerate the beam to 70MeV, followed by a chicane bunch

compressor and three more sections that provide a maximum beam energy of

250MeV. A YAG screen after a spectrometer dipole enables high resolution

energy measurements. Longitudinal phase space measurements of the uncom-

pressed beam can either be done by varying the phase of the second linac

structure about the crest phase and recording the energy, or by zero-phasing

the last structure and varying the accelerating gradient. For the compressed

bunch only the last method is applicable. In that case, any remaining chirp

from the compression has to be removed with the third structure.

The longitudinal beam transport is calculated from the energy gain of ∆E =

V cos(φ0+ωt) for the reference particle at phase φ0 and rf frequency ω. An ex-

pansion up to second order gives for the particle energy E ′ = E+k t+k2 t2 with

linear chirp k = −V ω sin(φ0) and second order chirp k2 = −1
2
V ω2 cos(φ0).

The resolution of the reconstructed phase space depends on the energy resolu-

tion of the profiles for the energy distribution, and on the maximum chirp kmax

applied for the temporal resolution. For high brightness electron beams, the

longitudinal phase space can be considered as a line distribution characterized

by slice energy spread, energy-time correlation, and temporal distribution.

The slice energy spread σδ,0 then also limits the temporal resolution. It can be
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estimated for this case as τ = 2πσδ,0/kmax [7].

The results for measurements of the longitudinal phase space with the ac-

celerator set up for FEL operation are shown in Figs. 1 and 2. The left and

center of Fig. 1 are the phase space of the uncompressed and compressed beam

reconstructed with ART. To remove reconstruction artifacts, a 5% level cut

on the distribution was applied. The right part shows the reconstruction of

the compressed bunch with MENT showing less artifacts without a level cut.

Since the uncompressed slice energy spread is about 5 keV, the time resolu-

tion can be estimated to 300 fs which is sufficiently small for the uncompressed

and compressed rms bunch length of 2.3 ps and 900 fs, respectively. Figure 2

shows the energy-time correlation and beam current calculated from the phase

space for the three reconstructions, as well as the cathode drive laser pulse

distribution.

In a different experiment, the drive laser was deliberately modulated to study

the effect on the electron beam [13]. Figure 3 shows the phase space recon-

structed with ART for three different charges of 20, 65, and 180 pC of the

uncompressed electron beam at 73MeV and a laser modulation period of 2 ps.

The corresponding temporal distributions can be found in Fig. 4, showing the

charge dependent effect of longitudinal space charge forces on the phase space.

The time resolution from the maximum applied chirp was 170 fs, which is suf-

ficient to resolve the details of the phase space structure. The main limitation

for the maximum chirp, and hence the resolution, was the energy acceptance

of the spectrometer screen and the bunch length, i.e., for shorter bunches an

equally better time resolution is possible.

7



4 Implementation in energy recovery linacs

The two main issues to be considered in using longitudinal phase space to-

mography in an energy recovery linac are the measurement of the longitudinal

projections and the necessary phase space manipulations. The longitudinal

projection can either be the energy spectrum or the temporal distribution of

the beam. To be able to diagnose the beam even at the full beam current, these

measurements have to be (almost) nondestructive to maintain the condition

for energy recovery of the beam. The same requirement applies to the phase

space manipulations. They either have to be within the acceptance of the en-

ergy recovery, or they have to be reversed downstream of the measurement.

Alternatively, they could only affect a very small fraction of bunches that could

be lost. The feasible profile resolution and range of phase space change will

ultimately limit the achievable resolution in the phase space reconstruction.

The measurement of the energy distribution is closely related to the devel-

opment of nondestructive transverse beam profile monitors which will be de-

ployed in dispersive regions in the lattice. They could be synchrotron radiation

based, or flying or laser wire profile monitors. Time profiles can be measured

likewise by the spectrum of coherent diffraction radiation, electro-optic meth-

ods, or with synchrotron radiation detected with a streak camera.

Several options exist for the phase space manipulations. The entire main linac

in the ERL or the last structures can be set to various off-crest phases to obtain

the phase space distribution at the entrance or inside the linac. The spectrum

should be measured in the first dipole downstream. For measurements at other

locations, especially of a compressed beam after the first arc, an additional
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accelerating structure operated at zero-phase is necessary. For a time domain

measurement, the beam has to be variably compressed and uncompressed in

both arcs, respectively. However, to resolve energy time correlations in the

phase space, the beam has to be over-compressed, which limits this method

to very low charge beams because of collective effects like CSR or LSC.

To study the applicability and limits of these methods, the parameters of

the Cornell Phase I and II ERL proposals [14] were chosen as examples of

a low energy (100 MeV) and a high energy (5GeV) case. The phase space

parameters for the 100 MeV case are an energy spread of σ∆E/E = 2 · 10−4

and a bunch length of σz = 2ps. Using synchrotron radiation as transverse

profile diagnostics [15] and a dipole bend radius of 1 m, a resolution of 10 µm

is possible. Assuming a dispersion of η = 0.5m, the energy resolution of 2 keV

or 2 · 10−5 is sufficient to resolve the energy structure in the phase space. A

maximum chirp of kmax = 400 keV/ps can be done with all sections set to

30 degrees off-crest. The resulting beam is still within 2% energy acceptance

of the machine. This results in a temporal resolution of 30 fs, which will be

larger if the actual slice energy spread is larger than the energy resolution.

In the 5GeV case, the larger bend radii in the order of 10’s of meters in a

TBA cell limit the resolution from a synchrotron profile monitor to 30 µm. The

small dispersion of η = 0.04m gives an energy resolution of 7 · 10−4 which is

larger than the energy spread. An energy measurement with sufficiently high

resolution would therefore require a specifically designed lattice with a much

larger dispersion in the respective dipole. Assuming the energy resolution of

the low energy case, the same temporal resolution can be achieved with the

main linac set moderately off-crest.
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5 Summary

Using only standard instrumentation in high brightness linear accelerators, to-

mographic reconstruction has been shown to be a useful tool to study the beam

dynamics in the longitudinal phase space. However, it can only be applied at

specific locations in an accelerator, and one has to be careful about possi-

ble collective effects that might alter the results. Higher order beam transport

maps can be implemented in a consistent way without the need to invert these

maps in the reconstruction algorithm for both ART and MENT. This is an

important feature for ERLs where these higher order terms become relevant.

The implementation in an energy recovery linac requires the energy spectrum

of the recirculating beam to be measurable with proper resolution and that the

machine has a sufficient phase tuning range and energy acceptance. For GeV

ERLs these issues should already be considered in the design of the machine.
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Fig. 1. Reconstructed longitudinal phase space distributions of the DUV-FEL ac-

celerator. Panel a) shows the uncompressed, panels b) and c) the compressed beam.

The reconstruction method is ART for a) and b) and MENT for c).
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Fig. 2. Temporal distributions corresponding to the reconstruction in Fig. 1. From

bottom to top is shown the measured cathode drive laser distribution, the recon-

structed electron beam current, and the energy – time correlation. The left part

corresponds to the uncompressed, the right part to the compressed beam. The solid

curves are based on ART and the dashed on MENT.
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Fig. 3. Longitudinal phase space distributions of the modulated electron beam. From

left to right the charge was 20, 65, and 180 pC.

∆E
  (

ke
V

)

−2 −1 0 1 2
−40
−20

0
20
40

I  
(A

)

−2 −1 0 1 2
0

5

10

La
se

r

Time  (ps)
−4 0 4

0

0.5

1

−2 −1 0 1 2

−50

0

50

−2 −1 0 1 2
0

10

20

Time  (ps)
−4 0 4

0

0.5

1

−2 −1 0 1 2
−40
−20

0
20
40

−2 −1 0 1 2
0

20

40

60

Time  (ps)
−4 0 4

0

0.5

1

Fig. 4. Temporal distributions corresponding to the reconstruction in Fig. 3 with

bunch charges of 20, 65, and 180 pC from left to right.
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