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Abstract

We consider a new approach to condition an electron
beam using nonlinear effects in the RF field. We demon-
strate that such effects can generate a desirable—for the
FEL interaction—radial variation of the particle’s energy
in the beam, and calculate the induced energy spread in the
limit of weak field.

INTRODUCTION

The most demanding requirement for future X-ray FELs
[1, 2] is the generation of a sufficiently small transverse
electron emittance. To mitigate this problem, an idea has
been proposed in the past to “condition” an electron beam
prior to the undulator of a Free-Electron Laser (FEL) by in-
creasing each particle’s energy in proportion to the square
of its transverse betatron amplitude [3].

Several methods of beam conditioning were considered
in the literature. The original idea [3] utilizes RF structures
with a TM210 accelerating mode in a FODO lattice. Such
a system turns out to be too long for parameters of modern
x-ray FELs. In Ref. [4] (see also [5]), it was shown that a
beam can be conditioned using solenoid magnets in com-
bination with accelerating structures that generate energy
chirp in the beam. Although such conditioner can be rela-
tively short, unfortunately, it introduces a large projected
emittance growth in the beam due to head-tail focusing
variation during conditioning. In Ref. [6], it was shown
that the emittance growth can be avoided in a specially de-
signed lattices that satisfy matching conditions and use a
more gentle pace of conditioning. Techniques considered
in that paper are more appropriate for a specialized con-
ditioning ring. A shorter device based on a “quadrupole
undulator” was proposed in [7] which, however, imposes
extremely tight tolerances for the magnetic field.

More recently, two conditioning methods were proposed
that use lasers. In Ref. [8], conditioning is achieved via
Thomson scattering of laser photons on the beam, and in
Ref. [9] the beam is conditioned via modulation of its en-
ergy due to the interaction with the laser light in an undu-
lator.

In this paper we consider a new mechanism of beam con-
ditioning. It is based on an interaction of the beam with
electromagnetic field in an axisymmetric RF structure and
uses the effect of nonlinear acceleration (proportional to
the square of the field). We show that such interaction
introduces a parabolic energy profile in the beam which
scales with the electric field E and the with the beam en-
ergy mc2γ as ∝ E2γ−1. The advantage of this approach
is the direct modulation of the beam energy on a relatively
short distance.

FIELDS IN ACCELERATING CAVITY
AND EQUATIONS OF MOTION

We assume time dependence of the electromagnetic field
in an RF cavity ∝ e−iωt and use a paraxial approximation
near the axis of the cavity. In this approximation, the field
components are expressed in terms of the longitudinal elec-
tric field on the axis Ez0(z):

Ez(r, z, t) =
[
Ez0(z) − r2

4

(
∂2Ez0

∂z2
+

ω2

c2
Ez0
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rω
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Ez0e
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where c.c. stands for the complex conjugate, and we use
the Gaussian system of units. We will use the Fourier rep-
resentation for the function Ez0(z)

Ez0(z) =
∫ ∞

−∞
E(κ)eiκzdκ , (2)
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The equation of motion for an electron passing through
the RF cavity can be written in the following form

mγ
d2R

dt2
= eE +

e

c
v × B − e

c2
v(v · E) , (4)

where R(t) is the electron radius-vector and v(t) is the
velocity. This equation is supplemented by the following
equation for the relativistic factor γ:

mc2 dγ

dt
= ev · E . (5)

ENERGY GAIN

We will solve the above equations using a perturbation
approach in which the electric and magnetic fields are con-
sidered to be small, or first order. This also means the the
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expected changes in particle’s momentum (end hence en-
ergy) and position are small. In our analysis we assume
relativistic motion with γ � 1. The functions γ(t), R(t),
and v(t) are expanded into the Taylor series,

γ(t) = γ0(t) + γ1(t) + γ2(t) + . . .

R(t) = R0(t) + R1(t) + . . .

v(t) = v0(t) + v1(t) + . . . , (6)

where the subscript indicates the order of smallness of the
quantity. The zeroth order quantities correspond to the mo-
tion with a constant velocity and neglect the effect of the
fields in the cavity,

v0(t) = βcẑ , R0(t) = (βct + z0)ẑ + r0 , (7)

where ẑ is the unit vector in the direction of z axis, r0 is a
two dimensional vector of particle’s offset perpendicular to
ẑ, and z0 is the initial z coordinate of the particle at t = 0.
Eqs. (7) represent the particle’s unperturbed orbit parallel
to the axis of the cavity.

Substituting Eqs. (7) into the right hand side of Eq. (4)
gives an equation for R1(t). Taking the radial component
of this equation we obtain

mγ
d2R1

dt2
= eEr − eβBθ (8)

= −eir0

2

∫ ∞

−∞
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(
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ω

c

)
+ c.c. ,

where we use the notation

Ê(κ, z0) = E(κ)eiκz0 . (9)

Integrating this equation we find the first order corrections
to the particle’s orbit and the transverse velocity,

R1(t) =
eir0

2mcγ
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The poles in the denominator of these equations should be
treated as if the variable κ has an infinitely small negative
imaginary part, κ → κ − iε, with ε > 0 and ε → 0.

The first order equation for γ1 reads

mc2 dγ1

dt
= eEzβc . (11)

Integrating it over time we can find the energy gain
mc2Δγ1 = mc2γ1(t = ∞) after the passage through the
cavity:
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4
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]
, (12)

where k0 = ω/βc, and we used approximation of large γ.
The last equation demonstrates a well known fact that the
linear acceleration in a cavity is due to the synchronous har-
monic of the electric field with a phase velocity equal to the
velocity of the particle (ω/κ0 = βc). It also shows that the
energy gain in linear acceleration has a weak radial depen-
dance ∝ r2

0 , however, for relativistic particles with γ � 1
the effect is negligibly small, of the order of (kr0/2γ)2.

Using Eq. (10) one can also calculate the transverse ve-
locity change of the particle Δv1 = vr1(t = ∞). The
result is

Δv1 = − iπer0

mcγβ

(
κ0 − β

ω

c

)
Ê(κ0, z0) + c.c.

≈ − iπer0ω

mc2γ3
Ê(κ0, z0) + c.c. . (13)

Using Eqs. (12) and (13) and noting that ∂ Ê(κ0, z0)/∂z0 =
iκ0Ê(κ0, z0) it is easy to check that

c
∂Δγ1

∂r0
= γ

∂Δv1

∂z0
, (14)

which relates the energy gain with the transverse kick. This
formula is a manifestation of the Panofsky-Wentzel relation
[10] usually invoked in the theory of wakefields.

SECOND ORDER EFFECTS

We will now look into the second order effects in the en-
ergy gain. The equation for the second order dγ 2/dt reads

mc2 dγ2

dt
= eErvr1 + eβc

∂Ez

∂r
r1 . (15)

Substituting for vr1 and r1 from Eq. (10) and integrating
over time from −∞ to ∞ we find Δγ2:

mc2Δγ2 = e

∫ ∞

−∞
dt

(
Ervr1 + βc

∂Ez

∂r
r1

)
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Integration over time introduces δ-functions into the above
integrals. It is easy to see that the first term in curly braces
vanishes and the second term gives,

mc2Δγ2 =

=
ir2

0e
2π

2mc2βγ
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−∞
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[
κ
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)
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]
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)
. (17)



In the last equation κ′ = −κ + 2ω/(βc). If we set β = 1
in the last equation, then it can be simplified to

Δγ2 = − iωr2
0e

2π

2m2c5γ

(∫ ∞

−∞
dκÊ(κ, z0)Ê(κ′, z0) − c.c.

)
.

(18)

This equation shows that the energy gain in the second or-
der is due to the interaction of the particle with two waves,
with the wave numbers κ1 and κ2, such that

κ1 + κ2 =
2ω

βc
. (19)

We can express γ2 in terms of the original field Ez(z)
using the inverse Fourier transformation: Ê(κ, z0) =
1
2π

∫ ∞
−∞ Ez0(z)e−iκ(z−z0)dz . Substituting this equation

into Eq. (18) gives

Δγ2 = − iωr2
0e

2

4m2c5γ

(∫ ∞

−∞
dzE2

z0(z)e−2i(z−z0)ω/c − c.c.
)

.

(20)

Since γ2 is a second order effect it is proportional to the
square of the electric field. It also scales as γ−1 with the
energy, in contrast to the γ−2 dependence of the first order
term Eq. (12). The phase factor e2iz0ω/c in this integral
shows that the second order energy gain depends on the
relative phase of the RF field and reaches maximum for a
specific choice of this phase.

One can also calculate the second order perturbation of
the transverse velocity Δv2 = vr2(t = ∞) which de-
scribes a radial deflection of a particle passing through the
RF cavity. Omitting the derivation we present here the final
result:

Δv2 =
r0e

2

4m2c3γ2

(∫ ∞

−∞
dzE2

z0(z)e−2i(z−z0)ω/c + c.c.

−2
∫ ∞

−∞
dz|Ez0|2(z)

)
. (21)

Note that Δv2 and Δγ2 are also related through the
Panofsky-Wentzel relation (14). Eq. (21) agrees with the
result of Ref. [11] derived for an infinitely long periodic
structure.

COMPUTER SIMULATIONS

To illustrate the nonlinear energy gain derived in the pre-
vious section we solved numerically the equations of mo-
tion Eq. (4) and Eq. (5) for a particle passing through an
RF cavity. The electric field Ez0 of a simulated RF cavity
is assumed to be given by the following formula:

Ez0(z) = E0H(z)
1
2

(
eiκ1z + eiκ2z

)
, (22)

with κ1 = 0.5ω/cβ and κ1 = 1.5ω/cβ. These
values of κ1 and κ2 were chosen so that they sat-
isfy the equation (19). The function H(z) is H =

(1/2)
(
tanh z+L/2

l − tanh z−L/2
l

)
—it defines the extent

of the interaction region and imitates the finite length of
the cavity. We used the following parameters for the simu-
lation: L = 50 cm, ω = 2π × 11.4 GHz, γ = 10, E0 = 30
MV/m, l = 0.4 cm. Note that according to Eq. (1) the
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Figure 1: The plot of the electric field on the axis.

physical electric field on axis is 2Re [Ez0(z)e−iωt]; the plot
of the quantity 2Re [Ez0(z)] is shown in Fig. 1.

The particles were injected into the cavity with an offset
r0 parallel to the axis and tracked until they exit the cavity.
The difference in the energy gain ΔE = mc2(γe(r0) −
γe(0)), where mc2γe(r0) is the exit energy as a function
of the initial offset, is shown in Fig. 2 and demonstrates
a parabolic dependence in accordance with the theoretical
formula (20). Fig. 3 shows the dependence of the differ-

0 0.5 1 1.5 2
r0, mm

0

5

10

�
E

,K
eV

Figure 2: The dependence of the energy gain versus orbit
offset.

ential energy gain ΔE versus the peak accelerating elec-
tric field on axis E0. For small values of E0 the result of
the simulations agrees with the theoretical value Eq. (20),
however, for E0 � 15 MeV/m, the result of the simula-
tion deviates from the theory. Note that our theory uses
a perturbation approach and is valid in the limit of small
accelerating field.
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Figure 3: The dependence of the energy gain versus E 0

(note that the peak accelerating field in the cavity is approx-
imately equal to 2E0, see Fig. 1). The blue curve shows
theoretical parabolic dependence, and the black one is the
result of simulations.

DISCUSSION

We demonstrated that the nonlinear interaction of an
electron beam with the electromagnetic field generates an
energy gain which is proportional to the square of the par-
ticle’s offset—the dependence required for the beam con-
ditioning. This differential energy gain decreases with γ
(as γ−1). For not very large values of the beam energy,
γ ∼ 10, and accelerating field of the order of 30 MeV, it
can generate the energy variation inside the beam of the or-
der of 10−20 keV. Further increase of the accelerating field
can put this values within the range of values promising
for a modern x-ray SASE FEL application (for the LCLS,
with account of beam compression in the linac, this value
is of the order of 40-50 keV, [4]) . However, the theory
developed in this paper uses a perturbation approach and
becomes invalid for large accelerating electric fields.

As mentioned above, in addition to the radial energy pro-
file, such a field causes radial deflections of particles and

would contribute to the projected emittance growth. To
some extent, this emittance growth can be suppressed if the
particles’ orbit are tilted and cross the axis at the center of
the cavity. Indeed, as follows from Eq. (21), the transverse
deflection is proportional to the offset of the particle and
for a tilted orbit the kick from the first (before crossing the
axis) and the last (after the crossing) part of the particle’s
trajectory will have different signs and would compensate
each other. Note, though, that tilting the orbit makes that
average r2 along the orbit smaller than for the parallel case
and decreases the radial variation of the energy, see Eq.
(18). The study of those effects for optimal values of the
electric field in a realistic environment would require ex-
tensive numerical simulations.
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