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Abstract

For a given rf frequency, the quasi-isochronous lattice allows, in principle, to
double the number of bunches compared with the nominal lattice. We explore such
a possibility considering the beam stability and luminosity of the PEP-II B-factory.

1 Introduction

The high luminosity is achieved in the PEP-II B-factory by filling each other RF bucket.
The luminosity might be increased further by increasing the bunch current. However, the
maximum bunch current is limited mostly by the beam-beam effect. There are several
other effects limiting the bunch current such as loading of the feedback system and the
bunch lengthening (approximately ∆σ = 1 mm per mA of the bunch current). Distortion
of the Gaussian longitudinal bunch profile increases heating due to the widening bunch
spectrum and may limit the bunch current. The microwave instability and the head-tail
effect may be important although, at the present for PEP-II, the bunch current threshold
of the microwave instability is more than 15 mA, approximately 7 times higher than actual
bunch current.

One way to increase luminosity for a given bunch current and rf frequency is to fill
each rf bucket. However, the parasitic crossings, the bunch-by-bunch feedback system,
and limited rf power may prevent us to go in this direction.

In this paper we want to explore another approach: doubling of the number of bunches
per rf wave length. That can be achieved, in principal, using the quasi-isochronous lattice
with low momentum compaction factor α.

There are many questions to be answered whether such approach can be used to in-
crease luminosity. Here we address only few of them: the lattice design, the equilibrium
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bunch profile and the bunch lengthening, the issue of the parasitic crossings, the rf sta-
bility, the microwave and the longitudinal head-tail instabilities. Other questions such
as transverse head-tail instabilities might be addressed later. Such problems as parasitic
crossings and limited rf power are the same as for the fill of each rf bucket but the longitu-
dinal head-tail instability looks like the main objection to the approach. If these problems
can be solved, then in ideal case, filling each bucket and using quasi-isochronous lattice,
the number of bunches could be increased by a factor of four.

In the next section we consider dependence of the luminosity and beam-beam param-
eter on the momentum compaction factor.

2 Dependence of the luminosity on α

The luminosity is proportional to the overlapping of the distribution functions of colliding
bunches. The later depends on the zero-current rms bunch length σ0 and on the bunch
profile. For equal bunch currents IB = eNBf0, transverse rms σ∗

x,y, and β∗
y function at

the interaction point (IP) for both beams,

L = L0JL(
σ0

β∗
y

), L0 =
N2
Bf0

4πσ∗
xσ

∗
y

,

JL(p) = 2
∫ dsdzf1(z + s− ∆s/2)f2(z − s+ ∆s/2)

√

1 + p2(s/σ0)2
. (1)

Here f(z) is the longitudinal distribution function normalized as
∫

f(z)dz = 1, z is the
distance of a particle from the bunch center, z > 0 is for a particle shifted in the direction
of the propagation of the beam. The longitudinal position of a particle in two bunches is
s1,2 = ±(ct+ z) + ∆s/2 where ∆s/2 is the longitudinal offset equal to the distance of the
bunch centroids of the colliding bunches from the waist of the β-function (i.e. from the
interaction point). The form factor JL describes the hour-glass effect: reduction of the
luminosity L from the nominal L0.

It is convenient to express the luminosity in terms of the beam-beam parameter ξBB
considering the maximum value of the later as fixed experimental parameter. If ξBB is
defined as the tune shift averaged over the bunch interacting with the opposite beam,
then it also depends on the shape of the distribution function.

ξBB = ξ0
BBJξ(

σ0

β∗
y

), ξ0
BB =

NBreβ
∗
y

2πγσ∗
xσ

∗
y

,

Jξ(p) = 2
∫

dsdzf1(z + s− ∆s/2)f2(z − s+ ∆s/2)
√

1 + p2(s/σ0)2. (2)

The ξBB defined in this way should be used for estimates of the achievable luminosity
in the upgrade of the B-factory rather than ξ0

BB. In this case, given the bunch popula-
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tion NB and the beam-beam parameter ξBB, the hour-glass effect is given by the ratio
(1/β∗

y)(JL/Jξ),

L =
γNBf0

2re
ξBBβ

∗
y

JL(σ0/β
∗
y)

Jξ(σ0/β∗
y)
. (3)

The hour-glass form-factors JL and Jξ for Gaussian bunches are shown in Fig. (1).
The ratio JL/Jξ is equal to one at σ0/β

∗
y = 0 and drops to 0.716 at σ0/β

∗
y = 1.
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Figure 1: The form-factors JL and Jξ for Gaussian bunches.

The hour-glass form factor (JL/Jξ) depends on the momentum compaction factor α.
For a fixed rf voltage Vrf , the argument σ0/β

∗
y is proportional to (1/β∗

y)
√
α. Hence, in the

zero approximation, the hour-glass form factor does not change if β∗
y varies proportional to√

α. Then, reducing α and scaling β∗
y ∝

√
α one can increase the luminosity L ∝ (1/

√
α).

Such argument, however, ignores the distortion of the bunch profile due to potential
well distortion (PWD). We return to the effect of the PWD below after discussion of
the longitudinal dynamics with small α in the next two sections and then discuss other
implications of the low α. Here we want to mention that, eventually, the onset of the
longitudinal head-tail instability sets the limit on the minimal α.

3 Longitudinal dynamics with small α

As it is well known [1], the longitudinal dynamics is described by the equations

dz

dt
= −cδ(α0 + α1δ)δ,

dδ

dt
=
eV ω0

2πE0

cos(φs −
ωrfz

c
) − ω0U

2πE0

, (4)

where z is the shift of a particle from the bunch centroid (z > 0 is shift toward the
head of the bunch), δ = (E−E0)/E0 is the energy deviation, and c is the velocity of light.
Other parameters are: ω0 is the revolution frequency, φs is the rf phase, cosφs = U/E0,
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α = α0 + δα1 is the momentum compaction, E is the beam energy, V and U are the rf
voltage and the energy loss (including wake field) per turn, respectively.

Eq. (4) shows that there are two stable fixed points (FP):

{(1). ωrfz1

c
= 0, δ1 = 0}, {(2). ωrfz2

c
= 2φs, δ2 = −α0

α1

}. (5)

The motion in the small vicinity of the fixed points is stable (provided the phase
0 < φs < π/2) with the same synchrotron frequency Ωs proportional to α0,

Ω2
s =

eV α0ω0ωrf
2πE0

sinφs. (6)

Hence, generally, there are two bunches within the rf wave length centered at the
two FPs. The second bunch (centered at the 2nd FP) moves ahead of the 1st bunch
(centered at the 1st FP) and, in the region with the dispersion Dx, is shifted horizontally
by ∆x = −α0

α1
Dx relative to the centroid of the first bunch. For the nominal lattice, where

α0/α1 is large, the shift is larger than the beam pipe aperture, and the phase plane looks
like the upper plot in Fig. 2. For sufficiently small α0, the second stable point may be
within the physical aperture and two bunches can be stable within one rf wave length.

The ratio α0/α1 defines not only the energy shift of the bunches but also the energy
acceptance for each bunch. It has to be large compared to the rms energy spread δ0, say,
α0/α1 >' 10δ0. Parameter α1 is given, mostly, by sextupoles and, as in the example
below, α1 ' 0.05. Therefore, the lattice has to be designed to give small but not too
small α0, only by an order of magnitude smaller than the nominal α0 = 2.4E − 3.

Fortunately, PEP-II HER electron ring has quite small δ0 = 6.1E−4, Another specific
advantage of the PEP-II is that it operates using the high repetition rate of injection what
relaxes requirements for the dynamic aperture and the energy acceptance.

4 Lattice design

The lattice for quasi-isochronous ring was designed before [2]. Here we reproduce the
design for the arcs ignoring the straight sections and matching sections. In this case, the
ring comprises 6 arcs, each arc has 4 super-cells. Each 45.6 m long super-cell is, basically,
3 unequal FODO cells and have mirror symmetry around the super-cell center. There
are six bend dipoles per super-cell. Bends are the same as in the present nominal design,
each with the length 5.4 m and the bend angle 2π/144 radian. The phase advance per
super-cell is µx/2π = 0.75 and µy/2π = 0.25. Maximum βx/y = 38.8/76.9 m, maximum
Dx = 1.85 m. The first quadrupole is the strongest, B ′

y ' 15.1 T/m. Sensitivity to the
field errors can be seen from variation of α0 with the parameter K1 = B′/(Bρ) of the
first quadrupole, dα0/dK1 ' 0.006 m2. The super-cell includes the chromatic sextupoles.
Parameters of the super-cell are given in the Appendix in the MAD format. The optics
is shown in Fig. ( 3).
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Figure 2: Phase plot for the Hamiltonian H(δ, ζ) = α0δ
2/2 + α1δ

3/3 − λ(sin[φ − ζ] −
sin[φ]) − λζ cos[φ]. Parameters are λ = 2.0E − 7, α1 = 5.5E − 2, and α0 = 5.0E − 2
(above), and α0 = 5.34E − 4 (bottom). Note the different vertical scale for two plots.

Momentum compaction calculated with MAD is

α = 5.34410−4 + 0.05542δ − 0.0662δ2, (7)

Hence, α0 = 5.344E − 4, α1 = 0.0554, and the energy separation of the stable points
α0/α1 corresponds to 15.81δ0, and the offset ∆x = 1.78 cm. Note that α0 is smaller than
the nominal α0 = 2.7E − 3 only by a factor of five.

The same lattice can be used to make the lattice isochronous. Fig. ( 4) shows the
lattice parameters for negative α0 = −1.03E−4. The lattice is the same but the strength
of the first quadrupole increased to K1 = 0.505 m−2 from K1 = 0.49 m−2 for α0 =
5.344E − 4.

The design of the lattice for the LER positron ring can be different and based on the
lattice with missing bends. The ratio α0/α1 in both rings has to be the same to have
collisions. We also assume the zero dispersion at the interaction point (IP).

5 Bunch profile

The equilibrium steady-state longitudinal bunch profile is given by the Haissinski solution.
For φs ' π/2, the FPs are well separated, ∆z ' λrf/2. For realistic bunches σl << ∆z,
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Figure 3: Twiss parameters for the quasi-isochronous lattice with α0 = 5.344E − 4.

and the bunch profile ρ(z) can be written as the sum of distributions for two bunches.
The bunch profile for the second (leading) bunch is

f2(z) =
1

N2

e
−

(z−z2)2

2σ2
0

+Λ
∫

∞

z
dz′f2(z′)S(z′−z)

. (8)

Here S(z) is given by the longitudinal wake W δ(z), S(z) =
∫ z
0 W

δ(z′)dz′, S(z) = 0 for
z < 0, and

Λ =
Nbre

2πRγα0δ2
0

, (9)

where re is the classical electron radius, γ is relativistic factor, and δ0 is the rms
relative energy spread.

The bunch profile for the first bunch has to take into account the wake generated by
the second bunch

f1(z) =
1

N1

e
− z2

2σ2
0

−Λ
∫

∞

z
dz′f1(z′)S(z′−z)−Λ

∫

dz′f2(z′)S(z′−z)
. (10)

The normalization constants N1,2 are given by the condition
∫

f1,2(z)dz = 1. The
energy spread is defined by the synchrotron radiation and is equal for both bunches.
Therefore, parameters σ0 and Λ are the same as for the leading bunch. Because f2 is
large only for z ' z2, The last term in Eq. (10) gives mostly the current dependent shift
of the distribution f1(z),

∫ ∞

z
dz′f2(z

′)S(z′ − z) = −zW δ(z2) + const (11)

.
However, because the broad-band wake at large z2 >> σ0 is small, the shift can be

neglected. For the well separated bunches, the quantum diffusion between bunches is
exponentially small.

6



0 10 20 30 40
s

0

10

20

30

40

50

Β
x
,
y

-5

5

15 1
0

*
D
x

Βx

Βy

Figure 4: Twiss parameters for the quasi-isochronous lattice with α0 = −1.0 10−4.

Eq. (8) shows that the bunch profile depends only on two parameters: Λ and the
zero current rms bunch length σ0. Both parameters depend on α, Λ ∝ 1/α and σ0 =

cα0δ0/Ωs ∝
√

α0/Vrf . It should be noted that σ0 depends on the rf voltage Vrf . Therefore,
variation of α0 at the constant σ0 implies simultaneous variation of the rf voltage.

Note that the wake term enters in Eq. 8, 10 with the opposite sign. Therefore, the
dynamics of the leading bunch is the same as the dynamics of a bunch in the lattice with
the negative momentum compaction factor.

6 The longitudinal Wake

At small z, the wake W δ(z) ∝ z, and S(z) ∝ z2 ' σ2 ∝ α0 and the current dependent
term may be constant with α0

†. In this case, one can expect that the contribution of the
wake decreases with α0 and the bunch lengthening is limited. Unfortunately, that does
not happened for more realistic wake fields and rms bunches.

We model the wake field of a point-like bunch for the LER PEP-II B-factory adding
contributions of the experimentally measured modes of six RF cavities, resistive wall, and
the inductive components of the ring. The later are described by the inductive-like model
with the wake W δ

L,

W δ
L(z) =

L√
πza3

(1 − z

a
)e−

z
a , (12)

where the inductance L = 80 nH corresponds to the estimated inductance of the ring

†This comment belongs to C. Pellegrini
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and the parameter a = 0.285 cm is chosen to reproduce the total loss factor of the small
vacuum components of the ring.

In the study described below we use the wake W (z) convoluted with the Gaussian
bunch with rms σ0 = 8 mm. The wake W (z) is shown in Fig. (5).
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Figure 5: Wake field obtained by convolution of the Wδ(z) with the σ = 8 mm Gaussian
distribution.

7 Effect of the PWD on luminosity

The potential well distortion (PWD) makes the first (leading) bunch shorter and the
second (trailing) bunch longer. Example of the bunch profile with such a wake for low
α is shown in Fig. (6). The trailing bunch has the usual tilt forward while the leading
bunch tilt backward and has smaller rms due to the negative sign of the wake term in
Eq. 8. The wake field and parameters used in calculations are taken for the impedance
model and PEP-II parameters.

Quantitatively, the effect of the PWD depends on the sign of the momentum com-
paction α0 and is quite different for the leading and trailing bunches, see Fig. (7).

Both the bunch lengthening (shortening) and the tilt of the bunch profile affect the
luminosity. Variation of the hour-glass form-factors JL and Jξ with the momentum com-
paction α0 taking into account the PWD has been calculated varying σ0 ∝

√
α0 (for fixed

Vrf ), scaling the Haissinski parameter Λ ∝ (1/α0), and β∗
y ∝ √

α0. Variation of the form
factors JL and Jξ with α0 in this case is only due to PWD distortion of the distribution

8



-3 -2 -1 0 1 2 3
z

0

0.2

0.4

0.6

0.8
Ρ

trailing

leading

Figure 6: An example of the bunch profiles for the leading (the bunch centered at the
2nd FP, blue line) and trailing bunch(centered at the 1st FP, red line). Parameter α0 =
0.8 10 − 3. The zero current σ0 = 1 cm, the bunch current IB = 2.5 mA.

functions. It is worth to remind that the luminosity L ∝ (1/
√
α) (JL/Jξ) and grows as

(1/
√
α) for small α for constant (JL/Jξ). Result of calculations are shown in Fig. 8.

8 Parasitic crossings

One of the main problem with the large number of bunches is caused by the parasitic
crossings. The problem is essential for the fill with bunches in the every rf bucket even for
the nominal lattice. The doubling of the bunch number in the quasi-isochronous lattice
encounters the same problem. However, in the later case there are two type of parasitic
crossings. If each rf bucket is filled with two bunches in the quasi-isochronous lattice,
the parasitic crossings take place at the distances ' nλrf/4, where n is an integer and
n = 0 corresponds the IP collision. For PEP-II B-factory, λrf = 60 cm and collisions with
n = ±1 and n = ±2 take place at the distances 15 cm and 30 cm from IP, before beams
are separated in the B1 magnet. Therefore, the beam-beam tune shifts caused by the
symmetric parasitic crossings on both sides of the IP tune would cancel each other due to
the phase advance ' π between such collisions. The next parasitic crossings take place
at the distances ±3λ/4 and ±λ. The last are the same as the parasitic crossings for the
present fill of each other rf bucket. Hence, the only new additional parasitic crossings are
the interaction at ±3λ/4 = 45 cm inside of the B1 magnet. Hopefully, reduction of the
luminosity due to such a crossing is less than the gain due to double number of bunches
per ring although this question needs more study.
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Figure 7: Bunch lengthening vs bunch current for positive and negative momentum com-
paction (MC) factors.

9 Beam loading

The rf beam loading in the case of two bunches per rf bucket is different from the nominal
case. As usual, the cavity with the frequency of the fundamental mode ωc generates
impedance at the rf frequency Zc = RL cos(ψ)eiψ where RL = R0/(1 + β) is loaded shunt
impedance, ψ is detuning angle, tan(ψ) = QL(ωrf/ωc − ωc/ωrf ), and β is the rf coupling
coefficient. The rf voltage is

Vcav = (1/2) (Vce
−iωrf t + c.c) = |Vc| cos(ωrf t− φc), (13)

where the amplitude Vc = |Vcav|e−iφc and φc is the beam angle in respect to the
generator current. We define the generator current Ig with the zero phase and denote the
amplitudes of the beam currents of both bunches by
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Figure 8: The ratio of the form factors JL/Jξ vs momentum compaction factor α0 for β∗
y

scaled as β∗
y = β∗

y,0

√

α0/α0,n. Parameters σ0 = β∗
y,0 = 1 cm, α0,n = 2.3 10−3, δ0 = 6.1 10−3,

and the bunch current Ib = 2.5 mA are the nominal parameters for HER PEP-II. Three
curves corresponds to the colliding Gaussian bunches, and PWD distorted (Haissinski)
bunches: (H, l-l) for two leading (l) bunches and (H,t-t) for two trailing (t) bunches.

I1 = Ib1e
i(φs−φc+ξ1), I2 = Ib2e

i(−φs−φc−ξ2), (14)

where φs is the steady-state rf phase, Ib1 and Ib2 are real, and ξ1,2 are small phase
deviation from the steady-state due to synchrotron oscillations,

ξ1 = −ωrfz1

c
, ξ2 =

ωrfz2

c
. (15)

The beam amplitudes are given by the dc currents of both beams, Ib1 = 2Idc1 , Ib2 =
2Idc2 .

The amplitudes are related by the equation

Vc = Zc(Ig − I1 − I2) (16)

what is equivalent to the following two equations for real quantities:

Ig sin(ψ + φc) = Ib1 sin(ψ + φs + ξ1) + Ib2 sin(ψ − φs − ξ2),

|Vc| = RL cosψ[Ig cos(ψ + φc) − Ib1 cos(ψ + φs + ξ1) − Ib2 cos(ψ − φs − ξ2)]. (17)

Accelerating voltage for each beam is Vac = |Vc| cos(φs + ξ1,2). Because dz1,2/dt =
∓α0δc, the variation ξ1,2 > 0 for the energy variation δ > 0 provided α0 > 0. Therefore,
the Robinson condition of stability for α0 > 0 requires
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[dVac/dξ1,2]ξ=0 < 0. (18)

The quantities Ig, ψ, φs and Ib1, Ib2 should be considered as constants independent of
ξ1,2 and derivatives dφc/dξ1,2 can be obtained from the first of Eq. 17,

dφc
dξ1,2

= ±Ib1,b2
Ig

cos(φs + ξ1,2 ± ψ)

cos(ψ + φc)
. (19)

The optimum condition corresponds to the zero reflected power. That gives conditions
φc = 0 and |Vc| = IgR0/(2β. Excluding Ig we get

β =
sin(φs + ψ) − κ sin(φs − ψ)

sin(φs + ψ) − κ sin(φs − ψ)
,

1 =
Y

2 sinψ
[sin(φs − ψ) − κ sin(φs + ψ)], (20)

where we used parameters

κ =
Ib2
Ib1
, Y =

R0Ib1
|Vc|

. (21)

Eq. 20 can be written in the form

β = 1 + Y (1 + κ) cosφs
tan(φs)

tan(ψ)
= (

1 + κ

1 − κ
)(
β + 1

β − 1
). (22)

Eq. 22 defines the optimum tuning angle ψ. In the case κ = 0 and Eq. 22 give the
usual expressions for a single beam.

The conditions of stability Eq. 18 in the optimum φc = ξ1 = ξ2 = 0 take the form

1 − (1 − κ)
tanφs
tanψ

< 0, κ− (1 − κ)
tanφs
tanψ

< 0. (23)

Using Eq. 22 that can be written as 2 + (1 + β)κ > 0 and 2κ + 1 + β > 0, what is
always true. Therefore, the beam is stable.

In the limit of equal currents, κ− > 1, and the detuning angle goes to zero,

ψ = (
Y sinφs

2(1 + Y cosφs)
)(1 − κ). (24)

For equal beam currents there is no need to detune the cavities. That can simplify
the longitudinal feedback system.
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10 Microwave Instability

Sometimes, the main objection to the lattice with small momentum compaction α0 is
based on expectation of the substantially reduced threshold of the microwave instability.

Dependence of the energy spread is shown in Fig. (9) for positive and negative momen-
tum compaction (MC) factors for the same wake. The result is obtained with the code [3]
developed by one of the authors (S. N.) The threshold of instability Ith is indicated by
the growth of the energy spread for the bunch current I > Ith.

As the figure shows, the ∝ 20 mA threshold for α0 >) is reduced to 5 mA for α0 < 0.
However, even 5 mA bunch current is by a factor two higher that the present PEP-II
bunch current and may be acceptable.

Figure 9: Energy spread vs beam current for positive and negative momentum compaction
factors.
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11 Longitudinal head-tail instability

The longitudinal head-tail instability is, probably, the main problem of the low-momentum
compaction lattices. The growth rate of instability [1] 1/τ ∝ (α1/α0). For the case of
α1 ' α0 the growth rate is low and the instability is usually suppressed by the synchrotron
radiation (SR) damping. The situation is different for our case with the large ratio
(α1/α0). The growth rate in this case may exceed the SR damping. An example of the
strong instability for the 2 mA bunch is shown in Fig. (10).

T = 1 T = 360

T = 490 T = 580

T = 682 T = 986

Figure 10: Dynamics of the head-tail single-bunch instability is shown in the phase plane
(z, δ) for 2 mA bunch current. Time is indicated in the figure. At t > 600 turns, the
bunch splits in halves. Results are calculated using the direct solution of the Fokker-Plank
equation [3].

We carried out two type of simulations. In the simple simulations, we calculate trajec-
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tories of four particles solving with MATHEMATICA equations of motion which include
synchrotron oscillations and interaction between particles proportional to the wake con-
voluted with σ = 8 mm Gaussian bunch,

dζi
dτ

= −δi(1 + εδi), (25)

dδi
dτ

= ζi −
∑

j

I bunch
4
W [ζi − ζj,

where (i, j) = 1, 2, ..., 4, the dimensionless ζ is the distance of a particle from the bunch
center in units of the rms bunch σ and δ is relative energy offset ∆E/E in units of the
relative rms energy spread δ0, τ = ωst, and ε = (α1/α0)δ0. Note that in this units one
revolution period T0 = 2π. In the simulations we used LER parameters, the synchrotron
period equal to 56 revolution periods, α0 = 5.34 10−4, α1 = 5.54 10−4, δ0 = 7.7 10−4, and
σ = 8 mm. Trajectories with initial conditions ζi = −0.33,−0.27, 0.27, 0.33, δi = 0, were
calculated for the time interval up to 700 synchrotron periods. That allows fast study
of the dynamics of the system including quantitative result for the emittance variation.
More elaborate simulations used the Fokker-Plank solver developed to study microwave
instability.

Results of the simple simulations for the bunch current Ibunch = 0.5 mA are shown in
Fig. (11).

The system in clearly unstable although the growth rate is small. However, the in-
stability is peculiar one: although it is the single bunch instability, the mechanism of
instability is related to the nonlinear motion of the bunch centroid. More precisely [1],
the instability is caused by the variation of the energy loss during the synchrotron period
due to variation of the rms bunch length. Therefore, it seems that the instability might be
stabilized by the longitudinal feedback system (FB). We model the FB generating a buffer
ζ1, ..., ζ56 with positions of the bunch centroid for each of 56 revolutions per synchrotron
period. The buffer is redefined each turn to keep data on the last 56 turns and the data
are interpolated as the sum of

ζf (τk) = a0 + a1 sin(ντk + φ1) + a2 sin(2ντk + φ2) + a3 sin(3ντk + φ3), (26)

where τk = τ − (k − 1)T0, k = 1, ..., 56, and aj, j = 0, 1, 2, 3 and φj, j = 1, 2, 3
are fitting parameters. The buffer is redefined each turn to keep data on the last 56
turns.. Then, the same kick δi → δi + K is applied to each of four tracking particles
where K = 0.1 dζf (τ/dτ) is proportional to the derivative of the fitting function taken
at k = 1. The coefficient 0.1 was determined to give the best damping. The result of
tracking for each of the particles with the FB on is shown in Fig. ( 12). The results
seems encouraging: the amplitude of the oscillations for each particle remain stable for
700 synchrotron periods.
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Unfortunately, the simulations with the Fokker-Plank solver do not confirm this con-
clusion, see Fig. ( 13) and Fig. ( 14). Although the results in many respect seems similar
to the four-particle model, there is a systematic growth of the bunch emittance in spite
of the feedback included in the simulations in the same way as it is described above.
The difference of two simulations is apparently due to the difference in the models: the
two-particle model does not include fluctuations which are included in the Fokker-Plank
equation.
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Figure 11: Tracking of four particles with the feedback off, Ibunch = 0.5 mA. The trajec-
tories are unstable.

12 Summary

The quasi-isochronous ring with the reduced momentum compaction factor allows to have
two stable bunches per rf bucket. It is tempting to increase the number of bunches per
ring without increasing the rf frequency. The paper presents a preliminary study of this
possibility. We consider the lattice design, the bunch lengthening and distortion, parasitic
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Figure 12: Tracking of four particles with the feedback on. The i-th row shows the
trajectory in the phase plane (on the left) and time variation ζi(τ) (on the right) for the
i = 1, 2, 3, 4 particle. The trajectory after one or two turns finds the fix point and then
remains stable for 700 synchrotron periods.

crossings, the rf beam stability, microwave and longitudinal head-tail instabilities. The
problem of the higher rf power remains and is similar to that for the filling of each rf
bucket. Additional parasitic crossing affects the luminosity but the adverse effect may be
less than the gain in luminosity due to additional bunches. The bunch lengthening and
microwave instability seems to give week constraints. However, the longitudinal head-tail
instability makes the beam unstable and the feeback system can not stabilize it although
the growth rate of instability is small. Therefore, the statement that there are two stable
fix points in the low alpha lattices is an illusion: the fluctuations make the particles in
the second fixed point unstable.

The authors thank Y. Nosochkov for his help with MAD.
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13 Appendix: Quasi-isochronous supercell

THETA := 0.0218166, par1=-7.334216, par2=-4.810802
HB: SBEND, L=2.7, ANGLE=THETA, E1=0.5*THETA, E2=0.5*THETA
QF1: QUAD, L=0.25, K1=0.49
QD1: QUAD, L=0.25, K1=-0.2257767
QF2: QUAD, L=0.25, K1= 0.3020760
QD2: QUAD, L=0.25, K1= -0.2470620
SF1: SEXTUPOLE, L=0.25, K2=par1
SD1: SEXTUPOLE, L=0.25, K2=par2
D1: DRIFT, L=0.85
D2: DRIFT, L=1.0
D3: DRIFT, L=0.60
HCEL1: LINE=(QF1,D1,HB,HB,D3,SF1,QD1)
HCEL2: LINE=(QF2,D1,HB,HB,D3,SF1,QD1)
HCEL3: LINE=(QF2,D1,HB,HB,D3,SD1,QD2)
CEL1: LINE=(HCEL1,-HCEL2)
CEL2: LINE=(HCEL3,-HCEL3)
CEL3: LINE=(HCEL2,-HCEL1)
SuperCell: LINE=(CEL1,CEL2,CEL3)
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Figure 13: Variation of the centroid offset and the centroid energy in time with zero wake.
Results are from the solution of the Fokker-Plank equation with the feedback on.
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Figure 14: Variation of the bunch length, the energy spread, and emittance in time.
Results are from the solution of the Fokker-Plank equation with the feedback on. The
fast growth starts with the bunch deformation (see insert) which is later would followed
by splitting of thge bunch in halves as shown in Fig. (10).
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