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Abstract andf[X, _o; (1 — 0) — 0] = fo(Xo), the evolution of the

Longitudinal space charge (LSC) force can be a main efl_istribution function under the influence of the wakefield is
fect driving the microbunching instability in the linac for S 0f(X;T—0)d
an x-ray free-electron laser (FEL). In this paper, the LSC- fIX(s); 8] = fo(Xo) — /0 de(a%)dZ- 2)
induced beam modulation is studied using an integral equa-
tion approach that takes into account the transverse (radidlle rate of energy change due to the wakefield is
variation of LSC field for both the coasting beam limit and d dk
bunched beam. Changes of beam energy and the transverse <! — _, / L Z(k1; T)Nb(ky; )t (3)
beam size can be also incorporated. We discuss the validity T 2m

of this approach and compare it with other analyses as Wellere -, is the electron classical radiud, is the total num-

as numerical simulations. ber of electrony is the Lorentz factor, and (k;; s) is the
longitudinal impedance.
INTRODUCTION Introducing density bunching factétk; s) as

To ensure an x-ray FEL successful commission and op- 1 ik
eration, the electron beam is prepared with highest possi- b(k; s) = N /dXe f(X; ), (4)
ble quality. However, such high quality electron beam is
subject to various instability along the accelerator systenand using Eq. (2), we have
Due to the very small energy spread from the RF gun, the "
Landau damping is ineffective [1, 2, 3]. Because of the in- blk(s); s] = bolk(s);s] — w /dTR56(T — 8)
evitable density un-smoothness of the electron beam born N

from the RF cathode, the space charge effect can induce % /dXTe—ikz(Xr)f (X,;7—0) dj7 (5)
large energy modulation on the beam, which leads to insta- dr
bility downstream [2, 4]. In this paper, we study the LSC h
Lo : - “Wwhere
effect taking into account acceleration, and also variation
of transverse beam size during the acceleration. We study b (ks ) — 1 IXoe— ik f (X 6
this analytically via an integral equation approach, which o(ks s) = N 0e”""fo (Xo), (6)
is compared to direct numerical simulation, and also other ) ) ) )
analytical approach [5]. is the bunching fact_or without Wake_fleld. We have intro-
duced the symplectic transfer matrix ¥gs) = R(r —
COASTING BEAM THEORY s)X (7). Now, plug Eg. (3) into Eq. (5), we have
1-D formulae blk(s); s] = bolk(s); s] + ”L'kTe/dTR56(T*>S) (7)
Following Ref. [1], but taken into account of accel- dk, ihik s
eration, the beam is described by a distribution function % /gz(klﬁ)b(k‘lﬁ)/dxoe " fo (Xo)

flz, 2, y,y, z,v;s) with s = ¢ [ /1 —~~2dt to be the

position along the beam line. The distribution function imwherez, = zo+R5s(0 — 7)Avp, @andz = zo+R56(0 —
mediately after the energy kick due to wakefield€at 0)  s)A~p.

is related to that immediately before ¢at- 0) by Now, let us assume that

fXe740) = f(X:—AX;7-0) 1) fo (Xo) = fo (Xo) + fo (Xo), ®)
Of (Xp57 — 0)

~ X1 —=0)—A
f( T O) ’y 8’}/7—

;  where fy (X,) is the average distribution function, and
o (Xp) is the initial microbunching. For microbunching
where AX = (0,0,0,0,0,Av). Here, we focus on the wavelength much smaller than the bunch length, we could
longitudinal phase space only. Summing up wakefield cormssume uniform longitudinal distribution, hence coasting
tribution over the entire trajectorye., 7 € [0, s], and using beam, inz, and Gaussian i\ for the average distribu-

the boundary notatiofiX . _; (1 — s)+0] = f[X(s);s], tion function,i.e., we assume
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wheren is the average line density. Within the linear thewhere we have introduced the wakefield as

ory, we could neglect th&, (X,) in completing the integral ik

in Eg. (7). In doing so, we get w(z, 1, s) = /Q—Z(kr;r, o)k (A7)
™

S

drK (7, s)b[k(7); 7], (10)  and we have also defined the averaged impedance as

blk(s); s] = bo[k(s); ] +/

0

with the kernel of the integral equation as Z(k;r,s) = /dr'Z(k'T v 8) fr(r's 5). (18)
, I(1)Z[k(7); 7]
K(r,s) = ik(s)Rso(T — 5) i The bunching factor could be simplified as

X exp {—k(Q)REG(T — 8)027/2} , (11) 1 ' 1 4
b(k; s)=— [dXe " (X; s)=— [dze ™", (2;5), (19)
where N N
s dx 5 according to Egs. (14) and (15).
(12) Now, plug Eqg. (16) into Eg. (5), we have

Raotr =)= | o

It is worth noticing that due to the uniform distribution in .

z, there is only a single frequency selected:iimtegral in blk(s); s] =bo[k(s); s] + Zkre/dTR%(THs)/dXO (20)

Eq. (7). Should we work on a Gaussian distributiorjn dkq = _ikapikyz

we will deal with a multi-frequency theory. x/ﬁz(’ﬁ? r, )bk T)e " fo (Xo) -
According to Eqg. (3), the resulting accumulated energy

modulation spectrum is then We then do the linearization and complete the integrals as
. we did for the 1-D case. In doing so, we formally get the

Av[k(s); 8] = _/ dTIOZ[k(T)3T]b[k(T)? 7] same equation for the evolution of the bunching factor as

0 Iy in Eq. (10). However, the kernel of the integral equation is

X exp {_szgﬁ(T R S)UZM/Q}, (13) different from that given in Eq. (11). Here, the kernel is
wherel, = ecnyg is the peak current withy = N/L the _ I(7) Z[k(7); 7]
peak density, ands ~ 17045 Amp is the Alfwén current. K(r,5) = ik(s)Rss(T — S)T

—kQRz — 2 2¢, 21
Radial Dependance xexp {~kiR3s(T — 5)0A,/2}, (21)

If the transverse dynamics and the longitudinal dynamicghere the double-averaged impedance is defined as
are separable.e., we assume that the distribution function

's factorable Z(k; s) =/dr2(k‘;r,8)fr(r;8)- (22)

(X;8) = fr(r; 2\%38), 14 . .

f(X;8) = Jr(rs ) fx(:9) (14) According to Eq. (16), the resulting accumulated energy
with the normalization of modulation spectrum is then

L) s 1.7 . .
[wtiiris) =1, 69 gl = - [ ar RO
0 A

then the three dimensional problem can be simplified into x exp {—k*R2s(1 — s)ox,/2} . (23)

one dimensional problem.
Radial variable as parameter Should we not do the
Transverse averaging approach One approach is to average in Eq. (18), we can keep thelependence. This
average out the transverse variables. The energy changéhroach was recently taken in Ref. [5, 6]. In our approach,

rate is then we introduce a radial-dependent bunching factor
W = —re/dz’dr’w (z=2m0) f (2,77 5) b(k;s,r) = %/dze’isz(r,z;s)
= _re/dr’/%Z(k;r,r’)eikz = fr(r;s)%/dze’iszz(z;s), (24)
x / dz' e £, (17;5) £ (25 9) so that
N~ / %Z[k(s);r, SINB[k(s): s]e**, (16) b(k;s) = W (25)



The energy change rate is then

fre/dz'dr'w (z =2 r0") f(Z,7';5)

—re/dr’/%Z k

27

- / d2'e™ ™ [, (r';5) [ (25 5)
/ dk / ikz

= —refdr ?Z[k(s);r,r]Nb[k( s); s,7']e"™*,

us

Therefore the bunching factor evolves as
blk(s);s,r] =

dy(r,z;s)
ds -

) 7,/) eikz

(26)

(27)
/dT/derrr olk(r); 7,7

with
I(T)Z[k(T); 7,7, 7]
A2

K(r,s,r,7") = ik(s)Rse(T — 3) :
(28)
The corresponding evolution for the energy modulatior

v(s,r)= _/Oiif/ p O ZIk(); 7, P Jblk(T); 7 )

o
(29)
Hence, the average energy modulation is
drA~(s,r
Av(s) = M (30)

X1

BUNCHED BEAM THEORY

The corresponding accumulated energy modulation spec-

trum is then
= [ [ 5

Xexp{ w

: (34)
[B(5)Rs(s) = k(1) Ras(1)]P0%, }

(7); TJblk(7); 7]
14

2

Radial dependance

Let us take the radial dependance into consideration.
With the transverse averaging approach, we simply replace

Z [k(7); 7] In Egs. (32), (33), and (34) by [k(7); 7] de-
fined in Eq. (22).
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In reality, the electron beam’s longitudinal distribution
is not uniform, hence let us now improve the theory to deal

with bunched beam, and so multi frequency case.

1-D formulae

For 1-D theory, the derivation up to Eq. (7) stays the
same. For a Gaussian longitudinal distribution, we assume

_ N Ay 2
Xg) = ——— — . 31
fo(Xo) Sroano exp { 202 } (31)

Here we use the same notation ft5(X,) as in Eq. (9)
without worrying about any possible confusion.
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Figure 1: Example of Figs. 10 and 11 of Ref. [5]. The
initial density modulation isi;y = e~ /2% with 0 =
0.1, andg = 1. The solid curve (blue) is & = 0, and
the dashed curve (red) is At= 10. Notations have same
meaning as in Ref. [5], th&., is normalized.

LSC IMPEDANCE WITH RADIAL
DEPENDENCE

Having setup the frame work above, let us now find the

Completing the integral in Eq. (7), we obtain the evolu ¢ impedance with radial dependence.

tion for the bunchlng factor as
blk(s);s] = bo [k ]

/ /dk

with the integral kernel to be

(32)
Jk(s); T, 8] b[k(T); 7],

I(1)Z [k(7); 7]
Ia

cosp {4 k()0

Kk(7),k(s); T, s|=ik(s)Rs6(T7 — s)

(33)

[I{J(S)RSG(S) - 16(7')73,56(7’)]20'2A7 } '

Green function for @—ring

What we need is the Green function fobaring. We
omit the derivation here, for a—ring at r/, the LSC
impedance is

Z(r, 7, Z):S {@(T/ - T)3K0<k§ )IO<]?)

s (£) o ()
(D)
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Figure 2: Example of Figs. 14 and 15 of Ref. [5]. TheFigure 3: Comparison of four different analytical ap-

initial density modulation isi;4; = 1 with ¢ = 0.1, and proaches developed in this paper with PARMELA simu-

g = 1. The solid curve (blue) is at = 0, and the dashed lation. The long-dashed curve (red) is the 1-D coasting

curve (red) is a& = 10. Notations have same meaning adeam approach, the dashed curve (green) is the coasting

in Ref. [5], theE, is normalized. beam with radial dependence approach, the dash-dotted
curve (purple) is the 1-D bunched beam approach, the solid

curve (blue) is the bunched beam approach with radial de-

For parabolic distribution, one can get a closed form fo”hﬁendence and theA” (black) is the PARMELA simula-
average impedance defined in Eq. (18). tion. '

COMPARISON

Let us now compare the results to some other analytical
approach [5], and also numerical simulation.

DISCUSSION

As shown in Fig. 3, it is clear that the coasting beam
theory is over simplified in dealing with LSC in real situa-

. . . tion where the beam is bunched. Even with radial depen-
Comparison with other analytical approach dence, the coasting beam theory [5] can not capture some

Compared to theory in Refs. [5, 6], our approach has tHf the features in simulations for bunched beam, which is
advantage of treating the real beam line, where beam eife realistic situation. It is worthwhile to point out that in
ergy and transverse beam size are varying, and the beanf@&f. [, 6], ther—dependance comes in also as a param-
bunched. Nevertheless, let us make some comparison wifer.i-e. f(X;s) = fr(r)f.(z;s), but notf,(r;s) as in
Ref. [5]. In their paper, they introduce a dimensionless pd=d- (14) of our paper. For Ref. [3], since we were dealing
rametery = k,,ro/7=, With k,, = 27/, where),, is the with beam having energy higher than 135 MeV, the den-
modulation wavelengthy is typical transverse beam size; ity microbunching is mostly frozen; hence no dynamics as
and~, is the longitudinal Lorentz factor. Their theory re-discussed here. As we find, based on a bunched beam the-
duces to 1-D formula wheqp — co. Hence, let us compare ©FY: and further taking into account the radial dependence,
for the case of having a smajl= 1. In Figs. 1 and 2, we the analytical approach developed here show a good agree-

many stimulating discussions.
Comparison with PARMELA
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