## Measurement of the Branching Ratios $\Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right) / \Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \gamma\right)$ and $\Gamma\left(D^{* 0} \rightarrow D^{0} \pi^{0}\right) / \Gamma\left(D^{* 0} \rightarrow D^{0} \gamma\right)$

B. Aubert, ${ }^{1}$ R. Barate,,${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ E. Grauges, ${ }^{2}$ A. Palano, ${ }^{3}$ M. Pappagallo, ${ }^{3}$ A. Pompili, ${ }^{3}$ J. C. Chen, ${ }^{4}$ N. D. Qi, ${ }^{4}$ G. Rong, ${ }^{4}$ P. Wang, ${ }^{4}$ Y. S. Zhu, ${ }^{4}$ G. Eigen, ${ }^{5}$ I. Ofte, ${ }^{5}$ B. Stugu, ${ }^{5}$ G. S. Abrams, ${ }^{6}$ M. Battaglia, ${ }^{6}$ A. B. Breon, ${ }^{6}$ D. N. Brown, ${ }^{6}$ J. Button-Shafer, ${ }^{6}$ R. N. Cahn, ${ }^{6}$ E. Charles, ${ }^{6}$ C. T. Day, ${ }^{6}$ M. S. Gill, ${ }^{6}$ A. V. Gritsan, ${ }^{6}$ Y. Groysman, ${ }^{6}$ R. G. Jacobsen, ${ }^{6}$ R. W. Kadel, ${ }^{6}$ J. Kadyk, ${ }^{6}$ L. T. Kerth,,${ }^{6}$ Yu. G. Kolomensky, ${ }^{6}$ G. Kukartsev, ${ }^{6}$ G. Lynch, ${ }^{6}$ L. M. Mir, ${ }^{6}$ P. J. Oddone, ${ }^{6}$ T. J. Orimoto, ${ }^{6}$ M. Pripstein, ${ }^{6}$ N. A. Roe, ${ }^{6}$ M. T. Ronan, ${ }^{6}$ W. A. Wenzel, ${ }^{6}$ M. Barrett, ${ }^{7}$ K. E. Ford, ${ }^{7}$ T. J. Harrison, ${ }^{7}$ A. J. Hart, ${ }^{7}$ C. M. Hawkes, ${ }^{7}$ S. E. Morgan, ${ }^{7}$ A. T. Watson, ${ }^{7}$ M. Fritsch, ${ }^{8}$ K. Goetzen, ${ }^{8}$ T. Held, ${ }^{8}$ H. Koch, ${ }^{8}$ B. Lewandowski, ${ }^{8}$ M. Pelizaeus, ${ }^{8}$ K. Peters, ${ }^{8}$ T. Schroeder, ${ }^{8}$ M. Steinke, ${ }^{8}$ J. T. Boyd, ${ }^{9}$ J. P. Burke, ${ }^{9}$ N. Chevalier, ${ }^{9}$ W. N. Cottingham, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{10}$ B. G. Fulsom, ${ }^{10}$ C. Hearty, ${ }^{10}$ N. S. Knecht, ${ }^{10}$ T. S. Mattison, ${ }^{10}$ J. A. McKenna, ${ }^{10}$ A. Khan, ${ }^{11}$ P. Kyberd, ${ }^{11}$ M. Saleem, ${ }^{11}$ L. Teodorescu, ${ }^{11}$ A. E. Blinov, ${ }^{12}$ V. E. Blinov,,$^{12}$ A. D. Bukin, ${ }^{12}$ V. P. Druzhinin, ${ }^{12}$ V. B. Golubev, ${ }^{12}$ E. A. Kravchenko, ${ }^{12}$ A. P. Onuchin, ${ }^{12}$ S. I. Serednyakov, ${ }^{12}$ Yu. I. Skovpen, ${ }^{12}$ E. P. Solodov, ${ }^{12}$ A. N. Yushkov, ${ }^{12}$ D. Best, ${ }^{13}$ M. Bondioli, ${ }^{13}$ M. Bruinsma, ${ }^{13}$ M. Chao, ${ }^{13}$ S. Curry, ${ }^{13}$ I. Eschrich, ${ }^{13}$ D. Kirkby, ${ }^{13}$ A. J. Lankford, ${ }^{13}$ P. Lund, ${ }^{13}$ M. Mandelkern, ${ }^{13}$ R. K. Mommsen, ${ }^{13}$ W. Roethel, ${ }^{13}$ D. P. Stoker, ${ }^{13}$ C. Buchanan, ${ }^{14}$ B. L. Hartfiel, ${ }^{14}$ A. J. R. Weinstein, ${ }^{14}$ S. D. Foulkes, ${ }^{15}$ J. W. Gary, ${ }^{15}$ O. Long, ${ }^{15}$ B. C. Shen, ${ }^{15}$ K. Wang, ${ }^{15}$ L. Zhang, ${ }^{15}$ D. del Re, ${ }^{16}$ H. K. Hadavand, ${ }^{16}$ E. J. Hill, ${ }^{16}$ D. B. MacFarlane, ${ }^{16}$ H. P. Paar, ${ }^{16}$ S. Rahatlou, ${ }^{16}$ V. Sharma, ${ }^{16}$ J. W. Berryhill, ${ }^{17}$ C. Campagnari, ${ }^{17}$ A. Cunha,,${ }^{17}$ B. Dahmes, ${ }^{17}$ T. M. Hong, ${ }^{17}$ M. A. Mazur, ${ }^{17}$ J. D. Richman, ${ }^{17}$ W. Verkerke, ${ }^{17}$ T. W. Beck, ${ }^{18}$ A. M. Eisner, ${ }^{18}$ C. J. Flacco, ${ }^{18}$ C. A. Heusch, ${ }^{18}$ J. Kroseberg, ${ }^{18}$ W. S. Lockman, ${ }^{18}$ G. Nesom, ${ }^{18}$ T. Schalk, ${ }^{18}$ B. A. Schumm, ${ }^{18}$ A. Seiden, ${ }^{18}$ P. Spradlin, ${ }^{18}$ D. C. Williams, ${ }^{18}$ M. G. Wilson,,${ }^{18}$ J. Albert, ${ }^{19}$ E. Chen, ${ }^{19}$ G. P. Dubois-Felsmann, ${ }^{19}$ A. Dvoretskii, ${ }^{19}$ D. G. Hitlin, ${ }^{19}$ J. S. Minamora, ${ }^{19}$ I. Narsky, ${ }^{19}$ T. Piatenko, ${ }^{19}$ F. C. Porter,,$^{19}$ A. Ryd, ${ }^{19}$ A. Samuel,,$^{19}$ R. Andreassen, ${ }^{20}$ G. Mancinelli, ${ }^{20}$ B. T. Meadows, ${ }^{20}$ M. D. Sokoloff, ${ }^{20}$ F. Blanc, ${ }^{21}$ P. Bloom, ${ }^{21}$ S. Chen, ${ }^{21}$ W. T. Ford, ${ }^{21}$ J. F. Hirschauer, ${ }^{21}$ A. Kreisel, ${ }^{21}$ U. Nauenberg, ${ }^{21}$ A. Olivas, ${ }^{21}$ W. O. Ruddick, ${ }^{21}$ J. G. Smith, ${ }^{21}$ K. A. Ulmer, ${ }^{21}$ S. R. Wagner, ${ }^{21}$ J. Zhang, ${ }^{21}$ A. Chen, ${ }^{22}$ E. A. Eckhart, ${ }^{22}$ A. Soffer, ${ }^{22}$ W. H. Toki, ${ }^{22}$ R. J. Wilson, ${ }^{22}$ Q. Zeng, ${ }^{22}$ D. Altenburg, ${ }^{23}$ E. Feltresi, ${ }^{23}$ A. Hauke, ${ }^{23}$ B. Spaan, ${ }^{23}$
T. Brandt, ${ }^{24}$ J. Brose, ${ }^{24}$ M. Dickopp, ${ }^{24}$ V. Klose, ${ }^{24}$ H. M. Lacker, ${ }^{24}$ R. Nogowski, ${ }^{24}$ S. Otto, ${ }^{24}$ A. Petzold, ${ }^{24}$ J. Schubert, ${ }^{24}$ K. R. Schubert, ${ }^{24}$ R. Schwierz, ${ }^{24}$ J. E. Sundermann, ${ }^{24}$ D. Bernard, ${ }^{25}$ G. R. Bonneaud, ${ }^{25}$ P. Grenier, ${ }^{25}$ S. Schrenk, ${ }^{25}$ Ch. Thiebaux, ${ }^{25}$ G. Vasileiadis, ${ }^{25}$ M. Verderi, ${ }^{25}$ D. J. Bard, ${ }^{26}$ P. J. Clark, ${ }^{26}$ W. Gradl, ${ }^{26}$ F. Muheim, ${ }^{26}$ S. Playfer, ${ }^{26}$ Y. Xie, ${ }^{26}$ M. Andreotti, ${ }^{27}$ V. Azzolini, ${ }^{27}$ D. Bettoni, ${ }^{27}$ C. Bozzi, ${ }^{27}$ R. Calabrese, ${ }^{27}$ G. Cibinetto, ${ }^{27}$ E. Luppi, ${ }^{27}$ M. Negrini, ${ }^{27}$ L. Piemontese, ${ }^{27}$ F. Anulli, ${ }^{28}$ R. Baldini-Ferroli, ${ }^{28}$ A. Calcaterra, ${ }^{28}$ R. de Sangro, ${ }^{28}$ G. Finocchiaro, ${ }^{28}$ P. Patteri, ${ }^{28}$ I. M. Peruzzi, ${ }^{28, *}$ M. Piccolo, ${ }^{28}$ A. Zallo, ${ }^{28}$ A. Buzzo, ${ }^{29}$ R. Capra, ${ }^{29}$ R. Contri, ${ }^{29}$ M. Lo Vetere, ${ }^{29}$ M. Macri, ${ }^{29}$ M. R. Monge, ${ }^{29}$ S. Passaggio, ${ }^{29}$ C. Patrignani, ${ }^{29}$ E. Robutti, ${ }^{29}$ A. Santroni, ${ }^{29}$ S. Tosi, ${ }^{29}$ G. Brandenburg, ${ }^{30}$ K. S. Chaisanguanthum, ${ }^{30}$ M. Morii, ${ }^{30}$ E. Won, ${ }^{30}$ J. Wu, ${ }^{30}$ R. S. Dubitzky, ${ }^{31}$ U. Langenegger, ${ }^{31}$ J. Marks, ${ }^{31}$ S. Schenk, ${ }^{31}$ U. Uwer, ${ }^{31}$ G. Schott, ${ }^{32}$ W. Bhimji, ${ }^{33}$ D. A. Bowerman, ${ }^{33}$ P. D. Dauncey, ${ }^{33}$ U. Egede, ${ }^{33}$ R. L. Flack, ${ }^{33}$ J. R. Gaillard, ${ }^{33}$ J. A. Nash, ${ }^{33}$ M. B. Nikolich, ${ }^{33}$ W. Panduro Vazquez, ${ }^{33}$ X. Chai, ${ }^{34}$ M. J. Charles, ${ }^{34}$ W. F. Mader, ${ }^{34}$ U. Mallik, ${ }^{34}$ A. K. Mohapatra, ${ }^{34}$ V. Ziegler, ${ }^{34}$ J. Cochran, ${ }^{35}$ H. B. Crawley, ${ }^{35}$ V. Eyges, ${ }^{35}$ W. T. Meyer, ${ }^{35}$ S. Prell, ${ }^{35}$ E. I. Rosenberg, ${ }^{35}$ A. E. Rubin, ${ }^{35}$ J. Yi, ${ }^{35}$ N. Arnaud, ${ }^{36}$ M. Davier, ${ }^{36}$ X. Giroux, ${ }^{36}$ G. Grosdidier, ${ }^{36}$ A. Höcker, ${ }^{36}$ F. Le Diberder, ${ }^{36}$ V. Lepeltier, ${ }^{36}$ A. M. Lutz, ${ }^{36}$ A. Oyanguren, ${ }^{36}$ T. C. Petersen, ${ }^{36}$ S. Plaszczynski, ${ }^{36}$ S. Rodier, ${ }^{36}$ P. Roudeau, ${ }^{36}$ M. H. Schune, ${ }^{36}$ A. Stocchi, ${ }^{36}$ G. Wormser, ${ }^{36}$ C. H. Cheng, ${ }^{37}$ D. J. Lange, ${ }^{37}$ M. C. Simani, ${ }^{37}$ D. M. Wright, ${ }^{37}$ A. J. Bevan, ${ }^{38}$ C. A. Chavez, ${ }^{38}$ I. J. Forster, ${ }^{38}$ J. R. Fry, ${ }^{38}$ E. Gabathuler, ${ }^{38}$ R. Gamet, ${ }^{38}$ K. A. George, ${ }^{38}$ D. E. Hutchcroft, ${ }^{38}$ R. J. Parry, ${ }^{38}$ D. J. Payne, ${ }^{38}$ K. C. Schofield, ${ }^{38}$ C. Touramanis, ${ }^{38}$ C. M. Cormack, ${ }^{39}$ F. Di Lodovico, ${ }^{39}$ W. Menges, ${ }^{39}$ R. Sacco, ${ }^{39}$ C. L. Brown, ${ }^{40}$ G. Cowan, ${ }^{40}$ H. U. Flaecher, ${ }^{40}$ M. G. Green,,$^{40}$ D. A. Hopkins, ${ }^{40}$ P. S. Jackson, ${ }^{40}$ T. R. McMahon, ${ }^{40}$ S. Ricciardi, ${ }^{40}$ F. Salvatore, ${ }^{40}$ D. Brown, ${ }^{41}$ C. L. Davis, ${ }^{41}$ J. Allison, ${ }^{42}$ N. R. Barlow, ${ }^{42}$ R. J. Barlow, ${ }^{42}$ C. L. Edgar, ${ }^{42}$ M. C. Hodgkinson,,$^{42}$ M. P. Kelly, ${ }^{42}$ G. D. Lafferty, ${ }^{42}$ M. T. Naisbit, ${ }^{42}$ J. C. Williams, ${ }^{42}$ C. Chen, ${ }^{43}$ W. D. Hulsbergen, ${ }^{43}$ A. Jawahery, ${ }^{43}$ D. Kovalskyi, ${ }^{43}$ C. K. Lae, ${ }^{43}$ D. A. Roberts, ${ }^{43}$ G. Simi, ${ }^{43}$ G. Blaylock, ${ }^{44}$ C. Dallapiccola, ${ }^{44}$ S. S. Hertzbach, ${ }^{44}$ R. Kofler, ${ }^{44}$ V. B. Koptchev, ${ }^{44}$ X. Li, ${ }^{44}$ T. B. Moore, ${ }^{44}$ S. Saremi, ${ }^{44}$ H. Staengle, ${ }^{44}$ S. Willocq, ${ }^{44}$ R. Cowan, ${ }^{45}$ K. Koeneke, ${ }^{45}$ G. Sciolla, ${ }^{45}$ S. J. Sekula, ${ }^{45}$ M. Spitznagel, ${ }^{45}$ F. Taylor, ${ }^{45}$ R. K. Yamamoto, ${ }^{45}$ H. Kim, ${ }^{46}$ P. M. Patel, ${ }^{46}$ S. H. Robertson, ${ }^{46}$ A. Lazzaro, ${ }^{47}$ V. Lombardo, ${ }^{47}$ F. Palombo, ${ }^{47}$ J. M. Bauer, ${ }^{48}$ L. Cremaldi, ${ }^{48}$ V. Eschenburg, ${ }^{48}$ R. Godang, ${ }^{48}$ R. Kroeger, ${ }^{48}$ J. Reidy, ${ }^{48}$ D. A. Sanders, ${ }^{48}$ D. J. Summers, ${ }^{48}$ H. W. Zhao, ${ }^{48}$ S. Brunet, ${ }^{49}$ D. Côté, ${ }^{49}$ P. Taras, ${ }^{49}$ B. Viaud, ${ }^{49}$ H. Nicholson, ${ }^{50}$ N. Cavallo, ${ }^{51, \dagger}$ G. De Nardo, ${ }^{51}$ F. Fabozzi, ${ }^{51, ~} \dagger$
C. Gatto, ${ }^{51}$ L. Lista, ${ }^{51}$ D. Monorchio, ${ }^{51}$ P. Paolucci, ${ }^{51}$ D. Piccolo, ${ }^{51}$ C. Sciacca,,${ }^{51}$ M. Baak, ${ }^{52}$ H. Bulten, ${ }^{52}$ G. Raven, ${ }^{52}$ H. L. Snoek, ${ }^{52}$ L. Wilden, ${ }^{52}$ C. P. Jessop, ${ }^{53}$ J. M. LoSecco, ${ }^{53}$ T. Allmendinger, ${ }^{54}$ G. Benelli, ${ }^{54}$ K. K. Gan, ${ }^{54}$ K. Honscheid, ${ }^{54}$ D. Hufnagel, ${ }^{54}$ P. D. Jackson, ${ }^{54}$ H. Kagan, ${ }^{54}$ R. Kass, ${ }^{54}$ T. Pulliam, ${ }^{54}$ A. M. Rahimi, ${ }^{54}$ R. Ter-Antonyan, ${ }^{54}$ Q. K. Wong, ${ }^{54}$ J. Brau, ${ }^{55}$ R. Frey, ${ }^{55}$ O. Igonkina, ${ }^{55}$ M. Lu, ${ }^{55}$ C. T. Potter, ${ }^{55}$ N. B. Sinev, ${ }^{55}$ D. Strom, ${ }^{55}$ J. Strube, ${ }^{55}$ E. Torrence, ${ }^{55}$ F. Galeazzi, ${ }^{56}$ M. Margoni, ${ }^{56}$ M. Morandin, ${ }^{56}$ M. Posocco, ${ }^{56}$ M. Rotondo, ${ }^{56}$ F. Simonetto, ${ }^{56}$ R. Stroili, ${ }^{56}$ C. Voci, ${ }^{56}$ M. Benayoun, ${ }^{57}$ H. Briand, ${ }^{57}$ J. Chauveau, ${ }^{57}$ P. David, ${ }^{57}$ L. Del Buono, ${ }^{57}$ Ch. de la Vaissière, ${ }^{57}$ O. Hamon, ${ }^{57}$ M. J. J. John, ${ }^{57}$ Ph. Leruste, ${ }^{57}$ J. Malclès, ${ }^{57}$ J. Ocariz, ${ }^{57}$ L. Roos, ${ }^{57}$ G. Therin, ${ }^{57}$ P. K. Behera, ${ }^{58}$ L. Gladney, ${ }^{58}$ Q. H. Guo, ${ }^{58}$ J. Panetta, ${ }^{58}$ M. Biasini, ${ }^{59}$ R. Covarelli, ${ }^{59}$ S. Pacetti, ${ }^{59}$ M. Pioppi, ${ }^{59}$ C. Angelini, ${ }^{60}$ G. Batignani, ${ }^{60}$ S. Bettarini, ${ }^{60}$ F. Bucci, ${ }^{60}$ G. Calderini, ${ }^{60}$ M. Carpinelli, ${ }^{60}$ R. Cenci, ${ }^{60}$ F. Forti, ${ }^{60}$ M. A. Giorgi, ${ }^{60}$ A. Lusiani, ${ }^{60}$ G. Marchiori, ${ }^{60}$ M. Morganti, ${ }^{60}$ N. Neri, ${ }^{60}$ E. Paoloni, ${ }^{60}$ M. Rama, ${ }^{60}$ G. Rizzo, ${ }^{60}$ J. Walsh, ${ }^{60}$ M. Haire, ${ }^{61}$ D. Judd, ${ }^{61}$ D. E. Wagoner, ${ }^{61}$ J. Biesiada, ${ }^{62}$ N. Danielson, ${ }^{62}$ P. Elmer, ${ }^{62}$ Y. P. Lau, ${ }^{62}$ C. Lu, ${ }^{62}$ J. Olsen, ${ }^{62}$ A. J. S. Smith, ${ }^{62}$ A. V. Telnov, ${ }^{62}$ F. Bellini, ${ }^{63}$ G. Cavoto, ${ }^{63}$ A. D’Orazio, ${ }^{63}$ E. Di Marco, ${ }^{63}$ R. Faccini, ${ }^{63}$ F. Ferrarotto, ${ }^{63}$ F. Ferroni, ${ }^{63}$ M. Gaspero, ${ }^{63}$ L. Li Gioi, ${ }^{63}$ M. A. Mazzoni, ${ }^{63}$ S. Morganti, ${ }^{63}$ G. Piredda, ${ }^{63}$ F. Polci, ${ }^{63}$ F. Safai Tehrani, ${ }^{63}$ C. Voena, ${ }^{63}$ H. Schröder, ${ }^{64}$ G. Wagner, ${ }^{64}$ R. Waldi, ${ }^{64}$ T. Adye, ${ }^{65}$ N. De Groot, ${ }^{65}$ B. Franek, ${ }^{65}$ G. P. Gopal, ${ }^{65}$ E. O. Olaiya, ${ }^{65}$ F. F. Wilson, ${ }^{65}$ R. Aleksan, ${ }^{66}$ S. Emery, ${ }^{66}$ A. Gaidot, ${ }^{66}$ S. F. Ganzhur, ${ }^{66}$ G. Graziani, ${ }^{66}$ G. Hamel de Monchenault, ${ }^{66}$ W. Kozanecki, ${ }^{66}$ M. Legendre, ${ }^{66}$ G. W. London, ${ }^{66}$ B. Mayer, ${ }^{66}$ G. Vasseur, ${ }^{66}$ Ch. Yèche, ${ }^{66}$ M. Zito, ${ }^{66}$ M. V. Purohit, ${ }^{67}$ A. W. Weidemann, ${ }^{67}$ J. R. Wilson, ${ }^{67}$ F. X. Yumiceva, ${ }^{67}$ T. Abe, ${ }^{68}$ M. T. Allen, ${ }^{68}$ D. Aston, ${ }^{68}$ R. Bartoldus, ${ }^{68}$ N. Berger, ${ }^{68}$ A. M. Boyarski, ${ }^{68}$ O. L. Buchmueller, ${ }^{68}$ R. Claus, ${ }^{68}$ J. P. Coleman, ${ }^{68}$ M. R. Convery, ${ }^{68}$ M. Cristinziani, ${ }^{68}$ J. C. Dingfelder, ${ }^{68}$ D. Dong, ${ }^{68}$ J. Dorfan, ${ }^{68}$ D. Dujmic, ${ }^{68}$ W. Dunwoodie, ${ }^{68}$ S. Fan, ${ }^{68}$ R. C. Field, ${ }^{68}$ T. Glanzman, ${ }^{68}$ S. J. Gowdy, ${ }^{68}$ T. Hadig, ${ }^{68}$ V. Halyo, ${ }^{68}$ C. Hast, ${ }^{68}$ T. Hryn'ova, ${ }^{68}$ W. R. Innes, ${ }^{68}$ M. H. Kelsey, ${ }^{68}$ P. Kim, ${ }^{68}$ M. L. Kocian, ${ }^{68}$ D. W. G. S. Leith, ${ }^{68}$ J. Libby, ${ }^{68}$ S. Luitz, ${ }^{68}$ V. Luth, ${ }^{68}$ H. L. Lynch, ${ }^{68}$ H. Marsiske, ${ }^{68}$ R. Messner, ${ }^{68}$ D. R. Muller, ${ }^{68}$ C. P. O’Grady, ${ }^{68}$ V. E. Ozcan, ${ }^{68}$ A. Perazzo, ${ }^{68}$ M. Perl, ${ }^{68}$ B. N. Ratcliff, ${ }^{68}$ A. Roodman, ${ }^{68}$ A. A. Salnikov, ${ }^{68}$ R. H. Schindler, ${ }^{68}$ J. Schwiening, ${ }^{68}$ A. Snyder, ${ }^{68}$ J. Stelzer, ${ }^{68}$ D. Su, ${ }^{68}$ M. K. Sullivan, ${ }^{68}$ K. Suzuki, ${ }^{68}$ S. K. Swain, ${ }^{68}$ J. M. Thompson, ${ }^{68}$ J. Va'vra, ${ }^{68}$ N. van Bakel, ${ }^{68}$ M. Weaver, ${ }^{68}$ W. J. Wisniewski, ${ }^{68}$ M. Wittgen, ${ }^{68}$ D. H. Wright, ${ }^{68}$ A. K. Yarritu, ${ }^{68}$ K. Yi, ${ }^{68}$ C. C. Young, ${ }^{68}$ P. R. Burchat, ${ }^{69}$ A. J. Edwards, ${ }^{69}$ S. A. Majewski, ${ }^{69}$ B. A. Petersen, ${ }^{69}$ C. Roat, ${ }^{69}$ M. Ahmed, ${ }^{70}$ S. Ahmed, ${ }^{70}$ M. S. Alam, ${ }^{70}$ R. Bula, ${ }^{70}$ J. A. Ernst, ${ }^{70}$ M. A. Saeed, ${ }^{70}$ F. R. Wappler, ${ }^{70}$ S. B. Zain, ${ }^{70}$ W. Bugg, ${ }^{71}$ M. Krishnamurthy, ${ }^{71}$ S. M. Spanier, ${ }^{71}$ R. Eckmann, ${ }^{72}$ J. L. Ritchie, ${ }^{72}$ A. Satpathy, ${ }^{72}$ R. F. Schwitters, ${ }^{72}$ J. M. Izen, ${ }^{73}$ I. Kitayama, ${ }^{73}$ X. C. Lou, ${ }^{73}$ S. Ye, ${ }^{73}$ F. Bianchi, ${ }^{74}$ M. Bona, ${ }^{74}$ F. Gallo, ${ }^{74}$ D. Gamba, ${ }^{74}$ M. Bomben, ${ }^{75}$ L. Bosisio, ${ }^{75}$ C. Cartaro, ${ }^{75}$ F. Cossutti, ${ }^{75}$ G. Della Ricca, ${ }^{75}$ S. Dittongo, ${ }^{75}$ S. Grancagnolo, ${ }^{75}$ L. Lanceri, ${ }^{75}$ L. Vitale, ${ }^{75}$ F. Martinez-Vidal, ${ }^{76}$ R. S. Panvini, ${ }^{77,} \ddagger$ Sw. Banerjee, ${ }^{78}$ B. Bhuyan, ${ }^{78}$ C. M. Brown, ${ }^{78}$ D. Fortin, ${ }^{78}$ K. Hamano, ${ }^{78}$ R. Kowalewski, ${ }^{78}$ J. M. Roney, ${ }^{78}$ R. J. Sobie, ${ }^{78}$ J. J. Back, ${ }^{79}$ P. F. Harrison, ${ }^{79}$ T. E. Latham, ${ }^{79}$ G. B. Mohanty, ${ }^{79}$ H. R. Band, ${ }^{80}$ X. Chen, ${ }^{80}$ B. Cheng, ${ }^{80}$ S. Dasu, ${ }^{80}$ M. Datta, ${ }^{80}$ A. M. Eichenbaum, ${ }^{80}$ K. T. Flood, ${ }^{80}$ M. Graham, ${ }^{80}$ J. J. Hollar, ${ }^{80}$ J. R. Johnson, ${ }^{80}$ P. E. Kutter, ${ }^{80}$ H. Li, ${ }^{80}$ R. Liu, ${ }^{80}$ B. Mellado, ${ }^{80}$ A. Mihalyi, ${ }^{80}$ Y. Pan, ${ }^{80}$ M. Pierini, ${ }^{80}$ R. Prepost,,${ }^{80}$ P. Tan, ${ }^{80}$ S. L. Wu, ${ }^{80}$ Z. Yu,,${ }^{80}$ and H. Neal ${ }^{81}$
(The BABAR Collaboration)

[^0][^1](Dated: October 20, 2005)


#### Abstract

Data samples corresponding to the isospin-violating decay $D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}$ and the decays $D_{s}^{*+} \rightarrow$ $D_{s}^{+} \gamma, D^{* 0} \rightarrow D^{0} \pi^{0}$ and $D^{* 0} \rightarrow D^{0} \gamma$ are reconstructed using $90.4 \mathrm{fb}^{-1}$ of data recorded by the BABAR detector at the PEP-II asymmetric-energy $e^{+} e^{-}$collider. The following branching ratios are extracted: $\Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right) / \Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \gamma\right)=0.062 \pm 0.005$ (stat.) $\pm 0.006$ (syst.) and $\Gamma\left(D^{* 0} \rightarrow\right.$ $\left.D^{0} \pi^{0}\right) / \Gamma\left(D^{* 0} \rightarrow D^{0} \gamma\right)=1.74 \pm 0.02$ (stat.) $\pm 0.13$ (syst.). Both measurements represent significant improvements over present world averages.


PACS numbers: $13.25 . \mathrm{Ft}, 13.40 . \mathrm{Hq}, 12.39 . \mathrm{Fe}$

The decay of any higher-mass $c \bar{s}$ meson into $D_{s}^{+} \pi^{0}[1]$ violates isospin conservation, thus guaranteeing a small partial width. The amount of suppression is a matter of large theoretical uncertainty according to most models of charm-meson radiative decay [2]. One such model [3] suggests that the decay $D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}$ may proceed via $\pi^{0}-\eta$ mixing. Even including such considerations, the radiative decay $D_{s}^{*+} \rightarrow D_{s}^{+} \gamma$ is still expected to dominate. The existence of isospin-violating decay modes such as $D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}$ is particularly relevant given the recent observations of two narrow new $D_{s}^{+}$meson states $[4,5]$. In particular, in contrast to the $D_{s}^{*+}$ meson, there is no experimental evidence for the electromagnetic decay of the $D_{s J}(2317)^{+}$; current measurements place the branching ratio to $D_{s}^{*+} \gamma$ at less than $18 \%$ at $90 \%$ confidence level (CL) [6].

Besides the $D_{s}^{+} \pi^{0}$ and $D_{s}^{+} \gamma$ final states, no other decay modes of the $D_{s}^{*+}$ have been observed and none are expected to occur at a significant level. Only one previous observation of the decay $D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}$ is recorded in the literature, yielding a value of 0.062 ${ }_{-0.018}^{+0.020}$ (stat.) $\pm 0.022$ (syst.) for the branching ratio $\Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right) / \Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \gamma\right)[7]$. The analysis presented here confirms this observation and provides a more precise measurement of this branching ratio.

The decay $D^{* 0} \rightarrow D^{0} \pi^{0}$, in contrast to $D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}$, does not violate isospin conservation and the world average for the branching ratio is $\Gamma\left(D^{* 0} \rightarrow D^{0} \pi^{0}\right) / \Gamma\left(D^{* 0} \rightarrow\right.$ $\left.D^{0} \gamma\right)=1.625 \pm 0.20[8]$. As for the $D_{s}^{*+}$ meson, the $\pi^{0}$ and $\gamma$ decay modes are expected to saturate the decay width of the $D^{* 0}$ meson.

The results presented here are based on data recorded by the BABAR detector at the PEP-II asymmetric-energy $e^{+} e^{-}$storage rings. The data sample, corresponding to an integrated luminosity of $90.4 \mathrm{fb}^{-1}$, was recorded at and approximately 40 MeV below the $\Upsilon(4 S)$ resonance. Due to the unequal beam energies, the $e^{+} e^{-}$center-ofmass system is boosted relative to the laboratory frame with $\beta \gamma \approx 0.55$. The BABAR detector and trigger are described in detail elsewhere [9]. Charged particles are detected and their momenta measured by a silicon vertex tracker (SVT) consisting of five layers of double-sided silicon strip sensors and a cylindrical 40-layer drift chamber

[^2]( DCH ), both operating within a 1.5 T solenoidal magnetic field. Charged particle identification is provided by energy loss measurements in the SVT and DCH and by Cherenkov light detected in an internally reflecting ring imaging detector (DIRC). Photons are identified and their energies measured by an electromagnetic calorimeter (EMC) composed of $6580 \mathrm{CsI}(\mathrm{Tl})$ crystals.

In the following paragraphs, the $D_{s}^{*+}$ measurement is described first. The $D^{* 0}$ analysis, which uses similar procedures for signal extraction, is described afterward in less detail.
$D_{s}^{+}$mesons are reconstructed via the decay sequence $D_{s}^{+} \rightarrow \phi \pi^{+}, \phi \rightarrow K^{+} K^{-}$. Kaons are identified by combining the energy deposited in the SVT and DCH with the information from the DIRC. Tracks not identified as kaons according to the particle identification criteria are considered to be pions. All $K^{+} K^{-} \pi^{+}$candidates are required to fit successfully to a common vertex. Only combinations with a $K^{+} K^{-}$invariant mass within $8 \mathrm{MeV} / c^{2}$ of the nominal $\phi$ mass [8] are retained.

In $e^{+} e^{-}$annihilation to charm quarks, the $c \bar{c}$ fragmentation process is characterized by the production of highmomentum (leading) charm hadrons. This property is exploited in order to reduce substantially the combinatorial background by retaining only those $\phi \pi^{+}$candidates with scaled momentum $x_{p}$ greater than 0.6 , where $x_{p}$ is defined as $x_{p}\left(D_{s}^{+}\right)=p^{*}\left(D_{s}^{+}\right) / p_{\max }^{*}\left(D_{s}^{+}\right)$and $p^{*}\left(D_{s}^{+}\right)$is the momentum of the $D_{s}^{+}$candidates in the $e^{+} e^{-}$center-of-mass frame with $p_{\max }^{*}\left(D_{s}^{+}\right)=\sqrt{E_{\text {beam }}^{*}{ }^{2}-m\left(D_{s}^{+}\right)^{2}}$ as its maximum value.

The longitudinal polarization of the $\phi$ meson in the $D_{s}^{+}$rest frame is used to reduce background by requiring that the absolute value of the cosine of the helicity angle, defined as the angle between the $\phi$ momentum direction in the $D_{s}^{+}$rest frame and the momentum direction of either of the kaons in the $\phi$ rest frame, is 0.3 or greater.

The resulting $K^{+} K^{-} \pi^{+}$invariant mass distribution is shown in Fig. 1. This distribution can be modeled by the sum of two Gaussian functions (to represent the signal) and a third-order polynomial (to represent the background). The resulting binned $\chi^{2}$ fit yields $73500 \pm 300$ events (statistical errors only). A $D_{s}^{+}$candidate is retained if its invariant mass is within $12 \mathrm{MeV} / c^{2}$ of the nominal $D_{s}^{+}$mass [8].

A $\pi^{0}$ candidate is reconstructed by combining two photon candidates that fulfill the following requirements. Each photon candidate is identified by a calorimeter cluster that is not associated with a charged track and has an energy in the laboratory frame of at least 45 MeV . Ad-


FIG. 1: The $K^{+} K^{-} \pi^{+}$mass distribution. The dots represent data points with error bars corresponding to statistical uncertainties (these uncertainties are small enough that the error bars are difficult to distinguish). The solid curve shows the fitted function. The dashed curve indicates the background. $D_{s}^{+}$candidates are defined by the region between the vertical dotted lines.
ditionally, to help remove the background from hadronic showers, the fractional lateral width [10], which describes the shape of the shower in the calorimeter, is required to be less than 0.55 . The fiducial acceptance of photon candidates is restricted by the angular range of the EMC $(-0.92 \lesssim \cos \theta \lesssim 0.89$, where $\theta$ is the polar angle in the center-of-mass frame [9]).

A $\pi^{0}$ candidate is retained if it has a momentum $p^{*}$ in the $e^{+} e^{-}$center-of-mass frame greater than $150 \mathrm{MeV} / c$. Furthermore, the absolute value of the cosine of the decay angle, $\theta^{*}$, which is defined as the angle between the direction of one of the photons in the $\pi^{0}$ rest frame and the direction of the $\pi^{0}$ candidate in the center-of-mass frame, is required to be less than 0.85 . For $\pi^{0} \rightarrow \gamma \gamma$ decay, the $\cos \theta^{*}$ distribution is uniform, while it peaks near $\pm 1$ for random $\gamma \gamma$ combinations.

Only $\gamma \gamma$ pairs within a specified mass interval are retained. This interval is defined by the values of mass at which the $\pi^{0}$ signal portion of a function fitted to the $\gamma \gamma$ mass distribution falls below 0.2 times its maximum value. This requirement accommodates the asymmetric shape of the $\gamma \gamma$ mass distribution and takes into account variations in detector calibration. A kinematic fit is applied to the surviving $\gamma \gamma$ pairs to constrain their mass to the nominal $\pi^{0}$ mass.

After combining the $D_{s}^{+}$and $\pi^{0}$ candidates in a search for the decay $D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}$, a fit is applied to the distribution of the mass difference $\Delta m\left(D_{s}^{+} \pi^{0}\right)=$ $m\left(K^{+} K^{-} \pi^{+} \pi^{0}\right)-m\left(K^{+} K^{-} \pi^{+}\right)$. The fit function is the sum of a double Gaussian function to represent the signal and the function

$$
\begin{align*}
f_{1}(\Delta m) & =N\left(1-\exp \left(-\frac{\Delta m-m\left(\pi^{0}\right)}{\mu}\right)\right) \\
& \times\left(\Delta m^{2}+a \Delta m+b\right) \tag{1}
\end{align*}
$$

where $m\left(\pi^{0}\right)$ is the $\pi^{0}$ mass, and $N, \mu, a$, and $b$ are free fit parameters to describe the background. The exponential term models the kinematic threshold; this threshold term


FIG. 2: The $D_{s}^{*+}$ signals: (a) $m\left(K^{+} K^{-} \pi^{+} \pi^{0}\right)-$ $m\left(K^{+} K^{-} \pi^{+}\right)$; (b) $m\left(K^{+} K^{-} \pi^{+} \gamma\right)-m\left(K^{+} K^{-} \pi^{+}\right)$. The dots represent data points. The solid curve shows the fitted function. The dashed curve indicates the portion of the fit associated with background.
has little influence on the background shape near the signal region. The result of this fit is shown in Fig. 2(a). A signal event yield of $560 \pm 40$ (statistical error only) is obtained.

For the reconstruction of the decay $D_{s}^{*+} \rightarrow D_{s}^{+} \gamma$, a calorimeter cluster that is not associated with a charged track is considered a photon candidate if it fulfills the following requirements: the energy must be 50 MeV or greater in the laboratory frame and 100 MeV or greater in the $e^{+} e^{-}$center-of-mass frame and the fractional lateral width must be less than 0.8 . To reduce the background due to photons from $\pi^{0}$ decay, a photon candidate is discarded if it forms a $\pi^{0}$ candidate with any other photon candidate in the same event. In this case, a $\gamma \gamma$ combination is considered a $\pi^{0}$ candidate if the invariant mass is in the range $115<m(\gamma \gamma)<155 \mathrm{MeV} / c^{2}$ and if the total energy is at least 200 MeV in the $e^{+} e^{-}$ center-of-mass frame.

To obtain the $D_{s}^{*+} \rightarrow D_{s}^{+} \gamma$ signal event yield, a fit is applied to the distribution of the mass difference $\Delta m\left(D_{s}^{+} \gamma\right)=m\left(K^{+} K^{-} \pi^{+} \gamma\right)-m\left(K^{+} K^{-} \pi^{+}\right)$. The fit function is a sum of a third-order polynomial to model the background plus a function first introduced by the Crystal Ball collaboration [11] for the signal
$f_{2}(\Delta m)=N \cdot\left\{\begin{array}{ll}A\left(B-\frac{\Delta m-\mu}{\sigma}\right)^{-n} & \text { if }(\Delta m-\mu) / \sigma \leq \alpha \\ \exp \left(-\frac{(\Delta m-\mu)^{2}}{2 \sigma^{2}}\right) & \text { if }(\Delta m-\mu) / \sigma \geq \alpha\end{array}\right.$,
where $N, \mu, \sigma, n$, and $\alpha$ are free fit parameters and $A$ and $B$ are chosen such that the function and its first derivative are continuous at $(\Delta m-\mu) / \sigma=\alpha$. The fit result is shown in Fig. 2(b). A signal yield of $15600 \pm 200$ events (statistical error only) is obtained.

The reconstruction efficiencies are determined using a Monte Carlo simulation based on 30000 events for each $D_{s}^{+}$decay mode. The simulated events are analyzed using the same procedure as for real data. By calculating the ratio of the number of reconstructed to generated events, efficiencies of $\epsilon\left(D_{s}^{+} \pi^{0}\right)=0.041 \pm 0.002$ and

TABLE I: A summary of the relative systematic uncertainties in the branching ratio measurements.

|  | Relative Uncertainty (\%) |  |
| :--- | :---: | :---: |
|  | $\frac{\Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right)}{\Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \gamma\right)}$ | $\frac{\Gamma\left(D^{* 0} \rightarrow D^{0} \pi^{0}\right)}{\Gamma\left(D^{* 0} \rightarrow D^{0} \gamma\right)}$ |
| Sources | 4.8 | 0.1 |
| Background shape | 5.0 | 5.4 |
| Monte Carlo statistics | 3.6 | 3.8 |
| Signal model | 6.8 | 2.8 |
| $p^{*}$ dependence | 10.2 | 7.2 |
| Quadrature Sum |  |  |

$\epsilon\left(D_{s}^{+} \gamma\right)=0.071 \pm 0.002$ are found for the two $D_{s}^{*+}$ decay modes. The efficiency ratio is $\epsilon\left(D_{s}^{+} \pi^{0}\right) / \epsilon\left(D_{s}^{+} \gamma\right)=$ $0.58 \pm 0.03$ (statistical error only).

Various sources of systematic uncertainties are studied. To verify that the Monte Carlo events model the data correctly, $\tau$ decays with one or two $\pi^{0}$ mesons in the final state are studied to obtain energy-dependent Monte Carlo efficiency corrections for $\pi^{0}$ mesons and photons. Although this procedure indicates that no correction is necessary, the errors on the correction functions represent uncertainties in the Monte Carlo model and contribute a systematic uncertainty of $3.6 \%$.

To test for uncertainties in the background shape of the mass difference distributions, upper and lower sidebands in the $K^{+} K^{-} \pi^{+}$and $\gamma \gamma$ mass distributions are considered. Positive signal yields are expected in these sidebands from either mis-reconstructed or unassociated $\pi^{0}$ candidates. To measure these yields, the same fit functions used to determine the signal yields are applied to the mass difference distributions of the sideband samples. Any discrepancy in yield so obtained from data and Monte Carlo simulation is considered a systematic uncertainty ( $4.8 \%$ ). Most of this uncertainty is attributed to the relatively large background in the $D_{s}^{+} \pi^{0}$ decay mode.

The measurement of $\Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right) / \Gamma\left(D_{s}^{*+} \rightarrow\right.$ $\left.D_{s}^{+} \gamma\right)$ is repeated for the subsamples of candidates within various $p^{*}$ intervals. By fitting either a constant function or a first-order polynomial to the branching ratio as a function of $p^{*}$, it is possible to verify that the measured branching ratios are independent of $p^{*}$ (see Fig. 3). Nevertheless, it is assumed conservatively that any $p^{*}$ dependence arises from unknown momentum dependencies of the efficiencies that may not cancel in the branching ratios. The difference ( $6.8 \%$ ) between the branching ratio represented by the constant function and the integral of the first-order polynomial is therefore reported as a systematic uncertainty.

The systematic uncertainties are summarized in Table I. Combining all contributions in quadrature, a total systematic uncertainty of $10.2 \%$ is derived for the measurement of $\Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right) / \Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \gamma\right)$.

The ratio $\Gamma\left(D^{* 0} \rightarrow D^{0} \pi^{0}\right) / \Gamma\left(D^{* 0} \rightarrow D^{0} \gamma\right)$, where $D^{0} \rightarrow K^{-} \pi^{+}$, is measured using the same selection criteria for the $\pi^{0}$ and photon candidates as in the reconstruc-


FIG. 3: The measured values of (a) $\Gamma\left(D_{s}^{*+} \rightarrow\right.$ $\left.D_{s}^{+} \pi^{0}\right) / \Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \gamma\right)$ and $(\mathrm{b}) \Gamma\left(D^{* 0} \rightarrow D^{0} \pi^{0}\right) / \Gamma\left(D^{* 0} \rightarrow\right.$ $D^{0} \gamma$ ) in intervals of center-of-mass momentum $p^{*}$. The error bars indicate the associated statistical error. The solid line (dashed line) is the result of a fit to a constant (first-order polynomial). The dotted line is the result from the entire sample integrated over $p^{*}$.



FIG. 4: The $D^{* 0}$ signals: (a) $m\left(K^{-} \pi^{+} \pi^{0}\right)-m\left(K^{-} \pi^{+}\right)$and (b) $m\left(K^{-} \pi^{+} \gamma\right)-m\left(K^{-} \pi^{+}\right)$. The dots represent data points. The solid curve shows the fitted function. The dashed curve indicates the portion of the fit associated with background.
tion of $D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}$ and $D_{s}^{*+} \rightarrow D_{s}^{+} \gamma$. To be included in the $D^{0} \rightarrow K^{-} \pi^{+}$sample, a candidate $K^{-}$and $\pi^{+}$ combination must yield an acceptable fit to a common vertex and the scaled momentum $x_{p}$ of the resulting $D^{0}$ candidate must be 0.6 or greater. Fitting the sum of a double Gaussian function and a third-order polynomial to the resulting $K^{-} \pi^{+}$invariant mass distribution (not shown) produces $(996.0 \pm 1.5) \times 10^{3}$ signal events (statistical error only). A $K^{-} \pi^{+}$combination is retained if its mass differs by less than $17 \mathrm{MeV} / c^{2}$ from the nominal $D^{0}$ mass [8].

The $D^{0}$ candidates are combined with all $\pi^{0}$ candidates; the resulting mass difference $\Delta m\left(D^{0} \pi^{0}\right)=$ $m\left(K^{-} \pi^{+} \pi^{0}\right)-m\left(K^{-} \pi^{+}\right)$is shown in Fig. 4(a). A fit using a double Gaussian for the signal and the function shown in Eq. 1 for the background yields $69000 \pm 450$ signal events (statistical error only).

The $D^{0}$ candidates are then combined with all photon candidates producing the distribution of the mass difference $\Delta m\left(D^{0} \gamma\right)=m\left(K^{-} \pi^{+} \gamma\right)-m\left(K^{-} \pi^{+}\right)$shown in Fig. 4(b). In this case, the peak corresponding to $D^{* 0} \rightarrow D^{0} \gamma$ signal is close to a large bump arising from

TABLE II: Summary of the results. The first errors are statistical; the second represent systematic uncertainties.

| $\Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right) / \Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \gamma\right)$ | $0.062 \pm 0.005 \pm 0.006$ |  |  |
| :--- | :--- | :--- | :--- |
| $\mathcal{B}\left(D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right)$ | $0.059 \pm 0.004 \pm 0.006$ |  |  |
| $\mathcal{B}\left(D_{s}^{*+} \rightarrow D_{s}^{+} \gamma\right)$ | $0.942 \pm 0.004 \pm 0.006$ |  |  |
| $\Gamma\left(D^{* 0} \rightarrow D^{0} \pi^{0}\right) / \Gamma\left(D^{* 0} \rightarrow D^{0} \gamma\right)$ | $1.74 \pm 0.02 \pm 0.13$ |  |  |
| $\mathcal{B}\left(D^{* 0} \rightarrow D^{0} \pi^{0}\right)$ | $0.635 \pm 0.003 \pm$ | 0.017 |  |
| $\mathcal{B}\left(D^{* 0} \rightarrow D^{0} \gamma\right)$ | $0.365 \pm$ | $0.003 \pm$ | 0.017 |

the reflection of $D^{* 0} \rightarrow D^{0} \pi^{0}$ in which one photon is produced by $\pi^{0}$ decay (the same reflection appears in $D_{s}^{*+}$ decay but with a lower rate and less distinctive shape). Most of this bump is avoided by limiting the analysis to $\Delta m>95 \mathrm{MeV} / c^{2}$. The remainder of the background is modeled using the function

$$
\begin{align*}
f_{3}(\Delta m) & =N\left(1+\exp \left(-\frac{\Delta m-m\left(\pi^{0}\right)}{\mu}\right)\right) \\
& \times\left(\Delta m^{2}+a \Delta m+b\right) \tag{3}
\end{align*}
$$

(Note that this function is similar to that of Eq. 1, but differs in the sign of the exponential term.) The signal is modeled by the Crystal Ball function (Eq. 2). The resulting fitted signal consists of $67880 \pm 670$ events (statistical errors only).

Efficiencies and systematic uncertainties are determined using the procedures described for $\Gamma\left(D_{s}^{*+} \rightarrow\right.$ $\left.D_{s}^{+} \pi^{0}\right) / \Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \gamma\right)$. Efficiencies of $\epsilon\left(D^{0} \pi^{0}\right)=$ $0.037 \pm 0.002$ and $\epsilon\left(D^{0} \gamma\right)=0.064 \pm 0.002$ and an efficiency ratio of $\epsilon\left(D^{0} \pi^{0}\right) / \epsilon\left(D^{0} \gamma\right)=0.58 \pm 0.03$ are found. The latter is consistent with the value of $\epsilon\left(D_{s}^{+} \pi^{0}\right) / \epsilon\left(D_{s}^{+} \gamma\right)$. The ratio $\Gamma\left(D^{* 0} \rightarrow D^{0} \pi^{0}\right) / \Gamma\left(D^{* 0} \rightarrow D^{0} \gamma\right)=1.74 \pm$ 0.02 (stat.) $\pm 0.13$ (syst.) is obtained.

The branching ratio measurements are summarized in Table II. By assuming that the $D_{s}^{*+}$ meson decays only to $D_{s}^{+} \pi^{0}$ and $D_{s}^{+} \gamma$, and that the $D^{* 0}$ meson decays only
to $D^{0} \pi^{0}$ and $D^{0} \gamma$, it is possible to calculate the branching fractions, which are also listed in Table II.

In summary, the branching ratio $\Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right) /$ $\Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \gamma\right)=0.062 \pm 0.005$ (stat.) $\pm 0.006$ (syst.) has been measured and is consistent with the previous measurement [7], but has higher precision. Also determined is the ratio $\Gamma\left(D^{* 0} \rightarrow D^{0} \pi^{0}\right) / \Gamma\left(D^{* 0} \rightarrow D^{0} \gamma\right)=$ $1.74 \pm 0.02$ (stat.) $\pm 0.13$ (syst.). This result is in agreement with, but is more precise than, the world average [8].

It has been proposed that the decay $D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}$ proceeds via $\eta-\pi^{0}$ mixing and calculations based on Chiral perturbation theory [3] predict $\mathcal{B}\left(D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right) \approx 1-$ $3 \%$ based on current measurements of $\mathcal{B}\left(D^{*+} \rightarrow D^{+} \gamma\right)=$ $1.6 \pm 0.4 \%[8]$. Newer theoretical estimates in a relativistic quark model [2] predict $\mathcal{B}\left(D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right) \approx 13 \%$, somewhat larger than our measurement.

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), Institute of High Energy Physics (China), the Commissariat à l'Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Science and Technology of the Russian Federation, and the Particle Physics and Astronomy Research Council (United Kingdom). Individuals have received support from CONACyT (Mexico), the A. P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.
[1] The use of charge conjugate states is implied throughout this paper.
[2] J.J. Goity and W. Roberts, Phys. Rev. D 64, 094007 (2001).
[3] P.L. Cho and M.B. Wise, Phys. Rev. D 49, 6228 (1994).
[4] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 90, 242001 (2003).
[5] CLEO Collaboration, D. Besson et al., Phys. Rev. D 68, 032002 (2003).
[6] BELLE Collaboration, K. Abe et al., Phys. Rev. Lett. 92, 012002 (2004).
[7] CLEO Collaboration, J. Gronberg et al., Phys. Rev. Lett. 75, 3232 (1995).
[8] Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004).
[9] BABAR Collaboration, B. Aubert et al., Nucl. Instr. Meth. A 479, 1 (2002).
[10] A. Drescher et al., Nucl. Instr. Meth. A 237, 464 (1985).
[11] Crystal Ball Collaboration, D. Antreasyan et al., Crystal Ball Note 321 (1983).


[^0]:    ${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
    ${ }^{2}$ IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
    ${ }^{3}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy ${ }^{4}$ Institute of High Energy Physics, Beijing 100039, China
    ${ }^{5}$ University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
    ${ }^{6}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
    ${ }^{7}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
    ${ }^{8}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
    ${ }^{9}$ University of Bristol, Bristol BS8 1TL, United Kingdom
    ${ }^{10}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
    ${ }^{11}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
    ${ }^{12}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
    ${ }^{13}$ University of California at Irvine, Irvine, California 92697, USA
    ${ }^{14}$ University of California at Los Angeles, Los Angeles, California 90024, USA
    ${ }^{15}$ University of California at Riverside, Riverside, California 92521, USA
    ${ }^{16}$ University of California at San Diego, La Jolla, California 92093, USA
    ${ }^{17}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
    ${ }^{18}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
    ${ }^{19}$ California Institute of Technology, Pasadena, California 91125, USA
    ${ }^{20}$ University of Cincinnati, Cincinnati, Ohio 45221, USA

[^1]:    ${ }^{21}$ University of Colorado, Boulder, Colorado 80309, USA
    ${ }^{22}$ Colorado State University, Fort Collins, Colorado 80523, USA
    ${ }^{23}$ Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
    ${ }^{24}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
    ${ }^{25}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France
    ${ }^{26}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
    ${ }^{27}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
    ${ }^{28}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
    ${ }^{29}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
    ${ }^{30}$ Harvard University, Cambridge, Massachusetts 02138, USA
    ${ }^{31}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
    ${ }^{32}$ Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
    ${ }^{33}$ Imperial College London, London, SW7 2AZ, United Kingdom
    ${ }^{34}$ University of Iowa, Iowa City, Iowa 52242, USA
    ${ }^{35}$ Iowa State University, Ames, Iowa 50011-3160, USA
    ${ }^{36}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
    ${ }^{37}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
    ${ }^{38}$ University of Liverpool, Liverpool L69 72E, United Kingdom
    ${ }^{39}$ Queen Mary, University of London, E1 4NS, United Kingdom
    ${ }^{40}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
    ${ }^{41}$ University of Louisville, Louisville, Kentucky 40292, USA
    ${ }^{42}$ University of Manchester, Manchester M13 9PL, United Kingdom
    ${ }^{43}$ University of Maryland, College Park, Maryland 20742, USA
    ${ }^{44}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
    ${ }^{45}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
    ${ }^{46}$ McGill University, Montréal, Quebec, Canada H3A 2T8
    ${ }^{47}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
    ${ }^{48}$ University of Mississippi, University, Mississippi 38677, USA
    ${ }^{49}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, Quebec, Canada H3C 3J7
    ${ }^{50}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
    ${ }^{51}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
    ${ }^{52}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
    ${ }^{53}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
    ${ }^{54}$ Ohio State University, Columbus, Ohio 43210, USA
    ${ }^{55}$ University of Oregon, Eugene, Oregon 97403, USA
    ${ }^{56}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
    ${ }^{57}$ Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
    ${ }^{58}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
    ${ }^{59}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
    ${ }^{60}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
    ${ }^{61}$ Prairie View A $\mathfrak{\xi M}$ M University, Prairie View, Texas 77446, USA
    ${ }^{62}$ Princeton University, Princeton, New Jersey 08544, USA
    ${ }^{63}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
    ${ }^{64}$ Universität Rostock, D-18051 Rostock, Germany
    ${ }^{65}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
    ${ }^{66}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
    ${ }^{67}$ University of South Carolina, Columbia, South Carolina 29208, USA
    ${ }^{68}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
    ${ }^{69}$ Stanford University, Stanford, California 94305-4060, USA
    ${ }^{70}$ State University of New York, Albany, New York 12222, USA
    ${ }^{71}$ University of Tennessee, Knoxville, Tennessee 37996, USA
    ${ }^{72}$ University of Texas at Austin, Austin, Texas 78712, USA
    ${ }^{73}$ University of Texas at Dallas, Richardson, Texas 75083, USA
    ${ }^{{ }^{4}}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
    ${ }^{75}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
    ${ }^{76}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
    ${ }^{77}$ Vanderbilt University, Nashville, Tennessee 37235, USA
    ${ }^{78}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
    ${ }^{79}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
    ${ }^{80}$ University of Wisconsin, Madison, Wisconsin 53706, USA
    ${ }^{81}$ Yale University, New Haven, Connecticut 06511, USA

[^2]:    *Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
    †Also with Università della Basilicata, Potenza, Italy
    $\ddagger$ Deceased

