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ABSTRACT

A 2.5-dimensional particle-in-cell code is used to investigate the propaga-

tion of a large-amplitude, superluminal, nearly transverse electromagnetic (TEM)

wave in a relativistically streaming electron-positron plasma with and without

a shock. In the freestreaming, unshocked case, the analytic TEM dispersion

relation is verified, and the streaming is shown to stabilize the wave against

parametric instabilities. In the confined, shocked case, the wave induces strong,

coherent particle oscillations, heats the plasma, and modifies the shock density

profile via ponderomotive effects. The wave decays over & 102 skin depths; the

decay length scale depends primarily on the ratio between the wave frequency

and the effective plasma frequency, and on the wave amplitude. The results

are applied to the termination shock of the Crab pulsar wind, where the de-

cay length-scale (& 0.05′′) might be comparable to the thickness of filamentary,

variable substructure observed in the optical and X-ray wisps and knots.
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1. INTRODUCTION

A rotation-powered pulsar emits most of its spin-down luminosity as a wind of rel-

ativistic particles, mainly electrons (e−) and positrons (e+) produced in pair cascades in

charge-starved regions of the magnetosphere (Arons 2002). Observations of pulsar winds

confined by supernova remnants (Hester et al. 2002) or the interstellar medium (Chatterjee

& Cordes 2004; Gaensler et al. 2004) reveal that the wind terminates in a synchrotron-

emitting shock with a cylindrically symmetric (‘crossbow’) morphology, implying that the

outflow is collimated geometrically along the rotation axis, while the energy flux is concen-

trated in the equatorial plane (Komissarov & Lyubarsky 2004). The wind is launched from

the light cylinder with most of its luminosity transported as Poynting flux (Coroniti 1990),

and its enthalpy flux is negligible beyond the light cylinder rL due to adiabatic cooling. On

the other hand, models of the shock kinematics, the postshock flow, the synchrotron spec-

trum (Kennel & Coroniti 1984b), and the variability of shock substructure (e.g. wisps and

knots in the Crab) (Spitkovsky & Arons 2004), strongly suggest that the ratio σ of Poynting

flux to kinetic-energy flux is small at the shock, with σ ∼ 10−3 in several objects (Kennel &

Coroniti 1984a; Gaensler et al. 2002).

In recent years, theoretical attention has focused on the radial structure of the wind, in

order to explain how σ decreases from the magnetosphere (σ ≫ 1) to the shock (σ ≪ 1):

the σ-paradox. The dissipation of Poynting flux seems to be related to the decay of the

large-amplitude wave launched into the wind at the pulsar spin frequency. One possible

cause is that ideal magnetohydrodynamics (MHD) breaks down beyond a critical radius rc,

in the sense that there are insufficient charge carriers to screen out the rest-frame electric

field, and the electron inertia term in the relativistic Ohm’s law becomes dominant (Melatos

& Melrose 1996; Melatos 1998; Gedalin et al. 2001; Kuijpers 2001; Melatos 2002). In this

respect, particular attention has been paid to the entropy wave carrying the alternating

(‘striped’) magnetic field in the wind (Bogovalov 1999; Coroniti 1990) and its dissipation

by magnetic reconnection at the corrugated current sheet separating the magnetic stripes

(Lyubarsky & Kirk 2001), possibly emitting observable high-energy pulses (Arons 1979; Kirk

et al. 2002; Kirk 2004; Skjæraasen 2004; Pétri & Kirk 2005). The dissipation occurs upstream

from the termination shock, if the reconnection rate and particle flux are large enough (Kirk

& Skjæraasen 2003), or else in the shock itself (Lyubarsky 2003).

In this Letter, we assess an alternative scenario in which, beyond rc, the plasma up-

stream from the termination shock carries a superluminal transverse electromagnetic (TEM)

wave, which modulates the wind and the shock (Melatos 2002). The wave is taken to be

monochromatic, with a frequency given by the pulsar spin rate; an assumption generally

used also in MHD wind models. Coherent particle acceleration in the TEM wave typically
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leads to σ ≪ 1; a self-consistent, WKB wave model predicts σ ≃ 10−3 at the termination

shock given the measured particle and energy fluxes of the Crab pulsar (Melatos & Melrose

1996; Melatos 1998). We use the 2.5-dimensional, relativistic, electromagnetic particle-in-cell

(PIC) code XOOPIC (Verboncoeur et al. 1995) to investigate the free propagation of the

wave upstream from the shock (§2), plasma heating in the shock (§3), and the fate of the

wave inside and downstream from the shock (§3). We apply our results to the Crab pulsar

wind in §4.

2. FREELY PROPAGATING TEM WAVES

A nonlinear TEM wave can propagate even if its frequency ω is less than the effective

plasma frequency
√

2n±e2/ǫ0mγ±, where n± is the e± number density in the laboratory

frame, m is the electron mass, and γ± is the Lorentz factor, because the wave forces charges

to oscillate relativistically, increasing their effective mass. In a cold plasma, the plane wave

dispersion relation is (Akhiezer & Polovin 1956; Kaw & Dawson 1970; Kennel & Pellat 1976;

Melatos & Melrose 1996)

η2 = 1 −
2ω2

p

ω2 (1 + E2)1/2
, (1)

where η = ck/ω is the index of refraction, ωp =
√

n±e2/ǫ0mγd, γd is the bulk Lorentz factor,

and E is a dimensionless amplitude defined by E = eE0/mcω, where E0 is the physical

electric field amplitude. For E > 1, the charges are accelerated from nonrelativistic to

relativistic speeds within a single wave period. Note that a nonlinear electromagnetic wave

is strictly transverse only if it is circularly polarised. In this case, the streaming speed cβd

is a constant of the motion and can be chosen arbitrarily. As a result, σ ∝ E2γd
−1 varies

independently with E and γd, whereas in a linearly polarised nonlinear wave, γd (and hence

σ) is determined uniquely by E. In the small-amplitude limit, n±, γd and E decouple.

In order to verify (1) with XOOPIC, we launch a cold e± beam from the left-hand

edge (x = 0) of the simulation box. Two orthogonal, phased dipole antennas are placed at

x = 0, continuously emitting a circularly polarised TEM wave with frequency ω = ω0 which

ramps up to a constant amplitude E over a rise time tr . 0.2tc, where tc is the time for

the beam to cross the box. The right-hand edge of the box is transparent both to particles

and waves (thanks to a wave-absorbing algorithm). Once initial transients disappear, we

Fourier transform the transverse electric field component Ez(x, t) and measure η for the

Fourier component of largest amplitude. For linear waves with 10−4 < E < 10−1, we verify

the linearized version of (1) to approximately 0.5 per cent in vacuo, 1 per cent in a uniform,
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cold stationary plasma, and 2 per cent for a relativistically drifting, uniform, cold plasma.

In the evanescent regime ω < ωp

√
2, the wave penetrates a few plasma skin depths c/ωp.

When a TEM wave with E ≫ 1 is launched into a nonstreaming plasma, its pondero-

motive force excavates a density cavity around the antenna. If the energy density of the

wave field, ǫ0E
2
0 , exceeds n±mc2, the cavity expands at relativistic speeds. To verify (1) for

a nonstreaming plasma, one would need to set up the wave field and particle distribution

self-consistently at all x before starting the simulation (which we defer to a future paper),

and even then, one would expect the wave to be disrupted by parametric instabilities (Max

& Perkins 1972; Sweeney & Stewart 1975; Ashour-Abdalla et al. 1981; Leboeuf et al. 1982).

However, if a nonlinear TEM wave is launched into a streaming plasma (γd ≫ 1), it prop-

agates freely — without excavating the plasma and without being disrupted by parametric

instabilites — in the regime ω > ωp

√
2/(1 + E2)1/4. In the parameter ranges 1 < E < 103

and 1 < γd < 3.9 × 103, the value of η we compute agrees with (1) to 5 per cent. We stress,

however, that more work is needed to rigorously verify that the simulated fields and particle

momentum distributions are compatible with the assumption of an infinite, plane TEM wave

given by (1).

3. SHOCKED TEM WAVE

In certain respects, the above PIC experiment with freely propagating TEM waves over-

laps with previous works (Ashour-Abdalla et al. 1981; Leboeuf et al. 1982). The main focus

of the current work is a different scenario: A nonlinear TEM wave which encounters an ultra-

relativistic shock formed by a confining medium, as in the case of a pulsar wind termination

shock. In order to simulate such a shock, we repeat the experiment described in §2 but add

a particle-reflecting, wave-transmitting magnetic wall in the region 95 . x̂ ≡ xωp†/c . 100,

where ωp† = ωp(x = 0). We trace O(106 − 107) particles for O(103 − 104) timesteps on a grid

where each cell has a size ∆x = ∆y . 0.1cπ/ωp†, and the timestep is given by ∆t = 0.4∆x/c.

The grid has 128 cells and periodic open boundaries in the y-direction, and from 256 to 1600

cells in the x-direction. Below, the antenna (TEM wave) frequency is denoted by ω0. We

observe that the after reflected off the magnetic wall, the counterstreaming particles trigger

a Weibel instability, which causes the beam to filament in the y direction. The initial stage

of the instability is marked by exponentially growing oscillations (along the y axis) of the

magnetic field component Bz, with characteristic wavelength c/ωp. A shock forms after a

time t given by ωp†(t − tref) ≃ 40 − 70, where tref is the instant when the front of the

beam reflects off the magnetic wall. As there is no dc magnetic field in our simulations, the

cyclotron instability seen by others (Gallant et al. 1992; Hoshino et al. 1992; Spitkovsky &
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Arons 2004) is absent.

In the discussion below, we average all quantities over y, smoothing out the filaments.

We fix the bulk Lorentz factor at x̂ = 0 to be γ0 = 3870. The value of σ at the antenna, σ(x̂ =

0), is denoted by Σ0, and we adopt parameters such that E(x̂ = 0) = 5.4× 103(ωp†/ω0)
√

Σ0.

Downstream from the antenna, the field couples to the particles and quickly reduces E until,

at x̂ ≈ 25, a ‘fully developed’ TEM wave forms, in which E(x̂) ≃ u⊥(x̂)/c, where u⊥(x̂) is

the local ensemble average of (uy
2 + uz

2)1/2 (uy and uz are components of the 4-velocity).

We refer to the regions 10 . x̂ . 50, 50 . x̂ . 80, and x̂ & 80 as the shock precursor, the

shock interior and the downstream medium, respectively.

3.1. Plasma Heating

In the shock precursor, there is a strong, coherent, position-dependent interaction be-

tween the wave and the particles. The lower panels of Fig. 1 show the e+ number density

in (x̂, uz)-space at two different positions. At low x̂, the particle motion is almost phase-

coherent, but electrostatic and electromagnetic fluctuations gradually increase the thermal

spread with x̂ until it exceeds the wave-induced quiver motion. The conversion of Poynting

flux and kinetic-energy flux into thermal motions is evident from the upper panels of Fig.

1, which show the frequency spectrum of the electric field component Ey. As x̂ increases,

the thermal background (broad sidebands) grows at the expense of the antenna-driven TEM

mode (narrow lines at ω = ±ω0).

The positron energy distribution f(γ) is shown at two positions in Fig. 2, one in the

shock precursor and the other in the shock interior. Interestingly, for a wave with Σ0 & 1, we

find 〈γ〉 ∝ γ0(Σ0 + 1) at both positions (indeed, throughout the shock), although the form

of f(γ) changes. In the precursor (8 . x̂ . 16), the distribution is narrow and drops quickly

at high energies; fitting the tail with a power law, f(γ) ≃ γ−α, we obtain 15 . α . 35

for the range 2 . Σ0 . 24. This does not necessarily imply nonthermal acceleration, but

rather the heating of an initially cold distribution. In the shock interior (50 . x̂ . 58), f(γ)

turns into an anisotropic Maxwellian (see §3.3). The stronger the TEM wave, the hotter the

downstream plasma, with 〈γ〉 determined by the total upstream energy flux.

The anisotropy of the particle distribution in the shock interior depends on the po-

larization of the wave; for example, a linearly polarized wave with Ez ≫ 1 and Ey = 0

predominantly energizes uz. A detailed study of this issue is outside the scope of this paper,

which focuses on circularly polarized TEM waves.
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3.2. Fate of the Wave

As the wave propagates away from the antenna and accelerates the particles into oscil-

lations, σ quickly drops below Σ0. For x̂ & 25, E changes little until it encounters the shock,

beyond which the wave continues to decay. The decay rate scales with the skin depth, c/ωp†.

Figure 3a shows the TEM wave amplitude as a function of position and Σ0. For Σ0 = 0.4,

we find E(x̂ = 28)/E(x̂ = 0) = 0.05 and E(x̂ = 40)/E(x̂ = 0) . 0.01. For Σ0 = 3.6 (14.0),

the corresponding ratios are 0.20 (0.25) and 0.07 (0.14), respectively. In the case Σ0 = 14.0,

E remains roughly flat for 40 < x̂ < 70, before dropping away for x̂ & 70. The drop is

accompanied by a temperature decline, possibly because the plasma near the magnetic wall

is not yet thermalized. For Σ0 ≃ 6, a similar drops occurs at x̂ & 57.

Taken together with similar simulations spanning the parameter range 1 . ω0/ωp† . 10,

Fig. 3a leads to an important result: the length scale Ld over which E drops by two orders

of magnitude, scales proportionally to the skin depth as

Ld ≃ Kc/ωp†, (2)

where 102 . K . 103 depends on ω0/ωp†; i.e., near (far from) from the cutoff given by (1) the

decay is faster (slower). This is consistent with previous results for an unshocked, relativistic

EM wave (Leboeuf et al. 1982). The value of K also increases slowly with the amplitude

(for 0.2 < Σ0 < 20 we obtain 50 . K . 150 with ω0/ωp† ≃ 2.0). For the parameter regime

ω0/ωp† ≫ 10, which we cannot achieve in our simulations (since it would require a very large

number of timesteps to both allow the shock to form and resolve the wave oscillations), the

value of K might exceed 103. Over distances much greater than Ld, the wave may enter the

linear regime, but we are unable to distinguish the wave from the noise at this level in our

simulations. (Note that if Ld is redefined as the length scale over which E drops by a factor

of e, K is reduced by a factor of 4.6).

As seen from Fig. 3b, as the wave decays the tranverse momentum density e⊥(x̂) =

n(x̂)u⊥(x̂)/c, where n(x̂) = n+(x̂) + n−(x̂), increases with x̂. The largest-amplitude case

(Σ0 = 14.0) is an exception, with ∂e⊥/∂x̂ < 0 near x̂ = 0 and the magnetic wall; this may

be due to ponderomotive forces (§3.3), imperfect absorption of the wave by the simulation

boundaries, or other boundary effects.

The wave decay might be caused by a parametric instability which sets in when the

bulk speed of the flow is reduced in the shock interior. Further simulations are needed to

obtain enough statistics to rigorously settle the microphysical aspects of the decay; this is

deferred to a forthcoming work.
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3.3. Density Profile

Our code tracks all three vector components of the electromagnetic fields, but only

supports electrostatic (Langmuir) fluctuations in two directions. Particles therefore dif-

fuse slower in uz than in ux and uy. In this respect, our simulations are essentially two-

dimensional, with an effective adiabatic index Γ ≃ 3/2 (not 4/3, as in isotropic 3D). This

explains the form of the density profile n(x) in Fig. 4, plotted at t = tref + 85ωp†
−1 for three

different wave amplitudes. In the near-hydrodynamic case Σ0 ≃ 0 (not shown), the density

jump is n2/n1 ≃ 2.8, where n1 (n2) denotes the upstream (downstream) density, consistent

with the Rankine-Hugoniot prediction n2/n1 = Γ/(Γ − 1) ≃ 3 for Γ = 1.5. Conversely,

given the observed density jump for Σ0 ≃ 0, we infer Γ = 1.56, implying some slow diffusion

in uz. Figure 4 also suggests that n2/n1 increases with Σ0. This trend can be ascribed to

the ponderomotive force executed by the decaying TEM wave, and/or by the longitudinal

electric field Ex ∝ E induced by parametric decay to the Langmuir mode. As the TEM wave

decays, we have a ponderomotive force proportional to ∂E2/∂x; hence n2/n1 increases with

Σ0. Interestingly, we see little or no evidence that the shock speed changes with Σ0.

4. CRAB PULSAR WIND

For a steady-state pulsar wind, conservation of mass and energy give

ω0

ωp
= 4.6 × 10−8

(

r

rL

) [

γd (Ωw/4π)

Ṅ38

]1/2

, (3)

E = 3.1 × 107

(rL

r

)

[

Ṅ38µσ

η (1 + σ) (Ωw/4π)

]1/2

. (4)

In (3) and (4), ω0 is given by the pulsar spin rate, the total particle injection rate is Ṅ =

1038s−1Ṅ38, the solid angle filled by the wind is Ωw, and we define µ = L/Ṅmc2, where L

is the pulsar spin-down luminosity. For canonical Crab parameters (5 × 104 . µ . 5 × 106;

η ≃ 1, Ωw/4π ≃ 0.1 − 1, σ(rs) ≃ 3 × 10−3, and rs/rL ≃ 2.7 × 109) (Trümper & Becker

1998; Weisskopf et al. 2000; Kirk & Skjæraasen 2003; Spitkovsky & Arons 2004), we take

ωp† = ωp(rs) and find 1 . E . 10, 9×102 . ω0/ωp† . 3×105, and 9×104 . Ld/rL . 3×108

at the termination shock (using 102 . K . 103).

In a self-consistent model of the TEM wave, σ can be expressed in terms of the other

quantities in (1), (3), and (4) according to Eq. (97) of Melatos & Melrose (1996), viz.

σ =
η

βd

[

1

γd
2 (1 − η2)

− ω4 (1 − η2)

4γd
2ω4

p

]

. (5)
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This allows us to solve self-consistently for η, σ, E, and ωp† given just Ṅ and γd. Adopting the

current best estimates of these quantities, Ṅ38 = 100.3 and γd = 106, as inferred from an ion-

cyclotron model of the variability of the Crab wisps (Spitkovsky & Arons 2004), together with

Ωw ≃ 4π, we solve (1) and (3)–(5) to obtain σ ≃ 9.0×10−3, E ≃ 2.5, Ld/rL ≃ 107−108, and

1−η ≃ 4.8×10−11 (the value for η reflects the fact that the displacement current dominates

the conduction current for r > rc).

Evidently, our simulations explore artificially small values of ω0/ωp† (for best-guess

values, ω0/ωp† ≈ 9 × 104 at the Crab shock), and artificially large values of σ and E (e.g.,

in Fig. 4, Σ0 = 3.6 gives σ ≃ 0.01 and E ≃ 4× 102 at x̂ ≃ 50) due to numerical limitations.

Nevertheless, we consistently find Ld & 102c/ωp† for 0.1 . Σ0 . 100, i.e., over three decades

in Σ0. The fate of the TEM wave thus seems clear: It decays beyond rs, just like the entropy

wave (Lyubarsky 2003), but the dissipation mechanism is not reconnection. The decay scale

exceeds 107 rL.

Observationally, Ld might be resolved. It subtends 0.05′′−0.5′′ if the Crab is at distance

of 2 kpc, using 102 < K < 103 and the best estimates for the wind parameters. This range

includes the angular thickness of filamentary, variable substructure in the equatorial wisps

of the Crab pulsar wind, observed by the Hubble Space Telescope and the Chandra X-ray

Observatory (Hester et al. 2002), but at present the connection is speculative. Since Ld

increases with ω/ωp† in the parameter regime near cutoff, and the Crab shock value of ω/ωp†

cannot be achieved in our simulations, we can only conclusively give a lower limit (100c/ωp†)

for Ld; i.e., the possibility that Ld > 103c/ωp† (> 0.5′′) cannot be excluded. A theoretical

upper limit for Ld can be estimated by noting that, ultimately, adiabatic cooling of the

diverging, subrelativistic flow beyond the Crab termination shock enforces a cutoff, and

parametric instabilities are bound to set in, yielding Ld . O(rs).

The TEM wave generates a latitude-dependent, nonthermal particle distribution inside

the shock which is anisotropic near the equatorial plane, where the wave is (approximately)

linearly polarized, and isotropic at high latitudes, where the polarization is (approximately)

circular. In principle, future X-ray and/or optical polarization measurements can test this

prediction.

The simulations reported here do not include a dc magnetic field, as exists for an oblique

rotator. Such a field affects the propagation and stability of the TEM wave (Asseo et al.

1980). For example, a subluminal, circularly polarized TEM wave with a dc magnetic field

in the x-direction (radially) is stable in the inner part of the wind but unstable to three-wave

parametric decay in the outer wind (Melatos 1998, 2002). These important issues will be

addressed in a forthcoming paper.
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Fig. 1.— The shock precursor. Top row: Frequency spectrum |Ey(ω)| at (a) x̂ = 14 and

(b) x̂ = 29, obtained during the time interval 56 . ωp†(t − tref) . 80. The lines at ω =

±ω0 are the nonlinear TEM wave. As x̂ increases, the lines decay and broaden while the

thermal background spectrum grows. The lines at ω ≃ ±0.6ω0 are due to electrostatic

plasma oscillations. Bottom row: Positron density in (x, uz)-space for (c) 10 < x̂ < 20 and

(d) 20 < x̂ < 30. In (c), the particles are strongly phase-coherent with the wave (which

has a wavelength of ≈ 3.3x̂), although thermal broadening can be seen at x̂ > 11. In

(d), the thermal width is larger than the quiver amplitude, but a periodic modulation is

still evident (in the absence of the wave, one gets a straight beam centered on uz = 0,

gradually broadening with x̂). The parameters used are Σ0 = 2.0, γ0 = 3870, ω0/ωp† = 1.97,

t = tref + 85/ωp†, and E(x̂ = 0) = 2.0 × 103
√

Σ0.
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Fig. 2.— The energy distribution f(γ) of positrons for 8 < x̂ < 16 (a) and 50 < x̂ < 58 (b),

normalized such that
∫

dγf(γ) = n+. The labels denote Σ0; the other parameters are as in

Fig. 1.

Fig. 3.— (a) Fourier amplitude of the TEM wave at ω = ω0 as a function of x̂, normalized

to its value at x̂ = 0. The solid line represents free propagation (no shock). The other

curves are for shocked TEM waves. Arrows indicate upper limits, and labels denote Σ0.

(b) Transverse momentum density e⊥(x̂) = n(x̂)u⊥(x̂)/c, in arbitrary units. As the wave

decays, e⊥ increases due to plasma heating. Each curve represents a shocked TEM wave.

Both panels are snapshots at t ≃ tref + 100ωp†
−1. Other parameters are as in Fig. 1.



– 13 –

Fig. 4.— The aggregate density profile n(x̂) = n+(x̂) + n−(x̂) for a TEM wave shock. The

regions 10 . x̂ . 50, 50 . x̂ . 80, and x̂ & 80 are the shock precursor, the shock interior and

the downstream medium, respectively (see §2). The drop at x̂ & 95 is due to the magnetic

wall. The solid, dashed-dotted, and dashed lines are for Σ0 = 24, Σ0 = 2.0, and Σ0 = 0.4,

respectively. Other parameters are as in Fig. 1.


