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I. INTRODUCTION

Measurements of the parity-violating observables in electron scattering provide information about low-energy struc-
ture of weak neutral current processes. Such observables arise from the interference between the weak and electro-
magnetic amplitudes [1], and are sensitive to the electroweak couplings. In the Standard Model, the couplings of
the Z0 boson to the fermions are determined by the weak mixing angle θW, which has been measured with high
precision at the Z0 resonance [2]. Precision measurements of the low-energy parity-violating observables provide an
independent determination of the weak mixing angle, directly test higher order electroweak corrections, and provide
strong independent constraints on the new physics contributions at the TeV scales [3].

The experiment E158 at the Stanford Linear Accelerator Center (SLAC) has measured the parity-violating left-
right asymmetry ALR in Møller scattering of polarized 50 GeV electrons off unpolarized atomic electrons in a liquid
hydrogen target [4]. The final uncertainty on ALR is about 10%. The measurement of ALR translates into the
measurement of sin2 θW with a precision of σ(sin2 θW ) ≈ 0.001 at low momentum transfer Q2 ≈ 0.03 GeV2/c2, and
is sensitive to both electroweak one-loop radiative corrections and new physics phenomena at the TeV scales.

A precise comparison of the experimental results with the Standard Model predictions requires detailed under-
standing of the radiative corrections, including effects of the QED bremsstrahlung. The leading-order electroweak
corrections to Møller scattering have been computed a number of years ago [5, 6]. The authors of Ref. [5] factor-
ized out the soft bremsstrahlung contribution, but did not include the effects of hard bremsstrahlung, arguing that
their effects are small, and would require the knowledge of experimental kinematics and acceptance. In this paper,
improving on the calculation of Ref. [7], we present a complete calculation of the first order QED corrections. The
detailed analysis shows that the QED corrections are indeed small but not insignificant, compared to the systematic
uncertainties of E158 and the projected uncertainties of the future parity violation experiments.

Experimentally, Møller scattering is often used to measure polarization of electron beams [8]. In such measurements,
both beam and target electrons are polarized, and electroweak effects can typically be neglected. QED corrections
to the parity-conserving polarized Møller scattering have been computed in Ref. [9, 10] and are relatively important,
compared to the typical precision of Møller polarimeters. Similar to Ref. [9, 10], we perform our calculations in
the covariant framework of Bardin and Shumeiko [11], which allows us to cancel out infrared divergences without
introducing unphysical parameters (such as a frame-dependent cutoff ∆E that separates the soft bremsstrahlung
region from the hard bremsstrahlung contributions).

This paper is organized as follows. Section II introduces the kinematics of Møller scattering, the Born cross section,
and the parity-violating asymmetry. Section III explains the regularization of infrared divergences. Section VI presents
numerical results applied to the kinematics of the SLAC E158 experiment.
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FIG. 1: Born-level diagrams for Møller scattering: t-channel (left) and u-channel (right).

II. DEFINITIONS, BORN CROSS SECTION, AND KINEMATICS

The lowest-order (Born) cross section for Møller scattering, defined by the Feynman diagrams in Fig. 1, can be
written as

σ0 =
2πα2

s

∑

i,j=γ,Z

[λij
−(u2Di(t)Dj(t) + t2Di(u)Dj(u)) + λij

+s2(Di(t) + Di(u))(Dj(t) + Dj(u))], (1)

where the four-momenta of the initial and final electrons k1, p1 and k2, p2 (see Fig.1) are combined to form Mandel-
stam invariants

s = (k1 + p1)
2, t = (k2 − k1)

2, u = (k2 − p1)
2 . (2)

In Eq. (1) and hereafter, we use a short-hand notation σ ≡ dσ/dy.
The Born cross section in Eq. (1) is written in terms of the photon and Z0 propagators

Di(x) ≡ Dix =
1

x − m2
i

(i = γ, Z; x = t, u) (3)

and the coupling factors

λij
± = λ1

ij
Bλ1

ij
T ± λ2

ij
Bλ2

ij
T . (4)

The latter in turn depend on the polarizations of the beam (pB) and target (pT ) electrons:

λ1
ij
B(T ) = λij

V − pB(T )λ
ij
A , λ2

ij
B(T ) = λij

A − pB(T )λ
ij
V , (5)

λij
V = vivj + aiaj , λij

A = viaj + aivj , (6)

where vi, ai are the vector and axial-vector coupling constants for the photon and Z0:

vγ = 1, aγ = 0, (7)

vZ = (−1 + 4s2
W )/(4sW cW )

aZ = −1/(4sW cW ) (8)

and sW (cW ) is sine (cosine) of the Weinberg angle.
It is convenient to rewrite the cross section in terms of four Born-level matrix elements M0

l :

σ0 =
πα2

s
Re

4
∑

l=1

(M0
l + M̂0

l ), (9)

where matrix elements M̂0
l are obtained from M0

l by crossing symmetry t ↔ u. The matrix elements M0
l are expressed

through the “even” and “odd” functions Me and Mo:

M0
1 = Dγt(DγtMγγγγ

e − DγuMγγγγ
o ),

M0
2 = Dγt(DZtMγZγZ

e − DZuMγZγZ
o ),

M0
3 = DZt(DγtMZγZγ

e − DγuMZγZγ
o ),

M0
4 = DZt(DZtMZZZZ

e − DZuMZZZZ
o ) . (10)
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The matrix elements Me and Mo are defined in such a way that they can be used, with minimal modifications, in
both Born and first-order matrix elements. They are defined in terms of the couplings λ

M ijkl
e = 2(s2 + u2)λ1

ij
Bλ1

kl
T + 2(s2 − u2)λ2

ij
Bλ2

kl
T , (11)

M ijkl
o = −2s2(λ1

ij
Bλ1

kl
T + λ2

ij
Bλ2

kl
T ) . (12)

The kinematic variable y is defined as

y = − t

s
≈ 1 − cosΘ

2

E∗
′

E∗
, (13)

where Θ is the center of mass (CMS) scattering angle of the detected electron with momentum k2. E∗(E∗
′

) is the
energy of the initial (detected) electron in CMS, respectively. In the Born approximation, the Møller scattering is

elastic and E∗ = E∗
′

, therefore

yBorn =
1 − cosΘ

2
= 1 − E

′

E
(14)

where E and E
′

are the initial and scattered electron energies in the Lab frame, respectively. Whenever possible, we
ignore the electron mass m (which cannot be done in the collinear singularity regions).

At the Born level, the unpolarized (averaged over helicity states) cross section is given analytically by [12]

σ0 =
2πα2

sy2(1 − y)2
(

1 + y4 + (1 − y)4
)

. (15)

Polarization asymmetry ALR is conventionally defined as

ALR ≡ σLL + σLR − σRL − σRR

σLL + σLR + σRL + σRR
, (16)

where the first helicity index refers to the beam electrons, and the second helicity index corresponds to the target
electrons. Since the target helicity is summed over, ALR defined by Eq. (16) is a parity-violating observable[28]. The
Born-level asymmetry is given by [5]

A0
LR = A0(Q2, y)

(

1 − 4 sin2 θW

)

=
GF s√
2πα

y(1 − y)

1 + y4 + (1 − y)4
(

1 − 4 sin2 θW

)

, (17)

where A0(Q2, y) is an experimental acceptance-dependent analyzing power. Kinematics of the E158 experiment
correspond to the laboratory beam energies of E = 45(48) GeV and CMS scattering angles −0.5 < cosΘ ≤ 0, or
average invariants s = 2mE ≈ 0.048 GeV2/c2, Q2 = −t = 0.026 GeV2/c2 and y ≈ 0.6 [4].

We perform our calculation in the on-shell (OS) renormalization scheme, defining the weak mixing angle to all
orders in perturbation theory as cW ≡ mW /mZ , where mW and mZ are the physical masses of the W± and Z0

bosons, respectively. For consistency with the precision electroweak measurements [2, 13], we use

mW = 80.390 GeV (18)

mZ = 91.188 GeV (19)

which implies

sin2 θW = 0.2228 (20)

in the on-shell scheme. As we will note in Section VI, while the absolute value of the Born asymmetry depends on the
electron neutral current coupling 1 − 4 sin2 θW , the relative corrections to the experimentally measured asymmetries
computed here are quite insensitive to the choice of couplings or the renormalization scheme.

III. RADIATIVE CORRECTIONS

It is well known that effects of “internal” bremsstrahlung (real photon emission) need to be combined with the
contributions from the other one-loop (leading order) electroweak radiative corrections (so-called virtual, or V-
contributions). The virtual contributions to Møller scattering have been studied extensively [5, 6] and are not
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FIG. 2: One-loop t-channel contributions to Møller scattering. Circles represent vacuum polarization (a) and vertex correction
contributions (b,c), given in [16, 17].

repeated here. However, we need the infrared-divergent part of the V-contributions, which cancels out the corre-
sponding divergences in the bremsstrahlung cross section. Naturally, the extraction of the IR-divergent parts is a
somewhat subjective procedure, which may lead to ambiguities similar to the concept of scheme dependence in the
ultraviolet renormalization. We follow the framework of Bardin and Shumeiko [11] and extract the infrared-divergent
contributions that are strictly proportional to the Born cross section. Such contributions cancel in the parity-violating
asymmetry, and remain small even after other corrections are taken into account. We take the infrared-divergent parts
of the virtual corrections from [16, 17], which include the vacuum polarization and vertex correction contributions.
We also compute the IR-divergent γγ and γZ box diagrams.

The virtual contributions to the Møller scattering cross section and asymmetry can be classified into three categories:
the vacuum polarizations of the gauge boson propagators, vertex corrections, and box diagrams (see Fig. 2):

σV = σS + σV er + σB . (21)

The vacuum polarizations of γ and Z0 bosons are infrared-convergent, and are not considered in this paper. The
infrared-divergent parts of the vertex corrections (Figures 2b and 2c) are obtained from form-factors δF je

V,A given in

[16] (for k2 = t, u). Substituting the coupling constants for the vertex form-factors (e.g. vγ → δF γe
V ) in the expressions

for the Born functions Me,o, we get the vertex part of the cross section

σV er =
2πα2

s
Re

4
∑

l=1

(MV
l + M̂V

l ), (22)

where

MV
1 = Dγt(Dγt(MF γγγγ

e + MγγF γγ
e ) − Dγu(MF γγγγ

o + MγγF γγ
o )),

MV
2 = Dγt(DZt(MF γZγZ

e + MγZF γZ
e ) − DZu(MF γZγZ

o + MγZF γZ
o )),

MV
3 = DZt(Dγt(MF ZγZγ

e + MZγF Zγ
e ) − Dγu(MF ZγZγ

o + MZγF Zγ
o )),

MV
4 = DZt(DZt(MF ZZZZ

e + MZZF ZZ
e ) − DZu(MF ZZZZ

o + MZZF ZZ
o )). (23)

The box diagrams with at least one photon (i.e. Figures 2d and 2e plus u-channel graphs) also contain infrared
divergences. The diagrams with two Z0 or two W bosons are infrared-convergent and are not considered here. We
compute the box diagram contribution as a sum of the infrared-divergent and infrared-finite parts σB = σB

IR + σB
F .

The IR-finite parts of the γγ and γZ boxes are expressed by

σB
F = −2α3

s

∑

k=γ,Z

(

Bk
γγ + Bk

γZ

)

+
(

t ↔ u
)

. (24)
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The terms B have the following form:

Bk
(γγ) = Dktλγk

− δ1
(γγ) + (Dkt + Dku)λγk

+ δ2
(γγ)

Bk
(γZ) = DktλZk

− δ1
(γZ) + (Dkt + Dku)λZk

+ δ2
(γZ) (25)

At low energies (s, |t|, |u| � m2
Z), δ1,2

(ij) are given by the following expressions:

δ1
(γγ) = L2

s

s2 + u2

2t
− Lsu − (L2

x + π2)
u2

t

δ2
(γγ) = L2

s

s2

t
+ Lxs − (L2

x + π2)
s2 + u2

2t
(26)

δ1
(γZ) = 8u2(4IγZ − ÎγZ)

δ2
(γZ) = 8s2(IγZ − 4ÎγZ)

The logs in the electromagnetic box diagrams are

Ls = ln
s

|t| , Lx = ln
u

t
(27)

and the scalar integrals in γZ-parts are

IγZ =
1

2
√
−u

∫ 1

0

zdz

∫ 1

0

dx
1√
β

ln

∣

∣

∣

∣

xz
√−u +

√
β

xz
√
−u −

√
β

∣

∣

∣

∣

ÎγZ = IγZ |u→−s (28)

β = −ux2z2 + 4(1 − z)(tz(x − 1) + m2
Z)

Over a fairly broad kinematic range of interest 10−4 GeV2 ≤ |u|, |t| ≤ 1 GeV2, Eq. (28) can be integrated numerically
and approximated by the following expression to better than 1% precision:

IγZ ≈ 0.123

m2
Z

(

1.64 + ln
m2

Z

−u

)

+
0.61t

m4
Z

(

0.102 + ln
m2

Z

−u

)

. (29)

Separating the infrared-divergent and finite virtual contributions, we can write

σV = σV
IR + σV (λ2 → s), (30)

where we introduce the finite photon mass λ to regulate the IR divergence. The IR-divergent part proportional to
the Born cross section is

σV
IR = −2α

π
ln

s

λ2
(ln

tu

m2s
− 1)σ0 . (31)

IV. BREMSSTRAHLUNG CONTRIBUTION

The complete leading order radiative corrections need to include the inelastic processes that correspond to the real
photon emission e−e− → e−e−γ (R-contributions, or real photon bremsstrahlung). The diagrams are shown in Fig. 3
(plus crossed terms for a total of 16 diagrams with γ and Z0 propagators). Let k be the four-momentum of the
emitted photon. The differential cross section is given by

σR = − α3

4sπ

∫ vmax

0

dv

∫

d3k

k0
δ[(k1 + p1 − k2 − k)2 − m2]

∑

j,i=1,4

MR
ij (−1)i+j , (32)

where indices i and j refer to a particular contribution to the cross section (u and t channels with Z0 or γ exchange):

i, j = (1; 2; 3; 4) = (γt; γu; Zt; Zu). (33)
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FIG. 3: t-channel bremsstrahlung contributions to process e−e− → e−e−γ. u-channel contributions are obtained by crossing.

We also use a somewhat unconventional set of kinematic variables

z = 2kk2

z1 = 2kk1

t1 = (p2 − p1)
2

v = 2kp2 = s + u + t − 4m2 (34)

v1 = 2kp1 = s + u + t1 − 4m2

z2 = (k1 − p2)
2 = u − v + z1 ,

which satisfy the following relations:

v1 − v = z − z1 = t1 − t . (35)

The integration variable v in Eq. (32) describes the inelasticity of the reaction, the deviation from the 2-body
kinematic constraint s + u + t = 4m2. The kinematically allowed region for variable v is given by [19]

v ≤ vlim =
2(s + t − 4m2)

1 +
√

(1 − 4m2/s)(1 + 4m2/t)
≈ s + t (36)

The limit v = vlim corresponds to the collinear singularity u = 0. However, for E158, which only detects scattered
electrons with laboratory energy E′ ≥ Ecut ≈ 11 GeV, the integration region is further restricted to umax = 2m(m −
Ecut) and

vmax = s + t + umax − 4m2 . (37)

The squares of the matrix elements MR
ij are given by

MR
ij = (MR

ij )zz + (MR
ij )zv + (MR

ij )vz + (MR
ij )vv (38)

for ij = 13, 31, 11, 33, and

MR
ij = (MR

ij )f + (MR
ij )l + (MR

ij )tu + (MR
ij )s (39)

for ij = 12, 14, 32, 34, where the traces of the appropriate γ-matrix combinations are multiplied by the density matrices
and the corresponding propagators

(MR
ij )

zz
= Tr[Gµα

1 ρij(k1)G
να
1

T Λ(k2)]Tr[γµρij(p1)γνΛ(p2)]D
it1Djt1 ,

(MR
ij )

zv
= Tr[Gµα

1 ρij(k1)γνΛ(k2)]Tr[γµρij(p1)G
να
2

T Λ(p2)]D
it1Djt,

(MR
ij )

vz
= Tr[Gµα

2 ρij(p1)γνΛ(p2)]Tr[γµρij(k1)G
να
1

T Λ(k2)]D
itDjt1 ,

(MR
ij )

vv
= Tr[Gµα

2 ρij(p1)G
να
2

T Λ(p2)]Tr[γµρij(k1)γνΛ(k2)]D
itDjt,

(MR
ij )

f
= Tr[Gµα

1 ρij(k1)G
να
3 Λ(p2)γµρij(p1)γνΛ(k2)]D

it1Dju,

(MR
ij )

l
= Tr[Gµα

1 ρij(k1)γνΛ(p2)γµρij(p1)G
να
4 Λ(k2)]D

it1Djz2 ,

(MR
ij )

tu
= Tr[γµρij(k1)G

να
3 Λ(p2)G

µα
2 ρij(p1)γνΛ(k2)]D

itDju,

(MR
ij )

s
= Tr[γµρij(k1)γνΛ(p2)G

µα
2 ρij(p1)G

να
4 Λ(k2)]D

itDjz2 , (40)
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where

Λ(p) = p̂ + m, p̂ = γµpµ, (41)

Gµα
1 = γµ 2kα

1 − k̂γα

−z1
+

2kα
2 + γαk̂

z
γµ, (42)

Gµα
2 = γµ 2pα

1 − k̂γα

−v1
+

2pα
2 + γαk̂

v
γµ, (43)

Gνα
3 =

2kα
1 − γαk̂

−z1
γν + γν 2pα

2 + k̂γα

v
, (44)

Gνα
4 =

2pα
1 − γαk̂

−v1
γν + γν 2kα

2 + k̂γα

z
. (45)

Expressions for MR
ij for other values of i and j (e.g. {ij} = 22, 44, 24, 42, etc.) can be obtained from the symmetry

of expressions in Eq. (40):

(MR
24)zz = (MR

13)zz

∣

∣

k2↔p2

= (MR
13)zz

∣

∣

k2↔p2,k1↔p1

= (MR
13)vv

∣

∣

k1↔p1

= (MR
13)vv

∣

∣

t↔u
, (46)

and

(MR
24)vv = (MR

13)zz

∣

∣

t↔u
. (47)

Cases {ij} = 22, 44 are analyzed in a similar manner. The symmetry noted above is less apparent in the interference
terms (indices zv and vz):

(MR
24)zv + (MR

42)vz =
[

(MR
13)vz + (MR

31)zv

]∣

∣

∣

t↔u
(48)

and likewise for other parts in Eq. (32).

A. Infrared Divergences in Bremsstrahlung Contributions

Next we need to address the issue of the infrared divergences in the bremsstrahlung cross section. According to the
prescription of Bardin and Shumeiko [11], we find the infrared-divergent parts in the squares of the matrix elements
that are proportional to the corresponding Born contributions:

(MR
ij )

IR

zz
= 4(

m2

z2
+

m2

z2
1

+
t

zz1
)Mij , (49)

(MR
ij )

IR

zv
+ (MR

ij )
IR

vz
= 4(

u

zv1
+

s

zv
+

s

z1v1
+

u

z1v
)Mij ,

(MR
ij )

IR

vv
= 4(

m2

v2
1

+
m2

v2
+

t

v1v
)Mij ,

(MR
ij )

IR

f
= (

4m2

z2
1

+
2u

z1v
+

2t

zz1
+

2s

zv
)Mij ,

(MR
ij )

IR

l
= (

2s

z1v1
+

2t

z1z
+

2u

zv1
+

4m2

z2
)Mij ,

(MR
ij )

IR

tu
= (

2s

z1v1
+

2u

z1v
+

2t

vv1
+

4m2

v2
)Mij ,

(MR
ij )

IR

s
= (

4m2

v2
1

+
2u

v1z
+

2t

vv1
+

2s

vz
)Mij ,
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where

M11 = DγtDγtMγγγγ
e

M13 = DγtDZtMγZγZ
e

M31 = DγtDZtMZγZγ
e

M33 = DZtDZtMZZZZ
e

M12 = DγtDγuMγγγγ
o

M14 = DγtDZuMγZγZ
o

M32 = DγuDZtMZγZγ
o

M34 = DZtDZuMZZZZ
o . (50)

The complete R-contribution to the cross section is infrared-divergent, but can be separated into an infrared-infinite
part σR

IR and the finite part σR
F :

σR = σR
IR + σR

F . (51)

The IR-divergent part of the bremsstrahlung matrix elements, proportional to the Born contributions, can be con-
structed from Eq. (49) according to Eq. (32). The finite contribution to the cross section is then obtained by
subtraction

(MR
ij )

F
= MR

ij − (MR
ij )

IR
, (52)

The infrared-divergent part of Eq. (51), integrated over variables k and v is given in terms of a finite photon mass
λ by [20]

σR
IR =

2α

π
ln

(vmax)2

sλ2
(ln

tu

m2s
− 1)σ0 . (53)

The integration over the phase space of the bremsstrahlung photon is performed analytically, and integration over
variable v is done numerically due to complexity of the integral expressions. The photon phase space integral can be
written as [21]

I[A] =
1

π

∫

d3k

k0
δ[(k1 + p1 − k2 − k)2 − m2][A] =

1

π

tmax

1
∫

tmin

1

dt1

zmax

∫

zmin

dz√
Rz

[A], (54)

where Rz is the Gramm determinant (modulo −1), and can be parameterized as a second-order polynomial in z as

Rz = Azz
2 + 2Bzz + Cz . (55)

Coefficients Az , Bz, and Cz are given by the following expressions:

Az = 4m2t − (v − t)2,

Bz = Et1 + F

E = v(u − 2m2) − st, F = t(2m2v + st − sv),

Cz = −(At21 + 2Bt1 + C), (56)

A = (s − v)2 − 4m2s ,

B = −st(s − v − 4m2) − 2m2v2 ,

C = st2(s − 4m2) .

Integration limits zmin / max and t
min / max
1 are solutions of the equations Rz = 0 and zmin = zmax:

zmin / max =
−Bz ±

√

B2
z − AzCz

Az
(57)

t
min / max
1 =

v(t − v) + 2m2t ∓ v
√
−Az

2(v + m2)
(58)

This set of variables makes integration more convenient.

Expressions for (MR
ij )

F
are computed using symbolic manipulation program REDUCE [22] but are excessively complex

to be listed here. They are available as subroutines in the Fortran program rcAPV[29]. The relevant integrals, listed
in the Appendix of Ref. [7], were computed both analytically and numerically.
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V. CANCELLATION OF INFRARED SINGULARITIES

Adding infrared-divergent parts of V - and R-contributions given in Eq. (31) and Eq. (53)) together with the IR-finite
pieces, we obtain the finite expression for the radiatively-corrected cross section, free of non-physical parameters:

σ = σ0 + σC

σC = σV
IR + σR

IR + σR
F + σV er

F + σB
F (59)

=
α

π
(4 ln

vmax

m
√

s
(ln

tu

m2s
− 1) + δS

1 + δH
1 )σ0 + σV er

F + σB
F + σR

F ,

where

δS
1 = ln

s(s + t)

m4
− 1

2
lm ln

s2(s + t)2

−tm6
− 1

2
l2r − 2lrlm + lm − l2m − π3

3
+ 1,

δH
1 =

vmax
∫

0

dv
(

−2

v
ln(1 − v

s
) +

2

v
ln(1 − v

t
) +

2

v
ln(1 − v

s + t
) − 1

v
ln(1 +

v

m2
)

+
2

s + t − v
ln

s + t − v

m2
− 1

s − v
ln

(s − v)2

m2τ
− 1

v − t
ln

(v − t)2

m2τ
− 1

τ

)

,

lm = ln
−t

m2
, lr = ln

s + t

s
, τ ≡ v + m2, (60)

VI. RESULTS AND DISCUSSION

A. Numerical Results

In the following, we evaluate the effect of the bremsstrahlung radiative corrections on the parity-violating asymmetry
ALR in the scattering of the longitudinally polarized electrons off unpolarized target electrons. We consider the
kinematic conditions that correspond to the experimental setup of the SLAC E158 experiment [23], i.e. beam energies
of 45 and 48 GeV. E158 setup is such that the radiated photon is not detected. Moreover, the scattered electrons are
only detected if their energy is above the threshold E′ ≥ 11 GeV; this restriction limits the range of integration over
variable v as given in Eq. (37).

The relative corrections to the cross section and asymmetry can be defined as

δσ =
σ − σ0

σ0
, δA =

ALR − A0
LR

A0
LR

, (61)

where A0
LR is the Born asymmetry, and ALR is the radiatively corrected asymmetry.

The Born cross section σ0, the radiatively corrected cross sections σbrem (which includes only soft and hard
bremsstrahlung corrections and results of IR cancellation) and σQED (full QED corrections), as well as the asymmetry
ALR are shown as a function of variable y in Fig. 4 for beam energy of E = 45 GeV. Fig. 5 shows the double-differential
cross section d2σ/dE′/dy and the asymmetry ALR as a function of the scattered electron energy in the lab frame E′

for a fixed y = 0.5. This double-differential cross section is used to properly average the radiative corrections over
the experimental acceptance. The corrections to cross section and asymmetry are shown in Fig. 6. The numerical
precision of the corrections is about 0.1%.

We find that at fixed value of y = 0.5 and E = 45 GeV (Q2 = 0.023 GeV2), hard bremsstrahlung reduces the value
of the parity-violating asymmetry by ≈ 1%. Contribution from the γγ and γZ box diagrams is also negative and
reduces the asymmetry by ≈ 5%, so that the total QED correction at y = 0.5 and E = 45 GeV is −6.2%.

At fixed scattering angles, radiative effects move events towards lower values of y. Therefore, even though at a
fixed value of y = 0.5 the hard bremsstrahlung correction is negative, the net change of the asymmetry, integrated
over E158 acceptance −0.5 ≤ cosΘ ≤ 0 at E = 45 GeV is 〈δAbrem〉 ≈ +1%. The full QED correction, including γγ
and γZ boxes, is 〈δAQED〉 = −4.5%.
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FIG. 4: Differential cross section (left) and asymmetry ALR (right) as a function of y for beam energy E = 45 GeV. Dotted
line shows the Born cross section and asymmetry, effects of bremsstrahlung corrections are displayed by dashed lines, and the
solid line is the result of the full QED corrections. The plots are cut off at y ≈ 0.75 by the E158 spectrometer acceptance
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B. Factorization of QED Radiative Corrections and NLO Uncertainties

At leading order, corrections to the parity-violating asymmetry from the diagrams involving photons (i.e. soft and
hard bremsstrahlung, γγ and γZ boxes, and photonic vertex diagrams) are proportional to the product vZaZ . In the
OS scheme, these contributions are strictly proportional to the Born asymmetry. In other words, in the OS scheme,
the relative corrections to the asymmetry due to QED diagrams are independent of the weak mixing angle, and can
be factorized out. We can write

AQED
LR = A0(Q2, y)(1 + δAQED)

(

1 − 4 sin2 θW

)

(62)

where A0(Q2, y) is the Born analyzing power defined in Eq. (17) and δAQED is the relative radiative correction. For
E = 45 GeV and y = 0.5, full QED correction is δAQED = −0.061, and the average over E158 kinematics (beam
energies of 45 and 48 GeV and −0.5 ≤ cosΘ ≤ 0) is 〈δAQED〉E158 = −0.043.

Virtual corrections, such as vacuum polarization and box and vertex diagrams with heavy gauge bosons, are not
in general proportional to vZaZ , and spoil the simple factorization of Eq. (62). Nevertheless, one can relate the
leading-order asymmetry to the Born-level formula through the set of multiplicative and additive corrections:

ALR(Q2, y) = A0(Q2, y)ρ(Q2)(1 + δA(Q2, y))
(

1 − 4 sin2 θeff
W (Q2) + ∆(Q2)

)

. (63)

Here the effective mixing angle relevant for a scattering process at momentum transfer Q is defined through the
form-factor κ(Q2) (in OS scheme) or κ̂(Q2, µ2) (in MS scheme):

sin2 θeff
W (Q2) ≡ κ(Q2) sin2 θOS

W = κ̂(Q2, µ2) sin2 θ̂W (µ2) . (64)

In MS scheme, one typically chooses µ = mZ .
All corrections in Eq. (63) are of order O(α) but have a different physical meaning. The form-factor κ = 1 + O(α)

defines the momentum dependence (running) of the effective weak mixing angle. We would like to define it in a process-
independent way, such that various experimental measurements could be directly compared in terms of sin2 θeff

W .
Typically, κ includes contributions from γ −Z mixing and anapole moment diagrams (Fig. 2a-c) [5], but may include

other terms [24, 25]. In definition of Ref. [5], carried out in MS scheme with sin2 θ̂W (m2
Z) ≡ ŝ2 = 0.23120±0.00015 [2],

κ̂(Q2 = 0, µ2 = m2
Z) = 1.0298± 0.0026

The form-factor ρ(Q2) = 1 + O(α) is a low-energy ratio of the neutral weak coupling to the charge coupling. It
depends on the choice of the Fermi constant GF in Eq. (17); for GF derived from the muon-decay constant Gµ,
this correction is [5] ρ = 1.0012 ± 0.0005. ρ contains logarithmic dependence on the Higgs mass (we use mH =
113+56

−40 GeV [2]) and linear dependence on the top quark mass (mt = 177 ± 4 GeV [2]).

The remaining first-order corrections are included in Eq. (63) as factors δA(Q2, y) and ∆(Q2). ∆(Q2) typically
includes box diagrams with two heavy bosons, and δA(Q2, y) contains the kinematics-dependent factorizable QED
corrections computed in Section VI.

The only remaining question is evaluating the next-to-leading order correction uncertainties. Normally, NLO
corrections would be of order O(α) of the LO terms. However, we have to pay special attention to the logarithmically-
enhanced contributions in the γZ box diagrams, e.g. terms proportional to ln(m2

Z/s) in Eq. (29).
The effective Z0-electron coupling, Qw = −ρ(1−4 sin2 θW ) changes by about 40% between zero momentum transfer

and Z0 pole [5]. Since the box diagrams in Fig. 2 involve integration over internal momenta of the photon and Z0

propagators, a complete calculation of the box diagrams has to take into account the momentum dependence of Qw

and α. Strictly speaking, the momentum dependence of the weak or electromagnetic charges in the box integrals is
a next-to-leading order effect, and is beyond the scope of this work. However, a judicious choice of the coupling at
leading order could reduce the NLO corrections.

Czarnecki and Marciano [5] have argued that the NLO errors are reduced if the γZ box diagrams are evaluated in
MS scheme with the average value of the weak mixing angle

〈sin2 θW 〉 ≡ sin2 θW (0) + sin2 θW (m2
Z)

2
(65)

since the relevant integrals over the internal momentum k are dominated by the poles near k2 ∼ 0 and k2 ∼ m2
Z .

Similar arguments apply to the value of the fine structure constant in the γZ box diagrams. Thus, following the spirit
of this argument, we move the leading logarithmic contribution to the γZ box diagrams [5]

∆γZ(Q2) = −22

3

α(Q2)

4π

(

1 − 4 sin2 θW (Q2)
)

ln
m2

Z

s
(66)
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from the multiplicative correction δA(Q2, y) to the additive correction ∆(Q2). Moreover, we use the average value
〈∆γZ〉 ≡ (∆γZ(0) + ∆γZ(mZ))/2 in the expression for ∆(Q2), and treat the spread |∆γZ(0) − ∆γZ(mZ)|/2 as
an estimate of the NLO uncertainties. This choice keeps all of the experimental acceptance dependence in the
multiplicative correction 1 + δA(Q2, y), properly propagates the bremsstrahlung corrections, and reduces the overall
size of the theoretical uncertainties. For experimental kinematics of the E158 experiment, we find

δA(Q2, y) = 0.006 ± 0.005 , (67)

where the uncertainty is dominated by the possible variations of the experimental acceptance and numerical precision.
Employing the calculation of Ref. [5] for the terms κ̂ and ρ, the corresponding contributions from the WW and ZZ
box diagrams, and our definition of 〈∆γZ〉 term, the residual additive correction in Eq. (63) is

∆(Q2) = 〈∆γZ〉 +
α(m2

Z)

4πŝ2
− 3α(m2

Z)

32πŝ2(1 − ŝ2)
(1 − 4ŝ2)

[

1 + (1 − 4ŝ2)
]

= −0.0007± 0.0009 (68)

where the uncertainty is dominated by our conservative estimate of the NLO terms.
The fact that both corrections δA(Q2, y) and ∆(Q2) are small is somewhat accidental. δA(Q2, y) is dominated by

the bremsstrahlung contributions and the infrared parts of the γγ and γZ diagrams that happen to cancel each other
for the asymmetric acceptance of the E158 spectrometer. On the other hand, ∆(Q2) is small at the Q2 of E158 due to
the cancellation between the WW box diagrams and the large logarithmic contribution in the γZ box. Such precise
cancellation is not expected at lower momentum transfers, or for other processes, such as elastic ep scattering. For
example, at y = 0.5 and E = 12 GeV, which corresponds to the idealized kinematics for a proposed Møller scattering
experiments at the Jefferson Lab [26], the corrections would be

δA(Q2, y = 0.5)12 GeV = −0.024± 0.005 , ∆(Q2)12 GeV = −0.0011± 0.0010 . (69)

For a 250 GeV fixed target Møller experiment, e.g. at a future Linear Collider [27], one would find

δA(Q2, y = 0.5)250 GeV = −0.012 ± 0.005 , ∆(Q2)12 GeV = −0.0002± 0.0007 . (70)

VII. CONCLUSIONS

In conclusion, we have computed the QED corrections to the parity-violating left-right asymmetry ALR in Møller
scattering. We used a covariant method for removing infrared divergences without introducing unphysical cutoffs.
For the kinematics of the SLAC E158 experiment, the overall corrections appear to be small, due to a fortuitous
cancellation between electroweak and electromagnetic terms. We reduce the theoretical uncertainties due to higher
order logarithmic terms by the appropriate choice of the couplings used to compute the box diagram contributions.
Our calculation is applicable to a wide range of fixed target energies, from the proposed Møller scattering experiments
at 12 GeV at the Jefferson Lab [26], to the possible fixed target experiments at a future Linear Collider [27].
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