Evidence for $B^{+} \rightarrow \bar{K}^{0} K^{+}$and $B^{0} \rightarrow K^{0} \bar{K}^{0}$, and Measurement of the Branching Fraction and Search for Direct $\boldsymbol{C P}$ Violation in $\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{0} \boldsymbol{\pi}^{+}$

B. Aubert, ${ }^{1}$ R. Barate, ${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ E. Grauges, ${ }^{2}$ A. Palano, ${ }^{3}$ M. Pappagallo, ${ }^{3}$ A. Pompili, ${ }^{3}$ J. C. Chen, ${ }^{4}$ N. D. Qi, ${ }^{4}$ G. Rong, ${ }^{4}$ P. Wang, ${ }^{4}$ Y. S. Zhu, ${ }^{4}$ G. Eigen,,${ }^{5}$ I. Ofte, ${ }^{5}$ B. Stugu, ${ }^{5}$ G. S. Abrams, ${ }^{6}$ M. Battaglia, ${ }^{6}$ A. B. Breon, ${ }^{6}$ D. N. Brown, ${ }^{6}$ J. Button-Shafer, ${ }^{6}$ R. N. Cahn, ${ }^{6}$ E. Charles, ${ }^{6}$ C. T. Day, ${ }^{6}$ M. S. Gill, ${ }^{6}$ A. V. Gritsan, ${ }^{6}$ Y. Groysman, ${ }^{6}$ R. G. Jacobsen, ${ }^{6}$ R. W. Kadel, ${ }^{6}$ J. Kadyk, ${ }^{6}$ L. T. Kerth, ${ }^{6}$ Yu. G. Kolomensky, ${ }^{6}$ G. Kukartsev, ${ }^{6}$ G. Lynch, ${ }^{6}$ L. M. Mir, ${ }^{6}$ P. J. Oddone, ${ }^{6}$ T. J. Orimoto, ${ }^{6}$ M. Pripstein,,${ }^{6}$ N. A. Roe, ${ }^{6}$ M. T. Ronan, ${ }^{6}$ W. A. Wenzel, ${ }^{6}$ M. Barrett,,${ }^{7}$ K. E. Ford, ${ }^{7}$ T. J. Harrison, ${ }^{7}$ A. J. Hart, ${ }^{7}$ C. M. Hawkes, ${ }^{7}$ S. E. Morgan, ${ }^{7}$ A. T. Watson, ${ }^{7}$ M. Fritsch, ${ }^{8}$ K. Goetzen, ${ }^{8}$ T. Held, ${ }^{8}$ H. Koch, ${ }^{8}$ B. Lewandowski, ${ }^{8}$ M. Pelizaeus, ${ }^{8}$ K. Peters,,${ }^{8}$ T. Schroeder, ${ }^{8}$ M. Steinke, ${ }^{8}$ J. T. Boyd, ${ }^{9}$ J. P. Burke, ${ }^{9}$ N. Chevalier, ${ }^{9}$ W. N. Cottingham, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{10}$ B. G. Fulsom, ${ }^{10}$ C. Hearty, ${ }^{10}$ N. S. Knecht, ${ }^{10}$ T. S. Mattison, ${ }^{10}$ J. A. McKenna, ${ }^{10}$ A. Khan, ${ }^{11}$ P. Kyberd, ${ }^{11}$ M. Saleem, ${ }^{11}$ L. Teodorescu, ${ }^{11}$ A. E. Blinov, ${ }^{12}$ V. E. Blinov,,12 A. D. Bukin, ${ }^{12}$ V. P. Druzhinin, ${ }^{12}$ V. B. Golubev, ${ }^{12}$ E. A. Kravchenko, ${ }^{12}$ A. P. Onuchin, ${ }^{12}$ S. I. Serednyakov, ${ }^{12}$ Yu. I. Skovpen, ${ }^{12}$ E. P. Solodov, ${ }^{12}$ A. N. Yushkov, ${ }^{12}$ D. Best, ${ }^{13}$ M. Bondioli, ${ }^{13}$ M. Bruinsma,,13 M. Chao, ${ }^{13}$ S. Curry, ${ }^{13}$ I. Eschrich, ${ }^{13}$ D. Kirkby, ${ }^{13}$ A. J. Lankford, ${ }^{13}$ P. Lund,,${ }^{13}$ M. Mandelkern,,${ }^{13}$ R. K. Mommsen, ${ }^{13}$ W. Roethel, ${ }^{13}$ D. P. Stoker, ${ }^{13}$ C. Buchanan, ${ }^{14}$ B. L. Hartfiel, ${ }^{14}$ A. J. R. Weinstein, ${ }^{14}$ S. D. Foulkes, ${ }^{15}$ J. W. Gary, ${ }^{15}$ O. Long, ${ }^{15}$ B. C. Shen, ${ }^{15}$ K. Wang, ${ }^{15}$ L. Zhang, ${ }^{15}$ D. del Re, ${ }^{16}$ H. K. Hadavand, ${ }^{16}$ E. J. Hill, ${ }^{16}$ D. B. MacFarlane, ${ }^{16}$ H. P. Paar, ${ }^{16}$ S. Rahatlou, ${ }^{16}$ V. Sharma, ${ }^{16}$ J. W. Berryhill, ${ }^{17}$ C. Campagnari, ${ }^{17}$ A. Cunha, ${ }^{17}$ B. Dahmes, ${ }^{17}$ T. M. Hong,,17 M. A. Mazur, ${ }^{17}$ J. D. Richman, ${ }^{17}$ W. Verkerke, ${ }^{17}$ T. W. Beck, ${ }^{18}$ A. M. Eisner, ${ }^{18}$ C. J. Flacco, ${ }^{18}$ C. A. Heusch, ${ }^{18}$ J. Kroseberg, ${ }^{18}$ W. S. Lockman, ${ }^{18}$ G. Nesom, ${ }^{18}$ T. Schalk, ${ }^{18}$ B. A. Schumm, ${ }^{18}$ A. Seiden, ${ }^{18}$ P. Spradlin, ${ }^{18}$ D. C. Williams, ${ }^{18}$ M. G. Wilson, ${ }^{18}$ J. Albert, ${ }^{19}$ E. Chen, ${ }^{19}$ G. P. Dubois-Felsmann,,19 A. Dvoretskii, ${ }^{19}$ D. G. Hitlin, ${ }^{19}$ I. Narsky, ${ }^{19}$ T. Piatenko, ${ }^{19}$ F. C. Porter, ${ }^{19}$ A. Ryd, ${ }^{19}$ A. Samuel,,${ }^{19}$ R. Andreassen, ${ }^{20}$ S. Jayatilleke, ${ }^{20}$ G. Mancinelli, ${ }^{20}$ B. T. Meadows, ${ }^{20}$ M. D. Sokoloff, ${ }^{20}$ F. Blanc,,${ }^{21}$ P. Bloom, ${ }^{21}$ S. Chen, ${ }^{21}$ W. T. Ford, ${ }^{21}$ J. F. Hirschauer, ${ }^{21}$ A. Kreisel, ${ }^{21}$ U. Nauenberg, ${ }^{21}$ A. Olivas, ${ }^{21}$ P. Rankin, ${ }^{21}$ W. O. Ruddick, ${ }^{21}$ J. G. Smith, ${ }^{21}$ K. A. Ulmer, ${ }^{21}$ S. R. Wagner, ${ }^{21}$ J. Zhang, ${ }^{21}$ A. Chen, ${ }^{22}$ E. A. Eckhart,,${ }^{22}$ A. Soffer, ${ }^{22}$ W. H. Toki, ${ }^{22}$ R. J. Wilson, ${ }^{22}$ Q. Zeng, ${ }^{22}$ D. Altenburg, ${ }^{23}$ E. Feltresi, ${ }^{23}$ A. Hauke, ${ }^{23}$ B. Spaan, ${ }^{23}$ T. Brandt, ${ }^{24}$ J. Brose, ${ }^{24}$ M. Dickopp, ${ }^{24}$ V. Klose, ${ }^{24}$ H. M. Lacker, ${ }^{24}$ R. Nogowski, ${ }^{24}$ S. Otto, ${ }^{24}$ A. Petzold, ${ }^{24}$ G. Schott, ${ }^{24}$ J. Schubert, ${ }^{24}$ K. R. Schubert, ${ }^{24}$ R. Schwierz, ${ }^{24}$ J. E. Sundermann, ${ }^{24}$ D. Bernard, ${ }^{25}$ G. R. Bonneaud, ${ }^{25}$ P. Grenier, ${ }^{25}$ S. Schrenk, ${ }^{25}$ Ch. Thiebaux, ${ }^{25}$ G. Vasileiadis, ${ }^{25}$ M. Verderi, ${ }^{25}$ D. J. Bard, ${ }^{26}$ P. J. Clark, ${ }^{26}$ W. Gradl, ${ }^{26}$ F. Muheim, ${ }^{26}$ S. Playfer, ${ }^{26}$ Y. Xie, ${ }^{26}$ M. Andreotti, ${ }^{27}$ V. Azzolini, ${ }^{27}$ D. Bettoni, ${ }^{27}$ C. Bozzi, ${ }^{27}$ R. Calabrese, ${ }^{27}$ G. Cibinetto, ${ }^{27}$ E. Luppi, ${ }^{27}$ M. Negrini, ${ }^{27}$ L. Piemontese, ${ }^{27}$ F. Anulli, ${ }^{28}$ R. Baldini-Ferroli, ${ }^{28}$ A. Calcaterra, ${ }^{28}$ R. de Sangro, ${ }^{28}$ G. Finocchiaro, ${ }^{28}$ P. Patteri, ${ }^{28}$ I. M. Peruzzi, ${ }^{28, *}$ M. Piccolo, ${ }^{28}$ A. Zallo, ${ }^{28}$ A. Buzzo, ${ }^{29}$ R. Capra, ${ }^{29}$ R. Contri,,29 M. Lo Vetere, ${ }^{29}$ M. Macri, ${ }^{29}$ M. R. Monge, ${ }^{29}$ S. Passaggio, ${ }^{29}$ C. Patrignani, ${ }^{29}$ E. Robutti, ${ }^{29}$ A. Santroni, ${ }^{29}$ S. Tosi, ${ }^{29}$ G. Brandenburg, ${ }^{30}$ K. S. Chaisanguanthum, ${ }^{30}$ M. Morii, ${ }^{30}$ E. Won, ${ }^{30}$ J. Wu, ${ }^{30}$ R. S. Dubitzky, ${ }^{31}$ U. Langenegger,,${ }^{31}$ J. Marks, ${ }^{31}$ S. Schenk, ${ }^{31}$ U. Uwer, ${ }^{31}$ W. Bhimji, ${ }^{32}$ D. A. Bowerman, ${ }^{32}$ P. D. Dauncey, ${ }^{32}$ U. Egede, ${ }^{32}$ R. L. Flack,,${ }^{32}$ J. R. Gaillard, ${ }^{32}$ G. W. Morton, ${ }^{32}$ J. A. Nash,,${ }^{32}$ M. B. Nikolich, ${ }^{32}$ G. P. Taylor, ${ }^{32}$ W. P. Vazquez, ${ }^{32}$ M. J. Charles,,${ }^{33}$ W. F. Mader, ${ }^{33}$ U. Mallik, ${ }^{33}$ A. K. Mohapatra, ${ }^{33}$ J. Cochran, ${ }^{34}$ H. B. Crawley,,${ }^{34}$ V. Eyges, ${ }^{34}$ W. T. Meyer, ${ }^{34}$ S. Prell, ${ }^{34}$ E. I. Rosenberg, ${ }^{34}$ A. E. Rubin, ${ }^{34}$ J. Yi, ${ }^{34}$ N. Arnaud,,${ }^{35}$ M. Davier, ${ }^{35}$ X. Giroux, ${ }^{35}$ G. Grosdidier, ${ }^{35}$ A. Höcker, ${ }^{35}$ F. Le Diberder, ${ }^{35}$ V. Lepeltier, ${ }^{35}$ A. M. Lutz, ${ }^{35}$ A. Oyanguren, ${ }^{35}$ T. C. Petersen, ${ }^{35}$ M. Pierini, ${ }^{35}$ S. Plaszczynski, ${ }^{35}$ S. Rodier, ${ }^{35}$ P. Roudeau, ${ }^{35}$ M. H. Schune,,35 A. Stocchi, ${ }^{35}$ G. Wormser, ${ }^{35}$ C. H. Cheng, ${ }^{36}$ D. J. Lange, ${ }^{36}$ M. C. Simani, ${ }^{36}$ D. M. Wright, ${ }^{36}$ A. J. Bevan, ${ }^{37}$ C. A. Chavez, ${ }^{37}$ I. J. Forster, ${ }^{37}$ J. R. Fry, ${ }^{37}$ E. Gabathuler, ${ }^{37}$ R. Gamet, ${ }^{37}$ K. A. George, ${ }^{37}$ D. E. Hutchcroft, ${ }^{37}$ R. J. Parry, ${ }^{37}$ D. J. Payne, ${ }^{37}$ K. C. Schofield, ${ }^{37}$ C. Touramanis, ${ }^{37}$ C. M. Cormack, ${ }^{38}$ F. Di Lodovico, ${ }^{38}$ W. Menges, ${ }^{38}$ R. Sacco, ${ }^{38}$ C. L. Brown, ${ }^{39}$ G. Cowan, ${ }^{39}$ H. U. Flaecher, ${ }^{39}$ M. G. Green, ${ }^{39}$ D. A. Hopkins, ${ }^{39}$ P. S. Jackson, ${ }^{39}$ T. R. McMahon, ${ }^{39}$ S. Ricciardi, ${ }^{39}$ F. Salvatore, ${ }^{39}$ D. Brown, ${ }^{40}$ C. L. Davis, ${ }^{40}$ J. Allison, ${ }^{41}$ N. R. Barlow, ${ }^{41}$ R. J. Barlow, ${ }^{41}$ C. L. Edgar, ${ }^{41}$ M. C. Hodgkinson, ${ }^{41}$ M. P. Kelly, ${ }^{41}$ G. D. Lafferty, ${ }^{41}$

M. T. Naisbit, ${ }^{41}$ J. C. Williams, ${ }^{41}$ C. Chen, ${ }^{42}$ W. D. Hulsbergen, ${ }^{42}$ A. Jawahery, ${ }^{42}$ D. Kovalskyi, ${ }^{42}$ C. K. Lae, ${ }^{42}$ D. A. Roberts, ${ }^{42}$ G. Simi, ${ }^{42}$ G. Blaylock, ${ }^{43}$ C. Dallapiccola, ${ }^{43}$ S. S. Hertzbach, ${ }^{43}$ R. Kofler, ${ }^{43}$ V. B. Koptchev, ${ }^{43}$
X. Li, ${ }^{43}$ T. B. Moore, ${ }^{43}$ S. Saremi, ${ }^{43}$ H. Staengle, ${ }^{43}$ S. Willocq, ${ }^{43}$ R. Cowan, ${ }^{44}$ K. Koeneke, ${ }^{44}$ G. Sciolla, ${ }^{44}$ S. J. Sekula, ${ }^{44}$ M. Spitznagel, ${ }^{44}$ F. Taylor, ${ }^{44}$ R. K. Yamamoto, ${ }^{44}$ H. Kim,,${ }^{45}$ P. M. Patel, ${ }^{45}$ S. H. Robertson, ${ }^{45}$ A. Lazzaro, ${ }^{46}$ V. Lombardo, ${ }^{46}$ F. Palombo, ${ }^{46}$ J. M. Bauer, ${ }^{47}$ L. Cremaldi, ${ }^{47}$ V. Eschenburg, ${ }^{47}$ R. Godang, ${ }^{47}$ R. Kroeger, ${ }^{47}$ J. Reidy, ${ }^{47}$ D. A. Sanders, ${ }^{47}$ D. J. Summers, ${ }^{47}$ H. W. Zhao, ${ }^{47}$ S. Brunet, ${ }^{48}$ D. Côté, ${ }^{48}$ P. Taras, ${ }^{48}$ B. Viaud, ${ }^{48}$ H. Nicholson,,49 N. Cavallo, ${ }^{50, ~} \dagger$ G. De Nardo, ${ }^{50}$ F. Fabozzi, ${ }^{50, ~} \dagger$ C. Gatto, ${ }^{50}$ L. Lista,,${ }^{50}$ D. Monorchio,,${ }^{50}$ P. Paolucci,,${ }^{50}$ D. Piccolo, ${ }^{50}$ C. Sciacca,,${ }^{50}$ M. Baak, ${ }^{51}$ H. Bulten, ${ }^{51}$ G. Raven, ${ }^{51}$ H. L. Snoek, ${ }^{51}$ L. Wilden, ${ }^{51}$ C. P. Jessop, ${ }^{52}$ J. M. LoSecco, ${ }^{52}$ T. Allmendinger, ${ }^{53}$ G. Benelli, ${ }^{53}$ K. K. Gan, ${ }^{53}$ K. Honscheid, ${ }^{53}$ D. Hufnagel, ${ }^{53}$ P. D. Jackson, ${ }^{53}$ H. Kagan, ${ }^{53}$ R. Kass, ${ }^{53}$ T. Pulliam, ${ }^{53}$ A. M. Rahimi, ${ }^{53}$ R. Ter-Antonyan, ${ }^{53}$ Q. K. Wong, ${ }^{53}$ J. Brau, ${ }^{54}$ R. Frey, ${ }^{54}$ O. Igonkina, ${ }^{54}$ M. Lu, ${ }^{54}$ C. T. Potter, ${ }^{54}$ N. B. Sinev, ${ }^{54}$ D. Strom,,${ }^{54}$ J. Strube, ${ }^{54}$ E. Torrence, ${ }^{54}$ F. Galeazzi, ${ }^{55}$ M. Margoni, ${ }^{55}$ M. Morandin, ${ }^{55}$ M. Posocco, ${ }^{55}$ M. Rotondo, ${ }^{55}$ F. Simonetto, ${ }^{55}$ R. Stroili, ${ }^{55}$ C. Voci,,${ }^{55}$ M. Benayoun, ${ }^{56}$ H. Briand,,${ }^{56}$ J. Chauveau, ${ }^{56}$ P. David, ${ }^{56}$ L. Del Buono, ${ }^{56}$ Ch. de la Vaissière, ${ }^{56}$ O. Hamon,,${ }^{56}$ M. J. J. John,,${ }^{56}$ Ph. Leruste, ${ }^{56}$ J. Malclès,,${ }^{56}$ J. Ocariz, ${ }^{56}$ L. Roos, ${ }^{56}$ G. Therin, ${ }^{56}$ P. K. Behera, ${ }^{57}$ L. Gladney, ${ }^{57}$ Q. H. Guo, ${ }^{57}$ J. Panetta, ${ }^{57}$ M. Biasini, ${ }^{58}$ R. Covarelli, ${ }^{58}$ S. Pacetti, ${ }^{58}$ M. Pioppi, ${ }^{58}$ C. Angelini,,${ }^{59}$ G. Batignani, ${ }^{59}$ S. Bettarini, ${ }^{59}$ F. Bucci, ${ }^{59}$ G. Calderini, ${ }^{59}$ M. Carpinelli, ${ }^{59}$ R. Cenci, ${ }^{59}$ F. Forti, ${ }^{59}$ M. A. Giorgi, ${ }^{59}$ A. Lusiani, ${ }^{59}$ G. Marchiori, ${ }^{59}$ M. Morganti, ${ }^{59}$ N. Neri, ${ }^{59}$ E. Paoloni, ${ }^{59}$ M. Rama, ${ }^{59}$ G. Rizzo, ${ }^{59}$ J. Walsh, ${ }^{59}$ M. Haire, ${ }^{60}$ D. Judd, ${ }^{60}$ D. E. Wagoner, ${ }^{60}$ J. Biesiada, ${ }^{61}$ N. Danielson, ${ }^{61}$ P. Elmer, ${ }^{61}$ Y. P. Lau, ${ }^{61}$ C. Lu, ${ }^{61}$ J. Olsen, ${ }^{61}$ A. J. S. Smith, ${ }^{61}$ A. V. Telnov, ${ }^{61}$ F. Bellini, ${ }^{62}$ G. Cavoto, ${ }^{62}$ A. D'Orazio, ${ }^{62}$ E. Di Marco, ${ }^{62}$ R. Faccini, ${ }^{62}$ F. Ferrarotto, ${ }^{62}$ F. Ferroni, ${ }^{62}$ M. Gaspero, ${ }^{62}$ L. Li Gioi, ${ }^{62}$ M. A. Mazzoni, ${ }^{62}$ S. Morganti, ${ }^{62}$ G. Piredda, ${ }^{62}$ F. Polci,,${ }^{62}$ F. Safai Tehrani, ${ }^{62}$ C. Voena, ${ }^{62}$ H. Schröder, ${ }^{63}$ G. Wagner, ${ }^{63}$ R. Waldi, ${ }^{63}$ T. Adye, ${ }^{64}$ N. De Groot, ${ }^{64}$ B. Franek, ${ }^{64}$ G. P. Gopal, ${ }^{64}$ E. O. Olaiya, ${ }^{64}$ F. F. Wilson, ${ }^{64}$ R. Aleksan, ${ }^{65}$ S. Emery, ${ }^{65}$ A. Gaidot, ${ }^{65}$ S. F. Ganzhur, ${ }^{65}$ P.-F. Giraud, ${ }^{65}$ G. Graziani, ${ }^{65}$ G. Hamel de Monchenault, ${ }^{65}$ W. Kozanecki, ${ }^{65}$ M. Legendre,,${ }^{65}$ G. W. London, ${ }^{65}$ B. Mayer, ${ }^{65}$ G. Vasseur, ${ }^{65}$ Ch. Yèche, ${ }^{65}$ M. Zito, ${ }^{65}$ M. V. Purohit, ${ }^{66}$ A. W. Weidemann, ${ }^{66}$ J. R. Wilson, ${ }^{66}$ F. X. Yumiceva, ${ }^{66}$ T. Abe, ${ }^{67}$ M. T. Allen,,${ }^{67}$ D. Aston, ${ }^{67}$ N. Bakel, ${ }^{67}$ R. Bartoldus, ${ }^{67}$ N. Berger, ${ }^{67}$ A. M. Boyarski, ${ }^{67}$ O. L. Buchmueller, ${ }^{67}$ R. Claus, ${ }^{67}$ J. P. Coleman, ${ }^{67}$ M. R. Convery, ${ }^{67}$ M. Cristinziani, ${ }^{67}$ J. C. Dingfelder, ${ }^{67}$ D. Dong, ${ }^{67}$ J. Dorfan, ${ }^{67}$ D. Dujmic,,${ }^{67}$ W. Dunwoodie, ${ }^{67}$ S. Fan, ${ }^{67}$ R. C. Field, ${ }^{67}$ T. Glanzman,,${ }^{67}$ S. J. Gowdy, ${ }^{67}$ T. Hadig, ${ }^{67}$ V. Halyo, ${ }^{67}$ C. Hast, ${ }^{67}$ T. Hryn'ova,,${ }^{67}$ W. R. Innes, ${ }^{67}$ M. H. Kelsey, ${ }^{67}$ P. Kim, ${ }^{67}$ M. L. Kocian, ${ }^{67}$ D. W. G. S. Leith, ${ }^{67}$ J. Libby, ${ }^{67}$ S. Luitz, ${ }^{67}$ V. Luth, ${ }^{67}$ H. L. Lynch, ${ }^{67}$ H. Marsiske, ${ }^{67}$ R. Messner, ${ }^{67}$ D. R. Muller, ${ }^{67}$ C. P. O'Grady, ${ }^{67}$ V. E. Ozcan, ${ }^{67}$ A. Perazzo, ${ }^{67}$ M. Perl, ${ }^{67}$ B. N. Ratcliff, ${ }^{67}$ A. Roodman, ${ }^{67}$ A. A. Salnikov, ${ }^{67}$ R. H. Schindler, ${ }^{67}$ J. Schwiening, ${ }^{67}$ A. Snyder, ${ }^{67}$ J. Stelzer, ${ }^{67}$ D. Su, ${ }^{67}$ M. K. Sullivan, ${ }^{67}$ K. Suzuki, ${ }^{67}$ S. Swain, ${ }^{67}$ J. M. Thompson, ${ }^{67}$ J. Va'vra, ${ }^{67}$ M. Weaver, ${ }^{67}$ W. J. Wisniewski, ${ }^{67}$ M. Wittgen, ${ }^{67}$ D. H. Wright, ${ }^{67}$ A. K. Yarritu, ${ }^{67}$ K. Yi, ${ }^{67}$ C. C. Young, ${ }^{67}$ P. R. Burchat, ${ }^{68}$ A. J. Edwards, ${ }^{68}$ S. A. Majewski, ${ }^{68}$ B. A. Petersen, ${ }^{68}$ C. Roat,,${ }^{68}$ M. Ahmed, ${ }^{69}$ S. Ahmed, ${ }^{69}$ M. S. Alam, ${ }^{69}$ J. A. Ernst, ${ }^{69}$ M. A. Saeed, ${ }^{69}$ F. R. Wappler, ${ }^{69}$ S. B. Zain, ${ }^{69}$ W. Bugg, ${ }^{70}$ M. Krishnamurthy, ${ }^{70}$ S. M. Spanier, ${ }^{70}$ R. Eckmann, ${ }^{71}$ J. L. Ritchie, ${ }^{71}$ A. Satpathy, ${ }^{71}$ R. F. Schwitters, ${ }^{71}$ J. M. Izen, ${ }^{72}$ I. Kitayama, ${ }^{72}$ X. C. Lou, ${ }^{72}$ S. Ye, ${ }^{72}$ F. Bianchi, ${ }^{73}$ M. Bona, ${ }^{73}$ F. Gallo, ${ }^{73}$ D. Gamba, ${ }^{73}$ M. Bomben, ${ }^{74}$ L. Bosisio, ${ }^{74}$ C. Cartaro, ${ }^{74}$ F. Cossutti, ${ }^{74}$ G. Della Ricca, ${ }^{74}$ S. Dittongo, ${ }^{74}$ S. Grancagnolo, ${ }^{74}$ L. Lanceri, ${ }^{74}$ L. Vitale, ${ }^{74}$ F. Martinez-Vidal, ${ }^{75}$ R. S. Panvini,,${ }^{76, \ddagger}$ Sw. Banerjee, ${ }^{77}$ B. Bhuyan, ${ }^{77}$ C. M. Brown, ${ }^{77}$ D. Fortin, ${ }^{77}$ K. Hamano, ${ }^{77}$ R. Kowalewski, ${ }^{77}$ J. M. Roney, ${ }^{77}$ R. J. Sobie, ${ }^{77}$ J. J. Back, ${ }^{78}$ P. F. Harrison, ${ }^{78}$ T. E. Latham, ${ }^{78}$ G. B. Mohanty, ${ }^{78}$ H. R. Band, ${ }^{79}$ X. Chen, ${ }^{79}$ B. Cheng, ${ }^{79}$ S. Dasu, ${ }^{79}$ M. Datta, ${ }^{79}$ A. M. Eichenbaum, ${ }^{79}$ K. T. Flood, ${ }^{79}$ M. Graham, ${ }^{79}$ J. J. Hollar, ${ }^{79}$ J. R. Johnson, ${ }^{79}$ P. E. Kutter, ${ }^{79}$ H. Li, ${ }^{79}$ R. Liu, ${ }^{79}$ B. Mellado, ${ }^{79}$ A. Mihalyi, ${ }^{79}$ Y. Pan, ${ }^{79}$ R. Prepost, ${ }^{79}$ P. Tan, ${ }^{79}$ J. H. von Wimmersperg-Toeller, ${ }^{79}$ S. L. Wu, ${ }^{79}$ Z. Yu, ${ }^{79}$ and H. Neal ${ }^{80}$
(The BABAR Collaboration)

[^0]${ }^{11}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{12}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{13}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{14}$ University of California at Los Angeles, Los Angeles, California 90024, USA
${ }^{15}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{16}$ University of California at San Diego, La Jolla, California 92093, USA
${ }^{17}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{18}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
${ }^{19}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{20}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{21}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{22}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{23}$ Universität Dortmund, Institut fur Physik, D-44221 Dortmund, Germany
${ }^{24}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
${ }^{25}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France
${ }^{26}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{27}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
${ }^{28}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{29}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
${ }^{30}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{31}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{32}$ Imperial College London, London, SW7 2AZ, United Kingdom
${ }^{33}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{34}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{35}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
${ }^{36}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{37}$ University of Liverpool, Liverpool L69 72E, United Kingdom
${ }^{38}$ Queen Mary, University of London, E1 4NS, United Kingdom
${ }^{39}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom ${ }^{40}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{41}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{42}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{43}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{44}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
${ }^{45} \mathrm{Mc}$ Gill University, Montréal, Quebec, Canada H3A $2 T 8$
${ }^{46}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
${ }^{47}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{48}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, Quebec, Canada H3C 3J7
${ }^{49}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{50}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
${ }^{51}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{52}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{53}$ Ohio State University, Columbus, Ohio 43210, USA
${ }^{54}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{55}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
${ }^{56}$ Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
${ }^{57}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{58}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
${ }^{59}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
${ }^{60}$ Prairie View A ${ }^{61}$ M University, Prairie View, Texas 77446, USA
${ }^{61}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{62}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
${ }^{63}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{64}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 OQX, United Kingdom
${ }^{65}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{66}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{67}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{68}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{69}$ State University of New York, Albany, New York 12222, USA
${ }^{70}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{71}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{72}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{73}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
${ }^{74}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy

${ }^{75}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
${ }^{76}$ Vanderbilt University, Nashville, Tennessee 37235, USA
${ }^{77}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{78}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{79}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{80}$ Yale University, New Haven, Connecticut 06511, USA

Abstract

We present evidence for the $b \rightarrow d$ penguin-dominated decays $B^{+} \rightarrow \bar{K}^{0} K^{+}$and $B^{0} \rightarrow K^{0} \bar{K}^{0}$ with significances of 3.5 and 4.5 standard deviations, respectively. The results are based on a sample of 227 million $\Upsilon(4 S) \rightarrow B \bar{B}$ decays collected with the BABAR detector at the PEP-II asymmetricenergy $e^{+} e^{-}$collider at SLAC. We measure the branching fractions $\mathcal{B}\left(B^{+} \rightarrow \bar{K}^{0} K^{+}\right)=(1.5 \pm$ $0.5 \pm 0.1) \times 10^{-6}\left(<2.4 \times 10^{-6}\right)$ and $\mathcal{B}\left(B^{0} \rightarrow K^{0} \bar{K}^{0}\right)=\left(1.19_{-0.35}^{+0.40} \pm 0.13\right) \times 10^{-6}$, where the uncertainties are statistical and systematic, respectively, and the upper limit on the branching fraction for $\bar{K}^{0} K^{+}$is at the 90% confidence level. We also present improved measurements of the charge-averaged branching fraction $\mathcal{B}\left(B^{+} \rightarrow K^{0} \pi^{+}\right)=(26.0 \pm 1.3 \pm 1.0) \times 10^{-6}$ and $C P$-violating charge asymmetry $\mathcal{A}_{C P}\left(K^{0} \pi^{+}\right)=-0.09 \pm 0.05 \pm 0.01$, where the uncertainties are statistical and systematic, respectively.

PACS numbers: $13.25 . \mathrm{Hw}, 11.30 . \mathrm{Er}, 12.15 . \mathrm{Hh}$

Flavor-changing neutral currents are forbidden at first order in the standard model, but can proceed through weak interactions that are described by one-loop "penguin" diagrams. Such decay processes were first established in the B system more than a decade ago through observation of the radiative decay $B \rightarrow K^{*} \gamma[1]$, which is dominated by the $b \rightarrow s \gamma$ electromagnetic-penguin amplitude. Recently, the analogous gluonic-penguin process $b \rightarrow s g(g \rightarrow s \bar{s})$ has been used extensively to test the standard model predictions for the $C P$-violating asymmetry amplitudes of decay modes such as $B^{0} \rightarrow \phi K_{S}^{0}$ [2]. To date, no direct evidence has been found for decays dominated by the corresponding $b \rightarrow d g$ transition, whose amplitude is suppressed relative to that for the $b \rightarrow s g$ process by the small ratio $V_{\mathrm{td}} / V_{\mathrm{ts}}$ involving elements of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix [3]. Such decays could play an important complementary role in the search for new physics in the B system.

In this Letter, we report evidence for the decays $B^{+} \rightarrow$ $\bar{K}^{0} K^{+}$and $B^{0} \rightarrow K^{0} \bar{K}^{0}$, which are expected to be dominated by the $b \rightarrow d g(g \rightarrow s \bar{s})$ penguin diagram, and an updated measurement of the branching fraction and direct $C P$-violating charge asymmetry for $B^{+} \rightarrow K^{0} \pi^{+}$ (the use of charge conjugate modes is implied throughout this paper unless otherwise stated). Our previous search for the $K \bar{K}^{0}$ modes yielded branching-fraction upper limits at the level of 2×10^{-6} [4], which are consistent with recent theoretical estimates based on perturbative calculations [5], as well as the lower bounds implied by $S U(3)$ symmetry [6].

Once the decay $B^{0} \rightarrow K^{0} \bar{K}^{0}$ has been established, a measurement of its time-dependent $C P$-violating asymmetry (through the technique described in Ref. [7]) could provide important constraints on physics beyond the standard model. Assuming top-quark dominance in the penguin loop, the asymmetry is expected to vanish in the standard model [8], while contributions from super-
symmetric particles could be significant [9]. Although soft rescattering effects could weaken the sensitivity to new physics in this mode [10], the ratio of decay rates for $B^{+} \rightarrow \bar{K}^{0} K^{+}, K^{0} \pi^{+}$can be used to constrain the relative size of such effects [11].

Recent measurements of the partial-rate asymmetry in $B^{0} \rightarrow K^{+} \pi^{-}$decays by the BABAR [12] and Belle [13] experiments have established direct $C P$ violation in the B system. In this Letter, we search for direct $C P$ violation in the decays $B^{+} \rightarrow K^{0} \pi^{+}, \bar{K}^{0} K^{+}$through measurement of the charge asymmetry

$$
\mathcal{A}_{C P}=\frac{\Gamma\left(B^{-} \rightarrow f^{-}\right)-\Gamma\left(B^{+} \rightarrow f^{+}\right)}{\Gamma\left(B^{-} \rightarrow f^{-}\right)+\Gamma\left(B^{+} \rightarrow f^{+}\right)}
$$

where $f^{ \pm}=K_{S}^{0} \pi^{ \pm}, K_{S}^{0} K^{ \pm}$. The decay $B^{-} \rightarrow \bar{K}^{0} \pi^{-}$ is dominated by the $b \rightarrow s$ penguin process and, neglecting rescattering effects [11], is expected to yield $\mathcal{A}_{C P} \sim 1 \%[5,14]$. Observation of a significant charge asymmetry could therefore indicate new physics entering the penguin loop [15]. The decay rate and charge asymmetry in $K_{S}^{0} \pi^{+}$can also be used to constrain the angle γ of the unitarity triangle [16].

The data sample used in this analysis contains (226.6土 $2.5) \times 10^{6} \Upsilon(4 S) \rightarrow B \bar{B}$ decays collected by the $B A B A R$ detector [17] at the SLAC PEP-II asymmetric-energy $e^{+} e^{-}$collider. The primary detector elements used in this analysis are a charged-particle tracking system consisting of a five-layer silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH) surrounded by a $1.5-\mathrm{T}$ solenoidal magnet, and a dedicated particle-identification system consisting of a detector of internally reflected Cherenkov light (DIRC).

We identify two separate event samples corresponding to the decay topologies $B^{0} \rightarrow K_{S}^{0} K_{S}^{0}$ and $B^{+} \rightarrow K_{S}^{0} h^{+}$, where $h^{ \pm}$is either a pion or a kaon. Neutral kaons are reconstructed in the mode $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$by combining pairs of oppositely charged tracks originating from a common decay point and having a $\pi^{+} \pi^{-}$invariant mass within
$11.2 \mathrm{MeV} / c^{2}$ of the nominal K_{S}^{0} mass [18]. To reduce combinatorial background, we require the measured proper decay time of the K_{S}^{0} to be greater than five times its uncertainty. Candidate h^{+}tracks are assigned the pion mass and are required to originate from the interaction region and to have an associated Cherenkov angle $\left(\theta_{c}\right)$ measurement with at least six signal photons detected in the DIRC. To reduce backgrounds from protons and leptons, we require θ_{c} to be within 4 standard deviations (σ) of the expectation for either the pion or kaon particle hypothesis. The B^{0} sample is formed by combining pairs of K_{S}^{0} candidates, while the B^{+}sample is formed by combining K_{S}^{0} and h^{+}candidates.

We exploit the unique kinematic and topological features of charmless two-body B decays to suppress the dominant background arising from the process $e^{+} e^{-} \rightarrow$ $q \bar{q}(q=u, d, s, c)$. For each B^{0} candidate, we require the difference ΔE between its reconstructed center-ofmass (CM) energy and the beam energy ($\sqrt{s} / 2$) to be less than 100 MeV . For B^{+}candidates, we require $-115<\Delta E<75 \mathrm{MeV}$, where the lower limit accounts for an average shift in ΔE of -45 MeV in the $\bar{K}^{0} K^{+}$mode due to the assignment of the pion mass to the K^{+}. We also define a beam-energy substituted mass $m_{\mathrm{ES}} \equiv \sqrt{\left(s / 2+\mathbf{p}_{i} \cdot \mathbf{p}_{B}\right)^{2} / E_{i}^{2}-\mathbf{p}_{B}^{2}}$, where the B candidate momentum \mathbf{p}_{B} and the four-momentum of the initial $e^{+} e^{-}$state $\left(E_{i}, \mathbf{p}_{i}\right)$ are calculated in the laboratory frame. We require $5.20<m_{\mathrm{ES}}<5.29 \mathrm{GeV} / c^{2}$ for B candidates in both samples. To suppress the jet-like $q \bar{q}$ background, we calculate the CM angle θ_{S}^{*} between the sphericity axis of the B candidate and the sphericity axis of the remaining charged and neutral particles in the event, and require $\left|\cos \left(\theta_{S}^{*}\right)\right|<0.8$.

After applying all of the above requirements, we find 1939 (20441) candidates in the $B^{0}\left(B^{+}\right)$samples, respectively. The fraction of events containing more than one B candidate is negligible ($<0.5 \%$). The total detection efficiencies are given in Table I and include the branching fraction for $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$[18] and a probability of 50% for $K^{0} \bar{K}^{0} \rightarrow K_{S}^{0} K_{S}^{0}$ [19]. We use data and simulated Monte Carlo samples [20] to verify that backgrounds from other B decays are negligible. The selected samples are therefore assumed to be composed of signal B decays and background candidates arising from random combinations of tracks and K_{S}^{0} mesons in $q \bar{q}$ events.

To determine signal yields in each sample, we apply separate unbinned maximum-likelihood fits incorporating discriminating variables that account for differences between $B \bar{B}$ and $q \bar{q}$ events. In addition to the kinematic variables m_{ES} and ΔE, we include a Fisher discriminant \mathcal{F} [21] defined as an optimized linear combination of the event-shape variables $\sum_{i} p_{i}^{*}$ and $\sum_{i} p_{i}^{*} \cos ^{2}\left(\theta_{i}^{*}\right)$, where p_{i}^{*} is the CM momentum of particle i, θ_{i}^{*} is the CM angle between the momentum of particle i and the B-candidate thrust axis, and the sum is over all particles in the event excluding the B daughters.

The likelihood function to be maximized is defined as

$$
\mathcal{L}=\exp \left(-\sum_{i} n_{i}\right) \prod_{j=1}^{N}\left[\sum_{i} n_{i} \mathcal{P}_{i}\right]
$$

where n_{i} and \mathcal{P}_{i} are the yield and probability density function (PDF) for each component i in the fit, and N is the total number of events in the sample. For the B^{0} sample there are only two components (signal and background), and the total PDF is calculated as the product of the individual PDFs for $m_{\mathrm{ES}}, \Delta E$, and \mathcal{F}. We combine B^{+}and B^{-}candidates in a single fit and include the PDF for θ_{c} to determine separate yields and charge asymmetries for the two signal components, $K_{S}^{0} \pi$ and $K_{S}^{0} K$, and two corresponding background components. For both signal and background, the $K_{S}^{0} h^{ \pm}$yields are parameterized as $n_{ \pm}=n\left(1 \mp \mathcal{A}_{C P}\right) / 2$; we fit directly for the total yield n and the charge asymmetry $\mathcal{A}_{C P}$.

The parameterizations of the PDFs are determined from data wherever possible. For the B^{+}sample, the large signal $K_{S}^{0} \pi^{+}$component allows for an accurate determination of the peak positions for m_{ES} and ΔE, as well as the parameters describing the shape of the PDF for \mathcal{F}. We therefore allow these parameters to vary freely in the fit. The remaining shape parameters describing m_{ES} and ΔE are determined from simulated Monte Carlo samples and are fixed in the fit. Except for the mean value of ΔE, which is shifted by our use of the pion mass hypothesis for the h^{+}candidate, we use the $K_{S}^{0} \pi^{+}$ parameters to describe signal $K_{S}^{0} K^{+}$decays. The parameters describing the background PDFs in m_{ES} and \mathcal{F} are allowed to vary freely in the fit, while the ΔE parameters are determined in the signal-free region of m_{ES} ($5.20<m_{\mathrm{ES}}<5.26 \mathrm{GeV} / c^{2}$) and fixed in the fit. For both signal and background, the θ_{c} PDFs are obtained from a sample of $D^{*+} \rightarrow D^{0} \pi^{+}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$decays reconstructed in data, as described in Ref. [12]. For the B^{0} sample, all shape parameters describing the signal PDFs are fixed to the values determined from Monte Carlo simulation, while the peak positions for m_{ES} and ΔE are derived from the results of the fit to the B^{+} sample. We allow the background \mathcal{F} shape parameters to vary freely, while the PDF parameters for m_{ES} and ΔE are fixed to the values determined from data in the signal-free regions $100<|\Delta E|<300 \mathrm{MeV}$ (for m_{ES}) and $5.20<m_{\mathrm{ES}}<5.26 \mathrm{GeV} / c^{2}$ (for ΔE).

Several cross-checks were performed to validate the fitting technique before data in the signal region were examined. We confirmed the internal self-consistency of the fitting algorithm by generating and fitting a large set of pseudo-experiments where signal and background events were generated randomly from the PDFs with yields corresponding to the expected values based on our previous analysis of these modes [4]. The fitted signal yields for all three modes were unbiased. Correlations among the discriminating variables in background data events

TABLE I: Summary of results for the total detection efficiencies ε, fitted signal yields n, signal-yield significances s (including systematic uncertainty), charge-averaged branching fractions \mathcal{B}, and charge asymmetries $\mathcal{A}_{C P}$ (including 90% confidence intervals). The efficiencies include the branching fraction for $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$and the probability of 50% for $K^{0} \bar{K}^{0} \rightarrow K_{S}^{0} K_{S}^{0}$. Branching fractions are calculated assuming equal rates for $\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$[22]. For $\bar{K}^{0} K^{+}$, we give both the central value of the branching fraction and, in parentheses, the 90% confidence-level (CL) upper limit.

Mode	$\varepsilon(\%)$	n	$s(\sigma)$	$\mathcal{B}\left(10^{-6}\right)$	$\mathcal{A}_{C P}$	$\mathcal{A}_{C P}(90 \% \mathrm{CL})$
$B^{+} \rightarrow K^{0} \pi^{+}$	12.6 ± 0.3	$744_{-36}^{+37}+21$		$26.0 \pm 1.3 \pm 1.0$	$-0.09 \pm 0.05 \pm 0.01$	$[-0.16,-0.02]$
$B^{+} \rightarrow \bar{K}^{0} K^{+}$	12.5 ± 0.3	41_{-13}^{+5+2}	3.5	$1.5 \pm 0.5 \pm 0.1(<2.4)$	$0.15 \pm 0.33 \pm 0.03$	$[-0.43,0.68]$
$B^{0} \rightarrow K^{0} \bar{K}^{0}$	8.5 ± 0.6	$23_{-7}^{+8} \pm 2$	4.5	$1.19_{-0.35}^{+0.40} \pm 0.13$		

are found to be negligible. To check for residual correlations between the discriminating variables in signal events, we performed a second test for the $K_{S}^{0} K_{S}^{0}$ mode where simulated Monte Carlo samples of signal events were mixed with background events generated directly from the PDFs. We observed an average bias corresponding to approximately one event and include this effect in the systematic uncertainty on the fitted $K_{S}^{0} K_{S}^{0}$ yield. Potential $K_{S}^{0} \pi \rightarrow K_{S}^{0} K$ cross-feed was evaluated by fitting large samples of simulated Monte Carlo signal events. The resulting small $(<0.5 \%)$ biases are included in the systematic uncertainty on the fitted yields.

The fit results supersede our previous measurements of these quantities and are summarized in Table I. The signal yields for $B^{+} \rightarrow K_{S}^{0} K^{+}$and $B^{0} \rightarrow K_{S}^{0} K_{S}^{0}$ correspond to significances of 3.5σ and 4.5σ (including systematic uncertainties [23]), respectively, and are consistent with our previous results [4], as well as with the results of other experiments [24]. The signal yield for $B^{+} \rightarrow K_{S}^{0} \pi^{+}$ is somewhat higher than expected from our previous result. A re-analysis of the first 88 million $B \bar{B}$ events yields $285 \pm 21 K_{S}^{0} \pi^{+}$signal events, compared with 255 ± 20 reported in Ref. [4]. Approximately half of this difference is due to reprocessing of the data with improved calibration constants. The remaining difference is due to improved knowledge of the PDF parameters, which were the largest source of systematic uncertainty for the previous result. We find 459 ± 29 events in the remaining 139 million $B \bar{B}$ events, which is consistent with the signal yield obtained in the first part of the sample.

For the $K_{S}^{0} K^{+}$mode, we compute an upper limit on the signal yield as the value of n_{0} for which $\int_{0}^{n_{0}} \mathcal{L}_{\text {max }} \mathrm{d} n / \int_{0}^{\infty} \mathcal{L}_{\text {max }} \mathrm{d} n=0.9$, where $\mathcal{L}_{\text {max }}$ is the likelihood as a function of n, maximized with respect to the remaining free parameters. The corresponding branchingfraction upper limit is calculated by increasing n_{0} and reducing the efficiency by their respective systematic uncertainties.

We compare data and PDFs in the high-statistics $K_{S}^{0} \pi^{+}$mode using the event-weighting technique described in Ref. [25]. For the plots in Figs. 1 (a,b), we perform a fit excluding the variable being shown; the
covariance matrix and remaining PDFs are used to determine a weight that each event is either signal (main plot) or background (inset). The resulting distributions (points with errors) are normalized to the appropriate yield and can be directly compared with the PDFs (solid curves) used in the fits. We find good agreement between data and the assumed PDF shapes for m_{ES} and ΔE. In Figs. 1 (c-f), we show projections of the $K_{S}^{0} K^{+}$ and $K_{S}^{0} K_{S}^{0}$ data obtained by selecting on probability ratios calculated from the signal and background PDFs (except the variable being plotted). The solid curves in each plot show the fit result after correcting for the efficiency of this additional selection.

Systematic uncertainties on the signal yields are due to the imperfect knowledge of the PDF shapes. We evaluate this uncertainty by varying the PDF parameters that are fixed in the fit within their statistical errors, and by substituting different functional forms for the PDF shapes. For the charged modes, the largest contribution is due to the signal parameterizations for $m_{\mathrm{ES}}\left({ }_{-15}^{+13}\right.$ events for $K_{S}^{0} \pi^{+},{ }_{-1.7}^{+1.3}$ events for $\left.K_{S}^{0} K^{+}\right)$and $\Delta E\left({ }_{-5}^{+16}\right.$ events for $K_{S}^{0} \pi^{+},{ }_{-0.7}^{+2.8}$ events for $K_{S}^{0} K^{+}$), while for the neutral mode it is due to uncertainty in the background $m_{E S}$ shape (± 0.7 events) and the potential fit bias (± 1.4 events). The systematic uncertainties on efficiency estimates are dominated by the selection on $\cos \theta_{S}(2.5 \%)$ and the uncertainty (1.2% per K_{S}^{0}) in K_{S}^{0} reconstruction efficiencies evaluated in a large inclusive sample of K_{S}^{0} mesons reconstructed in data. For the charge-asymmetry measurement, we use the background asymmetry to set the systematic uncertainty [12]. We find background asymmetries of -0.005 ± 0.010 and -0.002 ± 0.011 for $K_{S}^{0} \pi$ and $K_{S}^{0} K$ events, respectively. Both results are consistent with zero bias, and we assign the statistical uncertainty (0.01) as the systematic error on $\mathcal{A}_{C P}\left(K_{S}^{0} \pi^{+}\right)$.

In summary, we find evidence for the decays $B^{+} \rightarrow$ $\bar{K}^{0} K^{+}$and $B^{0} \rightarrow K^{0} \bar{K}^{0}$ with branching fractions on the order of 10^{-6} and significances of 3.5σ and 4.5σ, respectively, including systematic uncertainties. These results represent direct evidence for the $b \rightarrow d g$ penguin-decay process. The branching fractions are consistent with recent theoretical estimates [5], implying that soft rescat-

FIG. 1: Distributions of (a) $m_{E S}$ and (b) ΔE for signal (main plot) and background (inset) $B^{+} \rightarrow K_{S}^{0} \pi^{+}$candidates (points with error bars) using the weighting technique described in the text. Solid curves represent the corresponding PDFs used in the fit. In (c-f) we show projections of m_{ES} and ΔE for $K_{S}^{0} K^{+}(\mathrm{c}, \mathrm{d})$ and $K_{S}^{0} K_{S}^{0}$ (e,f) decays (points with error bars) enhanced in signal decays using additional requirements on probability ratios. Solid curves represent the PDF projections for the sum of signal and background components, while the dotted curve shows the contribution from background only.
tering effects may not play an important role in these decays. We also measure the branching fraction $\mathcal{B}\left(B^{+} \rightarrow\right.$ $\left.K_{S}^{0} \pi^{+}\right)=(26.0 \pm 1.3 \pm 1.0) \times 10^{-6}$ and the $C P$-violating charge asymmetry $\mathcal{A}_{C P}\left(K_{S}^{0} \pi^{+}\right)=-0.09 \pm 0.05 \pm 0.01$, which are both consistent with previous measurements by other experiments [24, 26].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A. P. Sloan Foundation, Research Corporation, and

Alexander von Humboldt Foundation.

* Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
${ }^{\dagger}$ Also with Università della Basilicata, Potenza, Italy
${ }^{\ddagger}$ Deceased
[1] CLEO Collaboration, R. Ammar et al., Phys. Rev. Lett. 71, 674 (1993).
[2] BABAR Collaboration, B. Aubert et al., hep-ex/0502019, submitted to Phys. Rev. D ; Belle Collaboration, K. Abe et al., Phys. Rev. Lett. 91, 261602 (2003).
[3] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[4] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 92, 201802 (2004).
[5] M. Beneke and M. Neubert, Nucl. Phys. B 675, 333 (2003); Y.-Y. Keum, Pramana 63, 1151 (2004).
[6] R. Fleischer and S. Recksiegel, Eur. Phys. Jour. C 38, 251 (2004); Phys. Rev. D 71, 051501 (2005).
[7] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 93, 131805 (2004).
[8] D. London and R. D. Peccei, Phys. Lett. B 223, 257 (1989); H. R. Quinn, Nucl. Phys. B Proc. Suppl. 37A, 21 (1994).
[9] A. K. Giri and R. Mohanta, JHEP 11, 084 (2004).
[10] R. Fleischer, Phys. Lett. B 341, 205 (1994).
[11] F. Fleischer, Eur. Phys. Jour. C 6, 451 (1999).
[12] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 93, 131801 (2004).
[13] Y. Chao et al., Phys. Rev. Lett. 93, 191802 (2004).
[14] M. Ciuchini et al., Phys. Lett. B 515, 33 (2001).
[15] A. F. Falk et al., Phys. Rev. D 57, 4290 (1998).
[16] M. Gronau, J. L. Rosner and D. London, Phys. Rev. Lett. 73, 21 (1994); F. Fleischer and T. Mannel, Phys. Rev. D 57, 2752 (1998); M. Neubert and J. L. Rosner, Phys. Lett. B 441, 403 (1998); Phys. Rev. Lett. 81, 5076 (1998);
[17] BABAR Collaboration, B. Aubert et al., Nucl. Instr. Methods Phys. Res., Sect. A479, 1 (2002).
[18] Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004).
[19] The decay $B^{0} \rightarrow K^{0} \bar{K}^{0}$ proceeds in an s wave, which produces equal fractions of $K_{S}^{0} K_{S}^{0}$ and $K_{L}^{0} K_{L}^{0}$, but no $K_{S}^{0} K_{L}^{0}$, neglecting $C P$ violation in the kaon system.
[20] The BABAR detector simulation is based on GEANT 4, S. Agostini et al., Nucl. Instr. Methods Phys. Res., Sect. A506, 250 (2003).
[21] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 281802 (2002).
[22] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 69, 071101 (2004).
[23] The effect of the systematic uncertainty on the significance estimate is evaluated in a conservative way by coherently shifting all fixed PDF parameters such that the yield is minimized.
[24] Belle Collaboration, Y. Chao et al., Phys. Rev. D 69, 111102 (2004); CLEO Collaboration, A. Bornheim et al., Phys. Rev. D 68, 052002 (2003).
[25] M. Pivk and F. R. Le Diberder, physics/0402083, sub-
mitted to Nucl. Instr. Methods.
[26] Belle Collaboration, Y. Chao et al., Phys. Rev. D 71, 031502 (2005); CLEO Collaboration, Phys. Rev. Lett.

85, 525 (2000).

[^0]: ${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
 ${ }^{2}$ IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
 ${ }^{3}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
 ${ }^{4}$ Institute of High Energy Physics, Beijing 100039, China
 ${ }^{5}$ University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
 ${ }^{6}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
 ${ }^{7}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
 ${ }^{8}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
 ${ }^{9}$ University of Bristol, Bristol BS8 1TL, United Kingdom
 ${ }^{10}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$

