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Abstract the2nd-order degenerate perturbation theory.

In accelerators, it is common that the motion of the hor- .
izontal z-plane is coupled to that of the verticadplane. Second-order degenerate perturbation theory
Such coupling will induce tune shifts and can cause insta- The uncoupled motion in the and y dimension is
bilities. The damping and diffusion rates are also affecte My O
which in turn will lead to a change in the equilibrium in- 0 My
variants. With the perturbative approach which is also usetf,, and M, are symplectic2 x 2 matrices. In

%’escribed by the one-turn ma(o , Where

for synchrobetatron coupling [B. Nash, J. Wu, and A. Chadhe integer ( half-integer ) resonance cadé,, = I
work in progress], we study they coupled case in thispa- (—I). Following Courant-Synder [1], we can write
per. Starting from the one-turn map, we give explicit for-M,o 0 = cospgyl + sinpgyJg, With J,, =

mulae for the tune shifts, damping and diffusion rates, and «, , G,

the equilibrium invariants. We focus on the cases where th@ Yoy —Oay

system is near the integer or half integer, and sum or dify,, = [(1 — i)/ /T /72, 0,0]T //2 for the positive

ference resonances where small coupling can cause a lafgigde, i.e., its eigenvalue\;, = ¢’=. The negative mode

change in the beam distribution. A_10 = e = hasv_y¢ = iv},. Same for the dimension.
We solve the eigenequation

). The corresponding eigenvectors are

Intr ion
troductio Mop = Ao, @)
It is of general interest to obtain equilibrium invariants

for a coupled system. In this paper, we will find the equiWith # = Mo + M, + M. The four eigenvectorsy

librium value of the eigen-invariants for a lineary cou- = 1,-1,2, and-2) of M, set up the complete and
pled system. Particularly, we study their behavior near re§/thonormal basis, W'trMOS’k’(l = Ak0Uko- TThe conju-
onancesj.e, integer / half-integer, and sum / difference9at€ vector is defined as® = —isgn(k)vy,J, so that

resonances. In general, for a 3-D system not exactly on rés- ko = ;5. We will treat M, and M, as the 1st- and
onance, there are three eigen-invariants ;. Assuming 2nd-order perturbation. The elgenvalugs are expandgd as
no coupling between the longitudinal and the transverse dis = Ao + Ak1 + A2 + O (€). Assuming that there is
mensions, we can consider a 2-D system with the two trand€generacy among vectors with indicesZq, the eigen-
verse dimensions (even though the diffusion matrix has t§Ctors are expanded in the following way

be deduced frqm 3-D dynamics), and we will work in the [1 tck,+0 (63)} Vko

betatron coordinates. It can be shown that 27 G;Z/2 o .

are eigen-invariants with the matrix; = JUG;UTJ, + 2 (G T 2 + O (¢ )} vi0

andZ = [zg,2,ys,y5]7. We describe the dynamics B - for k¢ Zy, @
by a one-turn map)/. The eigenvector matri¥/ is de- Uk = > ieZa, [Cio + 0.+ 0 (63)} vjo

fined by MU = U\, with X being the diagonal eigenvalue i ; ;

matrix! Assuming the damping and diffusion are slow +2 ¢ za {c’]“ o+ O (63)] vio
processes, and the particle motion still follows the eigen- for k€ Zag.

invariants. The change in the invariant per turn is give
by Algi) = ¢ ds(—tr(Ai(s))(g:) + tr(Gi(s)D(s)) =

— ¢ b;(s)(gi) + ¢ di(s), which determines the equilibrium
of (gi)eq = $ di(s)/ § bi(s). Here,D(s) is the local dif-  Nondegenerate part (i.e. for k ¢ Zgy,) For the 1st-
fusion matrix, andA(s) = U~'b(s)U with b(s) the local  order, we have\,, = My and forl # k, cb, =
damping matrix,A, the up-left2 x 2 matrix andA; the  rq,, /(X0 — Ajg) with My, = v'°M;v. For the 2nd-

low-right 2 x 2 matrix of A. So technically, the problem order, we have,, = 3° ™ ], Myj+ Mo gy,; and forl #
reduces to finding th&-matrix. This is accomplished via ' I o
g P k, 022 = (Cf’clAkl - Zj;ﬁk ngMlj = Maui) /(Mo — Ako)
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Now, the eigenequation (1) is solved order by order. Re-
sults are given below omitting derivations.

70 =0 Degenerate part (i.e, for k € Z,,) For the 1st-order,
Lvarious matrices arg = ( 02 T ) G = ( Z%I 0 ) forl € Z4y, we have

. 0 o0 0 1) - 0 1 ,
G22(0 iGa )’JQ:(—I 0)"”:<1 0>'S”per' > Myjchy = Mrch, (3)

scriptT is taking transposeyr takes the trace. JE€Zay
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which is the eigenequation for bott,; and cﬁﬁo; and for
I & Zag, Cm = (dezd cloMuj)/(Ako — Aig). For the

2nd-order, foll € Z,,4, we have
ngzdg M + Zjeng C'/]coMle.

Ak2 = ;
Cko

(4)
and for!l ¢ Zag, o = (Mkichy — Zjezdg C}i1Mlj -
dezd croMa.15)/ (Mo — Ako). Notice that they, in Eq.

(2) are ’not normalized yet.

Resonances

N1,
MMy
775 Ty 77;1

N2l
ny?

;
Ny
Nally  Melly
Nally Moty yily Ny
A = U'bU, the damping coefficients are given as

by = 2b, cosh? (/2) — 2b, sinh* (0/2)

{ by = —2b, sinh? (9/2) + 2b, cosh? (6/2) .

diffusion coefficients

d dM, cosh? (0/2) + dH, sinh? (6/2)

d sinh(0)

(gwy +Gyn),) sin(p — ¢)] ,

Ny

Using

and

— 1) cos(pu — @)
(%)

In the integer / half-integer resonance case, the degener-

acy comes in one subspace, sayy,irs0 that\og = A _o,
andZ,, = (2,—2). For integer, themgy = A_g0 — 1,
for half-integer— —1. For sum resonance.e., u, +
ty = 2nm, Zge = (1,—2). For difference resonanceg.,
te — My =~ 2nm, Zgg = (1,2). Hence, calculations for
all cases involve eigenanalyzifgx 2 coupling coefficient

matrices, which we designate éasi Z ). Its eigenvalues

ared; = 1[(a+d) £ \/(a — d)? + 4bc] and eigenvectors

arevy = ([(a —d) £ \/(a— d)? + 4bc], 1)

Sum resonance According to Eq. 3),

My Mo C%o —\ cig
M721 M7272 010 11 6;02 )
My 1-2 Lo -\ clog
Moy M_2 o <3 sy )

Explicitly, we havea = M;; = z'/\m[/\/llﬂ,d =
M_ 5 o = 72‘)\2*0 LMQQ—I,b = Mi_o (6/2)€Z¢, and
c = M_o = (£/2)e’?r=%), Here, we introduce the oper-
ator| 1, which only means thdtz] is real, but not guaran-
tee thaf z] > 0. Notice that\;p = A g9 = e, We define
Mg — M_9_9 = ie”‘(LMn] + |_M22-|) = ie“‘Au.
We then definetanh ¢ ¢/|Apl.  The eigenvec-
tors depend on the sign of\u. For Ap > 0,

( ) _ < ie*(9=1) cosh (6/2) )7

sinh (6/2)
—ie~"@=1) cosh (0/2)

sinh (0/2) No-

tice that in this formalism, the system is unstable for

the z-y coupled casé. Now the U-matrix is con-

do dH, sinh? (/2) + dH,, cosh? (6/2)

d sinh(0)
VeV (G-, -
(Gomy + Gyn,) sin(p — 8)]

Wlth HJC Yy V%Z/nac Y + QOéw,ynx,y'rh y + 690,1/7735 ,y? gﬂﬁay
ax,yn;c T Yeulzys andy, ,Hy y = g T g

n,m,) cos(p — ¢)

+ (6)

The equilibrium value igg;)eq = fd /fb , for
1=1,2.
Difference resonance According to Eq. 3)
Mir Mg clo ) _ \ Cio
Mo Moy Ay ) M\ ey )
M M cho ) _ A\ Cho
21 Moo G0 ) TP\ e
Explicitly, we have a = My = iX\|Mi1],
d = Mo = idg[Maa], b = Mis = (£/2)€*?,
and ¢ = My = —(£/2)e'r9), Notice
that \jp = Xyo = €. Let us now define
M1 — Moy = ZBW(LMHW - L./\/lzg]) = e Ap.

We then defingand = ¢/|Apl. Again, the eigenvec-
tors depend on the sign a@kp. For Ay > 0, they are

< clo ) -~ < —ie'®=1) cos (0/2)

2 - : ’

o sin (6/2) .

y \ sin (6/2) Notice that
o )\ —ie @M cos(8/2) |-

the system is found to be stable for the, coupled casé.
Now theU-matrix is constructed &8 = (vy, vy, v2, iv5),
Lith { vy = —ie' (9= cos (9/2)‘ v10 + sin (0/2) vag

V9 = sin (9/2) V10 — ieii(d)i‘u) Ccos (9/2) V20

structed astyU = (vi, i7", va[= w7 y],v-3), With The damping coefficients are computed to be
vy = ie(®=1) cosh (/2) v1g + sinh (6/2) v_s0 by = 2b, cos? (0/2) + 2b, sin® (6/2), and  diffu-
v_g = sinh (0/2) vig — ie= 91 cosh (6/2) v_og by = 2b, sin? (0/2) + 2b, cos? (6/2) .
In B-coordinates, the damping and diffusionsion coefficients are
0O 0 0 O
0 %. 0 0 dy = dH,cos? (0/2) + dH,sin? (6/2)
matrices readb = 0 0 0 O , and 3Notice that form,, = 0, di = dHzcosh?(0/2) +
0 0 Qby dH,y sinh?(0/2) — dy/HoHycos(u — ¢)sinh(), and do =

—ie(®=H) sinh (0/2)
cosh (6/2)
cosh (6/2)
ie~®—1) ginh (/2)

(:

2For Ap < 0, we have (

)= (
)~

).

) 4ForAp < 0, they are

dH, sinh?(0/2) +dH,y cosh?(0/2) —d/HaHy cos(p— ¢) sinh(0).

( ( —iet(®=1) sin (0/2) )

cos (6/2) ’

cos (0/2) )
—ie~ = sin (0/2) -



dsin(6) [(GuGy + nlym),) sin(u — o)
Yz Vy

+ (Gamy — Gyn,) cos(u — @)]

(7)

dy = dH,sin?(0/2) + dH, cos? (6/2)

dsin(0
S;r;(vy) [(G2Gy + ) sin(u — ¢)
+ (gw; — Gynl,) cos(p — ¢)] . (8)

Integer / half-integer resonance The physics of the

+

sum / difference resonance is analyzed within the 1st-order = 1

The damping coefficients are computed to be
b1 = tr, (A) = A11 + AQQ ~ QbI Y
{ by — tr, (A) = Ags + Ay ~ 2b, Similarly the

diffusion coefficients arel, = dH,; and forAp > 0,
dy = dHycosh(0) + (d/v,)[cos(d)(n;} — Gy) +
2sin(@)n, G, ] sinh(0).

degenerate perturbation as above. However, the integer / = 0= e R - g =

half-integer resonance is more involved. The physics of ol
this resonance needs to be analyzed in a 2nd-order pertur- 0 1

bation calculation. As we find, the perturbation matrices a

A 0
0 D

0 B

areM; = ( c o

), andMs = ( ). Equation (3)

yieldsA\,1 = 0 for k € Zy4, soitis determined by Eq. (4),

which is 2nd-ordeiri.e.,

M12M21 M1—2M21
./\)\/120_)\1 A20—A10
—12 Mo Z1-aoMay
+ A20—A-10 + A20—A-10
+Ma 29 +Ma oo 2
MiaM_21 Mi_aM_2 C20
A20—A10 A20—A1
4 Mo Moas —1-aM 2
A20—A-10 A20—A-10
+Mas 99 +Ms 2o
02
=\ 20
— N\22 —2 )
C20
M12M21 M1—2M21
A_20—A10 A_20—A10
M_12Mz_y M_1_2Ms_1
A—20—A-10 A_20—A_10
+Ms 20 +Ma oo 2
MiaM_o; Mi_oM_o; C_20
A_20—A10 A_20—A10
M_12M_3_1 M_1_o2M_3_4
A—20—A-10 A—20—A-10
+ My a9 +Ma 2o
02
=\ —20
— N-22 -2 .
C_20

We definea — d =

Notice thatd = a* andc = b*.
= (£/2)e'*. Notice that

i2%a = iAp, andb = c¢*

Figure 1: Damping/ diffl]sion rate for the sum resonance.

Discussion

For integer / half-integer resonance, the coupling does
not affect the damping. However, the diffusion rate may
increase substantiallye., Ay — £ impliesd > 1. In the
sum resonance case, the instability comes from two effects.
In addition to a coupling stopband, the damping rate may
become negative (antidamping) while the diffusion rate be-
comes very large. In the difference resonance case, both the
damping rate and the diffusion rate stay finite. Let us study
the sum resonance, and show some properties in Fig. 1. We
plot the simplified expression witlf, = »; = 0 as in Foot-
note 3. Thinking of a flat beam, we assutig = H,, /100,
also an exaggeratéq = b, /2, with parameterg = /2
andp = 0.3. The red solid curve is fod; (6), the purple
long-dashed fod, (), the blue dashed fér (9), and green
dotted forb,(6). It is clearly seen that due to coupling)(
the diffusion rate iny direction increases very rapidly. In-
terestingly, they damping rate becomes negative, indicat-
ing an antidamping type of instability. Of course, this does
not happen fob, = b,.

In conclusion, we studied the equilibrium value of the
eigen-invariants near the integer / half-integer resonance,
and the sum / difference resonance. The similar topic of

¢ > 0, however, Ay can be either negative or posi- Synchro-betatron coupling is studied elsewhere [2], where

tive. We then definganh(0) = ¢/|Au|. The eigen-
vectors depend on the sign &fu.> For Ay > 0, they

[ e cosh (6/2)
o sinh (0/2)
. sinh (0/2)
— \ —ie " cosh (0/2)
plecticU-matrix is then defined a8 = {v1, iv;", v, ivg },
with { 2= i€'® cosh (6/2) vag + sinh (6/2) v_o0
v_g = sinh (6/2) vag — ie~% cosh (0/2) v_o¢
—ie*® sinh (0/2)
SForAp < 0, (

) The sim-

(5% )= ( i)

2, . cosh (6/2)
C:go ~ \ ie"*sinh (0/2) )

more details can be found.
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For Ap < 0, we havedy = dHy cosh6 — (d/~y)[cos ¢(n)> —
g,ﬁ) + 2sin ¢n;gy] sinh 6. Notice that the difference comes from the
sign of Au. This can be absorbed into the definitionfof
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