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Abstract in the beam. It can be expected that the two-stream insta-

In a linear collider, sources of emittance dilution such ab”'ty will resonantly amplify distortions with wavelengths

) : . : that are close to resonance.
transverse wakefields or dispersive errors will couple the

vertical phase space to the longitudinal position within th . .
beam (the so-called ‘banana effect’). When the Intersecti;quat'OnS of Motion
Point (IP) disruption parameter is large, these beam distor- Suppose that two beams move towards each other. For
tions will be amplified by a single bunch kink instability simplicity, their longitudinal distribution is assumed to be
which will lead to luminosity loss. We study this phenom-uniform, and their transverse distribution to be Gaussian.
ena both analytically using linear theory and via numericghssume that the beams collide with a relative vertical dis-
simulation. In particular, we examine the dependence @flacement and each beam is assumed to have the same
the luminosity loss on the wavelength of the beam distolumber of particles per unit length but with opposite
tions and the disruption parameter. This analysis may prowharge. Assuming no redistribution of charges occurs dur-
useful when optimizing the vertical disruption parameteing the collision, the Lorentz force near the axis is [4]
for luminosity operation with given beam distortions.
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Introduction

To achieve the desired luminosity in a future linear colwheree is the elementary charge, the vacuum permittiv-
lider, the beams are focused to small spot sizes and the ity Y; the particle vertical displacement relative to the cen-
sulting beam-beam forces can be very large. With oppdroid of the other beam. We are interested in the luminos-
sitely charged beams, the beam-beam forces will lead toity loss due to the variation of the beam centroid along the
mutual focusing or pinch which further increases the beatpunch; hence, we need to integrate over the transverse dis-
densities and the luminosity and is referred to as the lumiribution. Assuming small offsets of the two beams, this re-
nosity enhancement. In addition, if the beams are offseluces the effective incoherent force in Eq. (1) by a factor of
from each other, the attractive beam-beam force can brifgio get the so-called coherent force8f .on ~ Fy inc/2.
the beams closer together possibly recovering some of thée study cold beams, and the equations of motion for the
lost luminosity. Unfortunately, if the beam-beam force igwo beams, moving with velocity, read [1]
too large, this attraction can lead to an instability much like ) )
a plasma two-stream instability which is referred to as a { 9. 4 Ua) _ _ 2Arec (Y1) = Yr(0)] @)
single bunch kink instability [1]. ot~ as ) Yn) oy(0n+oy)y

The beam-beam force and resulting kink instability can h is th troid disol ts of the elect
be parameterized with the disruption paramefey; ,, = WRere,y,(.» 1S the centroid displacements of the electron

i — 2Nyroo ; wheref.. (positron) beam _from the reference axis. In the abpve
i(; t/rgjer"]%’c);l Iengt?\rdZe/t[giﬁgyé)(eZ\m—tbgey;r]‘n fo ,fx(“li’; model, the evolution of the beam envelope due to the pinch
the rms beam sizeY; the number of particle pf”?‘é’égm effect is not included. However, since the beam-beam in-
the electron classical radius, andhe Lorentz factor. No,r- stability dominates, this simplification is quite good, as evi-
mally, for a flat beamD <<’1 and hence the beam actsdenced by the comparison with simulation in the following.
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as a thin lens in the horizontal plane. In contrdsf, > 1 .
and the two beams begin to oscillate in the vertical planitial Value Problem

during the collision with the number of oscillations given  The internal coordinate is introduced to label the slice
by n ~ 0.15y/D,. In simulations withD, < 10, the at a distance from the head of the beam, afid< = < I,
beam-beam force is observed to reduce the luminosity logerel is the beam length. We define= 0 when the heads
due to centroid offsets, however for largey; the luminos-  of the two beams collide. We also define= 0 as the IP
ity becomes increasingly sensitive to small offsets [2]. Ijhere the two beams first collide. The positiveirection
this paper, we investigate the impact of internal distortiong to the right. Hence in the left-coming beam, the slice
in the beam. The many sources of emittance dilution leagi|l be located at = vt — 2 at timet when the beam head
to vertical position and angle offsetg.,(z), ., ()} of the s at the locations = vt. In the right-coming beam, we also
slice centers as a function of their longitudinal position jntroducez to describe the distance between a certain slice
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use(s, z) as the independent variable pair, and we definge haveySO)(s,z) = yrosin(kz). This is just the initial
k3 = 2Xr./ [0y (0, + 0,)7]. Please refer to Fig. 1 of Ref. modulation profile.

[5] for definition of the coordinate system. For a largeD,,, which leads to many oscillations during
Now let us study the case where the right-coming beauhe collision, we are eligible to consider the limitiafs >
has an initial sinusoidal modulation, and the left-coming and alsoks > 1. Therefore, we keep only the largest

beam is undistorted and on-axis. The initial conditions areerms inkys andks. The asymptotic solutions are:

then
Ay (s, z)
Js

_ . kko ‘28 + Z|
o - O B} (3) yr(S»Z) 1Yro k_g — 4k’2 2

J1 (iko m&) coslko(s + 2)],

¥1(0,2) =0 and (10)

Q

X

for the left-coming electron beam. Similarly,

yr-(0,2) = yrosin(kz) and % =0, (4 for—z/2>s>-(I+2)/2;and
s=0 5 ]{;ko "
for the right-coming positron beam. The equations of mo- (s, 2) ~ —yro k3 — 4k2 (11)
tion together with the initial conditions yield the following ) )
integral representation of the solution x o (Zk’o Vz(2s — Z)/Q) sinko(s — 2)],
wi(s,2) = w(z/2,2)cos[ko(s — z/2)] for (I4+2)/2 > s > z/2. Notice that, the solutions given in

Egs. (10) and (11) have a singular poinkgt= 2k, which

i —2z/2
+ aylé? ?) sin [ko (Z 2/2)] (5 indicates a resonance behavior studied in the following.
s=z/2 0
s . Resonance Case At resonancek, = 2k, the recursion
/ / / /
+ ko /Z/2 ds'y;(=s',2s" = z)sinfko(s = )] - (qation of Eq. (8) and (9) should be revised by replacing

ko with 2k. The asymptotic solutions are:

yr(s,2) = %Jo (ik‘\/z|2s + z|) sin[2k(s + 2)], (12)

Similarly, for the right-coming beam, we have

yr(s,2) = yr(—2/2,2)cos [ko(s + 2/2)]
+ M w (6) for —z/2 > s> —(l +2)/2; and
88 s=—z/2 kO

yl(s,z)%inTO 2S;ZJ1 (ik\/z(25—z))cos[Zk(s—z)], (13)

for(l+2)/2> s> z/2.

+ ko/ ds'y,(—s', —2s" — z) sin[ko(s — §')].
—z/2

Series Solution .
_ _Luminosity
Let us solve the above set of Egs. (5) and (6) via a series

solution approach [6, 7]. We expang (s, z) in a series The luminosity is defined as [8]

of powers inkg
£ =28pv [ dadydsdt (. 21,00, (5,5, 20,0),

N, ) (14)
rn(8,2) = g o (85 2) 7
Ur(n(s,2) : (’l)( ) % wherez; = vt — s andz. = vt + s and we have as-

sumed the same number populatidp in each beam and
and obtain theith-order term from thén—1)th-order term.  head-on collisions. The distribution function is normalized
According to Eq. (5), fon = 1,2,3, -+, (s, z) would be  to unit, i.e, [dxzdyds n . (z,y,2(r,t) = 1. Assum-
s ing Gaussian transverse distributions and a uniform longi-
yl(")(s, z):k(f ds’y("_l)(—s’, 2s'—2) sinko(s—s')]; (8) tudinal distribution, and ignoring the luminosity enhance-

n=0

r

z/2 ment due to beam-beam pinch, the ‘geometric’ luminosity
o _ is Lop = N?/ [4mo,0,). Finally, the nominal luminosity
and similarly, according to Eq. (6), far.(s, ), we have  ~/ including the effect of the luminosity enhancement, is
R found by multiplying by the enhancement factéy, which
yﬁ”)(s,z):ko/ dS/yl(nil)(—Sc—?Sl—Z) sin[ko(s—s')]. (9) is typically between 1 and 2 for flat beam collisiong,,
—z/2 Lo = LooHp. Now, let us study the luminosity loss due
_ _ to the beam-beam disruption. Given the analytical general
‘General Solution According to Egs. (5) and () sojutions in Egs. (10)- (13), we can numerically compute
with the initial conditions in Egs. (3) and (4), We the Juminosity. On the other hand, we also simulate the
get, yﬁo)(sa z) = yrosin(kz)cos ko (s +2/2)], and  |uminosity loss via GuineaPig [9] for longitudinal uniform
4% (s,z) = 0. Noticing that, in the limit ofk, — 0, distribution and Gaussian distribution as well.



For the US Cold

Table 1: Summary of the parameters for the US Cold [3]. 40
E (GeV) [ N, 10™) [ o, (um) e
250 2.0 0.543 g
oy (wrad) | oy (nm) | o, (urad) S 5
36 57 14 ““n: 15 ._/,-_;_
o, (mm) o5 (%) D, 10 LS
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fal ok soFo® Figure 3: The resonance luminosifi;.s as a function of
0.95! m ,_!z:!'-'j > % D,. The dotted, dashed, and dotted-dashed curves stand
& . L for the cases_\/vhe@O/Jy = 1/3,1/2, andl, respectively. _
e H*EE As a comparison, the solid curve stands for the case with
0.85 g no modulationj.e., £y, ory,q = 0.
0.3
1 2 3 4 5 & 7 loss as a function af,.. Once again, very good agreement
2k /ko between the analytical result and the simulation is found.

The study shows that the luminosity loss computed ana-

Figure 1: Thel/L, as a function oRk/ky. The “square” lytically agrees with the simulation results quite well. The
is the simulation for truncated (at\/30.) Gaussian distri- results for a longitudinal uniform distribution is very close
bution; the %” is the simulation for a uniform distribution; to those for a Gaussian distribution. The study also indi-
the “o” is the result with solutions in Egs. (10) and (11);cates that this luminosity loss due to the beam-beam inter-
the “x” is the result with solutions in Egs. (12) and (13). action is very sensitive to the disruption paramebgr To

illustrate this dependency, we plot in Fig. 3, the luminos-

ity at resonance,e., with solution given in Egs. (12) and
Results (13), as a function ob,, which relates tdi, (= 2k). In our

Now let us illustrate how the beam-beam effect leads to¥udy, we varyN, alone to varyD,. Without the beam-
large luminosity loss, even if the emittance is not degraddggam instability considered in this paper, increasing the
much. We study the ILC US Cold [3] with the parameterglisruption parameteD, will increase the luminosityCy
in Table 1. Shown in Fig. 1, we find that fgr, = o,/3, Quadratically. Onthe other hand, the beam-beam instability
the beam-beam interaction leads to a resonance where iffoduces a large luminosity loss whéh, increases. This
% luminosity loss is observed. Now, if one does not nol€ads to the phenomena that beyond certain value of
tice the instability studied in this paper, then he will find 3(Dy.c ~ 20 in our paper), increasing, will no longer
% emittance growth, which leads to only? “geometric” efficiently increase the luminosity. To conclude, the lumi-
luminosity loss simply due to the initial distortion. Hence nosity loss due to beam-beam instability is substantial, and
the geometric emittance growth in this case is not a godéeeds serious consideration in future ILC design.
measure for the luminosity loss [10]. Similar situation is
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