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Adaptive perturbation is a new method for perturbatively computing the eigenvalues and eigen-
states of quantum mechanical Hamiltonians that heretofore were not believed to be treatable by
such methods. The novel feature of adaptive perturbation theory is that it decomposes a given
Hamiltonian, H, into an unperturbed part and a perturbation in a way which extracts the leading
non-perturbative behavior of the problem exactly. This paper introduces the method in the context
of the pure anharmonic oscillator and then goes on to apply it to the case of tunneling between both
symmetric and asymmetric minima. It concludes with an introduction to the extension of these
methods to the discussion of a quantum field theory. A more complete discussion of this issue will
be given in the second paper in this series, and it will show how to use the method of adaptive
perturbation theory to non-perturbatively extract the structure of mass, wavefunction and coupling
constant renormalization.

PACS numbers: 03.65-w,03.70+k,11.10

I. INTRODUCTION

Perturbation theory, one of the most useful tools in the physicist’s toolbox, is the method most commonly used to
analyze problems in quantum mechanics and field theory. It is so useful that it is applied even when the perturbation
clearly isn’t small enough for the expansion to converge. One then typically tries to extract meaningful results by
applying some summation technique to the resulting series, often with mixed success. What is really needed, is a
method that extracts the leading non-perturbative behavior of the quantity to be computed, and then corrects this
leading approximation in a systematic manner. This paper introduces a simple technique that works in just this way.
I call this method adaptive perturbation theory .

I will limit the bulk of this paper to discussing how adaptive perturbation theory works on problems in quantum
mechanics. In the second paper in this series I will show how to apply an appropriately generalized version of adaptive
perturbation theory to a quantum field theory. In particular, I will then show how to extract, in a non-perturbative
context, the general structure of mass, wavefunction and coupling constant renormalization.

II. EXAMPLE 1: THE PURE ANHARMONIC OSCILLATOR

To introduce the ideas behind adaptive perturbation theory, I begin by studying the pure anharmonic oscillator,
which seems naively hard to treat perturbatively because it is apparently devoid of a small expansion parameter. The
pure anharmonic oscillator is defined by a Hamiltonian of the form

H =
1
2

p2 +
1
6

λ x4, (1)

where the operators x and p satisfy the usual canonical commutation relation [x, p] = i.
Since H contains only the terms p2 and λx4, there does not seem to be a way to perturbatively compute the

eigenstates and eigenvalues of H based upon a division of H into an unperturbed Hamiltonian H0, whose eigenstates
are known, and a perturbation V . Nevertheless, I will now show that this can be done. The trick is to define a
decomposition of the Hamiltonian in Eq. 1 into an unperturbed (i.e., solvable) part and a perturbation, in a way
that doesn’t depend upon λ. The choice of decomposition is what is adapted to the problem at hand. Thus, the
decomposition, and therefore the perturbation theory for each eigenstate, will be different.
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To begin the process of decomposing H, I introduce a one-parameter family of annihilation and creation operators,
A†γ and Aγ , as follows:

x =
1√
2γ

(
A†γ + Aγ

)
,

p = i

√
γ

2
(
A†γ −Aγ

)
. (2)

Note that given the commutation relations of x and p, the commutation relation [Aγ , A†γ ] = 1 holds independent of
γ. In terms of these operators H can be rewritten as

H =
γ

4

(
−A†γ

2 −Aγ
2 + 2 A†γAγ + 1

)

+
λ

4γ2

(
A†γ

2
Aγ

2 + 2A†γAγ + 1 +
1
6
(A†γ

4
+ Aγ

4) +
2
3
(A†γ

3
Aγ + A†γAγ

3) + (A†γ
2

+ Aγ
2)

)

=
(

γ

4
+

λ

4γ2

)
(2Nγ + 1) +

λ

4γ2
Nγ (Nγ − 1) +

(
γ

4
− λ

2γ2

)
(A†γ

2
+ Aγ

2)

+
λ

4γ2

(
1
6
(A†γ

4
+ Aγ

4) +
2
3
(A†γ

3
Aγ + A†γAγ

3)
)

(3)

where I have defined the γ-dependent number operator to be

Nγ = A†γAγ . (4)

At this point I define a γ-dependent decomposition of H into an unperturbed part and a perturbation as follows:

H = H0(γ) + V (γ),

H0(γ) =
(

γ

4
+

λ

4γ2

)
(2 Nγ + 1) +

λ

4γ2
Nγ (Nγ − 1),

V (γ) =
(

γ

4
− λ

2γ2

)
(A†γ

2
+ Aγ

2)

+
λ

4γ2

(
1
6
(A†γ

4
+ Aγ

4) +
2
3
(A†γ

3
Aγ + A†γAγ

3)
)

. (5)

In other words, the unperturbed Hamiltonian is defined to be that part of H which is diagonal in the number operator
Nγ and the perturbation is defined to be everything else.

If we think of the Hamiltonian as a large matrix in the basis of Fock-space states generated by applying A†γ to the
state |0γ〉, then H0(γ) is the diagonal part of the matrix and the perturbation is the matrix obtained by setting all
terms on the diagonal to zero.

Although it isn’t conventional to include the term λ
4γ2 Nγ (Nγ−1) in the definition of the unperturbed Hamiltonian,

H0(γ), it makes sense to do so for two reasons. First, this part of the Hamiltonian is diagonal in Nγ and thus it is
just as easy to deal with as the part proportional to the first power of Nγ . Second, including it in the unperturbed
Hamiltonian puts a term proportional to Nγ

2 in the energy denominators which appear in the perturbation expansion
based upon this decomposition. This suppresses the n! growth of the usual perturbation expansion. The only apparent
drawback to putting a term proportional to Nγ

2 into H0(γ) is that it makes the energies of the unperturbed levels
grow like n2, whereas the correct answer is n4/3. While this is not a disaster, it seems to say that getting the correct
answer from a straightforward perturbative approach will be difficult. This observation leads us to add the adaptive
element to adaptive perturbation theory .

The essential point is that I have not as yet committed to a particular value of the parameter γ in Eqs. 5-5. The
trick consists of adapting the choice of γ to the computation at hand. Thus, to compute the energy of the N th

eigenstate I will choose a value, γ(N), which varies as a function of N . The appropriate value of γ(N) is fixed by a
simple variational calculation.

The variational calculation, which serves as the starting point for any adaptive perturbation theory computation,
begins by defining a γ-dependent family of Fock-states, |Nγ〉. First we define the γ-dependent vacuum state, |0γ〉, by
the condition

Aγ |0γ〉 = 0. (6)
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Next, we define the n-particle state built on this vacuum state such that

Nγ |nγ〉 = n|nγ〉, (7)

by

|nγ〉 =
1√
n!

A†γ
n|0γ〉. (8)

In terms of functions of x, the state |0γ〉 is just a gaussian of whose width is determined by γ. Similarly, the state
|nγ〉 is the appropriate nth order Hermite polynomial obtained by applying the γ-dependent differential operator

A†γ =
√

γ

2
x− 1√

2γ

d

dx
(9)

to this gaussian. (It is worth noting that the specific functional form of the state |nγ〉 depends upon γ, but the number
of times this function takes the value zero does not.)

The value of γ used to define the adaptive perturbation theory for the nth level of the anharmonic oscillator is
determined by requiring that it minimize the expectation value

En(γ) = 〈nγ |H|nγ〉. (10)

Eqs. 5-5 show that this expectation value is equal to

En(γ) = 〈Nγ |H0(γ)|n〉 =
(

γ

4
+

λ

4γ2

)
(2n + 1) +

λ

4γ2
n (n− 1). (11)

Minimizing En(γ) with respect to γ leads to the equation

γ = λ1/3

(
2 (n2 + n + 1)

2n + 1

)1/3

. (12)

At this point all we have to do is substitute this value into Eq. 10, to see why we chose γ to minimize En(γ). If we
do this, we obtain

En(γ)min =
3
8

λ1/3 (2n + 1)2/3 (
2n2 + 2(n + 1)

)1/3
(13)

which, for large n, behaves as λ1/3 n4/3 , which is the correct answer.
The fact that all energies scale as λ1/3 is an easily obtained exact result and so, the non-trivial part of variational

computation is the derivation of the dependence of the energy on n. To see why all energies are proportional to λ1/3

it suffices to make the following canonical transformation

x → x

λ1/6
; p → λ1/6p. (14)

In terms of these operators, the Hamiltonian of the pure anharmonic oscillator becomes

H = λ1/3

(
1
2
p2 +

1
6
x4

)
, (15)

thus proving the claim. A comparison of the variational computation and the result of a second-order perturbation
theory for λ = 1 and widely differing values of N is given in Table I. As advertised, we see that the adaptive
perturbation theory for each level converges rapidly, independent of λ and N .

A. Why does the expansion converge?

At this point I should address the question of why adaptive perturbation theory converges so rapidly.
First, observe that once I have done the variational calculation the perturbation theory computation is done for

states defined in terms of a single fixed value of γ. Thus, all states which appear in the perturbative expansion
are orthogonal to one another and the perturbation series is well-defined. Second, for the values of γ associated
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with a given state |n0〉, the unperturbed energies for states having another occupation number, n, all have a term
n2/γ2 ≈ n2/n

2/3
0 . It is only for values of n that are near n0 that the energy denominators behave as n4/3. For values

of n >> n0 the factor γ does not suppress the n2 behavior. This is what suppresses the n!-growth of the perturbation
expansion, since now the factor of

√
(n + 1)(n + 2)(n + 3)(n + 4), which comes from applying A†γ

4 to a state |Nγ〉, is
canceled by the 1/n2 appearing in the energy denominator, instead of the usual 1/n. I’ll make no attempt to prove
this assertion, instead I refer the reader to a pair of very nice papers by I. G. Halliday and P. Suranyi[1, 2] where,
by a very different technique which shares this same feature, they give a proof that the fact that the unperturbed
energies are quadratic in N leads to a convergent perturbation expansion.

Finally, I should comment that it isn’t a problem that the variationally determined states |Nγ〉, for different
occupation numbers n, are not orthogonal to one another. First, there is a simple formula that expresses the state
|0γ〉 for one choice of γ as a sum over the states of definite occupation number for a different value of γ (see Appendix
A). Thus, if one wishes to do a non-perturbative diagonalization of the full Hamiltonian truncated to many different
variationally determined states, one can either orthogonalize these states by hand, or use the formula for the overlap
of these states and solve the so-called relative eigenvalue problem

H|ψ〉 = εM |ψ〉. (16)

Note, that if |nγ(n)〉 stands for one of the variationally constructed states, then the Hermitian matrix M is given by

Mn,m = 〈Mγ(n)|Mγ(m)〉. (17)

The second point is that since the perturbation expansion for any state |nγ(n)〉 converges, eventually the perturbatively
corrected states |nγ(n)〉 become orthogonal to one another. This follows from the fact that eigenstates of a Hermitian
Hamiltonian having distinct eigenvalues are orthogonal to one another.

B. What does this have to do with quasi-particles?

An interesting corollary to the adaptive perturbation theory technique is that it provides an explicit realization of
the quasi-particle picture underlying much of many-body theory. What we have shown is that no matter how large
the underlying coupling, the physics of the states near a given n0-particle state can be accurately described in terms
of perturbatively coupled eigenstates of an appropriately chosen harmonic oscillator. Of course, as we have seen,
the appropriately chosen harmonic oscillator picture changes as n0 changes. Furthermore, the perturbatively coupled
states |nγ(n0)〉, for n ≈ n0, correspond to states containing an infinite number of particles, if we choose as a basis
those states that correspond to a significantly different value of n0.

III. EXAMPLE 2: ADDING A MASS TERM

An obvious modification of the pure anharmonic oscillator is to add a positive mass term; i.e., let H be

H =
1
2

p2 +
m2

2
x2 +

1
6

λx4. (18)

This problem is dealt with in exactly the same way. First, introduce γ-dependent annihilation and creation operators,
to arrive at a slightly modified formula for the expectation value in state |Nγ〉; i.e.,

En(γ) =
(

γ

4
+

m2

4γ
+

λ

4γ2

)
(2n + 1) +

λ

4γ2
n (n− 1). (19)

TABLE I: A comparison of the zeroth order and second order perturbation results, for the energy of the N th level of the pure
anharmonic oscillator, to the exact answer for λ = 1 and widely varying values of N .

λ N Variational 2nd Order Perturbation Exact Variational % Err Perturbative % Error

1.0 0 0.375 0.3712 0.3676 0.02 0.0098

1.0 1 1.334 1.3195 1.3173 0.01 0.0017

1.0 10 17.257 17.508 17.4228 -0.009 0.0049

1.0 40 104.317 105.888 105.360 -0.009 0.0050
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Once again, minimizing En(γ) with respect to γ leads to the equation,

γ3 −m2γ − 2λ

(
n2 + n + 1

2n + 1

)
= 0. (20)

Clearly, for small λ and small n, the solution to this equation is γ ≈ m. In other words, γ is what it would be for the
usual perturbative expansion. Note, however, that no matter how small λ is, the term λn(n−1) eventually dominates
the energy denominator and shuts off the N !-growth of the perturbation expansion. Also, for large enough N , it is
clear that Eq. 19 is eventually dominated by the term proportional to λ, and for those states the energy, once again,
goes like λ1/3n4/3.

As in the previous case, numerical studies show that independent of λ, m and n by second order in the perturbation
theory determined by the variational calculation, the eigenvalues of H are computed to an accuracy of better than
one percent.

IV. EXAMPLE 3: THE DOUBLE WELL

It should be clear from the previous discussion that adaptive perturbation theory can be applied to any Hamiltonian
of the form

H =
p2

2
+

m2

2
x2 + λxp. (21)

The problem becomes more interesting when the mass term is chosen to be negative and the potential energy develops
two distinct minima. (This is interesting in the case of a field theory because it is associated with the sponataneous
breaking of the discrete symmetry φ → −φ.) I will now show how to apply adaptive perturbation theory to this
problem, since obtaining accurate answers requires generalizing the procedure in a way that will be very important
in the next paper in this series.

Up to an irrelevant constant, the most general negative mass version of the anharmonic oscillator can be written
as:

H =
1
2

p2 +
1
6

λ
(
x2 − f2

)2
. (22)

Clearly, for a non-vanishing value of f2, this potential has two minima located at x = ±f . Thus, we would expect
that the best gaussian approximation to the ground state of this system can’t be a gaussian centered at the origin;
classical intuition would imply that it is a gaussian centered about another point, x = c. In other words, if |0γ〉 is a
state centered at x = 0, it is better to adopt a trial state of the form

|c, γ〉 = e−icp |0γ〉. (23)

Since

eicp x e−icp = x + c, (24)

it follows that computing the expectation value of the Hamiltonian, Eq. 22, in the state specified in Eq. 23, is the
same as computing the expectation value of the Hamiltonian obtained by replacing the operator x by x + c, in the
state |0γ〉. In the language of the previous sections, this is equivalent to introducing the annihilation and creation
operators A†γ and Aγ as follows:

x =
1√
2γ

(
A†γ + Aγ

)
+ c,

p = i

√
γ

2
(
A†γ −Aγ

)
. (25)

With this definition, the normal ordered form of the Hamiltonian, Eq. 22, becomes

H = H(γ, c) =
(

γ

4
+

λf4

6
− λf2c2

3
+

λc4

6
+

λc2

2γ
+

λ

8γ2
− λf2

6γ

)
+

λc

3

√
2
γ

(
c2 − f2 +

3
2γ

) (
A†γ + Aγ

)

+
(

λc2

γ
+

λ

2γ2
+

γ

2
− λf2

3γ

)
Nγ +

λ

4γ2
Nγ(Nγ − 1) +

(
−λf2

6γ
+

λ

4γ2
+

λc2

2γ
− γ

4

) (
A†γ

2
+ Aγ

2
)

+
λc

3
√

2γ3/2

(
A†γ

3
+ Aγ

3
)

+
λ

6γ2

(
A†γ

3
Aγ + A†γAγ

3
)

+
λ

24γ2

(
A†γ

4
+ Aγ

4
)

. (26)
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The expectation value of this Hamiltonian in the state |0γ〉 is

E(c, γ) =
(

γ

4
+

λf4

6
− λf2c2

3
+

λc4

6
+

λc2

2γ
+

λ

8γ2
− λf2

6γ

)
, (27)

which should be minimized with respect to both γ and c in order to define the starting point of the adaptive
perturbation theory computation.

Fig. 1 shows E(γ, c) for a particular choice of λ and f2 and it exhibits what is a generic feature of any such plot,
namely that there are three minima. To get a better feeling for what the three dimensional plot is showing us, it is
convenient to hold c fixed and solve for the value of γ that minimizes E(γ, c); call this γ(c), and then plot E(γ(c), c)
for various values of λ and f2. Three such plots are shown in Fig. 2. The first plot is for a value of f which is large
enough so that the lowest energy is obtained for a gaussian shifted either to the right or left by the amount c = ±cmin.
While there is a local minimum at c = 0 it has a higher energy than the shifted states. Things change as one lowers
the value of f . Thus, the second plot shows that for lower f the shifted wavefunctions and the one centered at zero
are essentially degenerate in energy. For a slightly smaller value of f things reverse and the unshifted wavefunction
has a lower energy than the shifted ones.

FIG. 1: Effective potential as a function of γ and c showing three local minima.

While, there would seem to be nothing wrong with the situation shown in Fig. 2, it is problematic when one applies
the same sort of analysis to negative mass φ4 field theory in 1 + 1-dimensions. In this case, if one were to add a term
like Jφ to the Hamiltonian, this result would imply the existence of a first order phase transition when J reached
some finite value. At this point the expectation value of φ in the ground-state would jump discontinuously from zero
to a non-zero value. It has been rigorously shown that such a first order phase transition at a non-vanishing value of
J cannot occur[4].

For this reason it is important to understand the origin of the secondary minimum at c = 0 and how to avoid it
ever becoming lower in energy than the flanking minima at c = ±cmin. Fortunately, the origin of the problem is easy
to understand and fixing it is not difficult. The key is that the Hamiltonian in Eq. 26 contains a term linear in c and
linear in A†γ + Aγ . Taking the effect of this term into account removes, or at least minimizes the importance of, the
secondary minimum at c = 0. In order to allow this term to play a role in the variational calculation we have to adopt
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FIG. 2: Effective potential as a function of c, showing two degenerate local minima at c = ±cmin and one minimum at c = 0.
The three plots are for λ = 1 and different values of f and show how the minimum at c = 0 changes from lying higher than the
minima at c = ±cmin to being the global minimum. If this were field theory this would be characteristic of a first order phase
transition.

a slightly more general form of the variational wavefunction; namely, we try a state of the form

ψ(γ, c, α) = eicp (cos(α) |0γ〉+ sin(α) |1γ〉) . (28)

The easiest way to minimize the expectation value of the Hamiltonian, Eq. 26, in such a state is to fix the values of γ
and c and solve for the value of α which minimizes this expression. Then, substitute this value, α(γ, c), and minimize
the resulting equation respect to γ and c. Minimizing the expectation value of the Hamiltonian when γ and c are
held fixed is equivalent to diagonalizing the 2× 2-matrix

H2(0, γ) =



〈0γ |H(γ, c)|0γ〉 〈0γ |H(γ, c)|1γ〉

〈1γ |H(γ, c)|0γ〉 〈1γ |H(γ, c)|1γ〉


 . (29)

It is simple to show that the lowest eigenvalue of this matrix is E(γ, c); i.e.,

E(γ, c) =
〈0γ |H(γ, c)|0γ〉+ 〈1γ |H(γ, c)|1γ〉

2
−

√( 〈1γ |H(γ, c)|1γ〉 − 〈0γ |H(γ, c)|0γ〉
2

)2

+ 〈0γ |H(γ, c)|1γ〉2 . (30)

The eigenstate corresponding to this eigenvalue has the form

|ψγ(c)〉 =
1√

1 + x(c)2
|0γ〉 − x(c)√

1 + x(c)2
|1γ〉, (31)
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where

x(c) =

√
(〈0γ |H(γ, c)|0γ〉 − 〈1γ |H(γ, c)|1γ〉)2 + 4 (〈0γ |H(γ, c)|1γ〉)2 + (〈0γ |H(γ, c)|0γ〉 − 〈1γ |H(γ, c)|1γ〉)

2 〈0γ |H(γ, c)|1γ〉 . (32)

Note that x(c) is an odd function of c. The next step is to minimize E(γ, c) with respect to γ and c. Fig. 3 shows
what a typical plot looks like for finite values of f2. For some values of λ and f one can discern a secondary minimum
near c = 0, but it always lies higher than the minima corresponding to non-zero values of c.

It may seem surprising that although cmin → 0 as f → 0, it doesn’t vanish at f = 0. Neither does the expectation
value of the operator x, although it is much, much smaller than cmin. This is because the energy is improved by
moving the gaussian slightly off x = 0 and widening the symmetric wavefunction, admixing a small amount of the
N = 2 state. Note, that if we rewrite the Hamiltonian, introducing a factor V as follows,

H =
1

2V
p2 +

V

6
λ

(
x2 − f2

)2
, (33)

and let V →∞, then cmin → 0 as f → 0. This happens because V acts as a classical mass for the oscillator and, one
expects that for infinite mass, the wavefunction of the oscillator should become a narrower and narrower and lie at
the classical minimum of the potential.

Returning to the case V = 1 and non-vanishing f , the fact that the two variational wavefunctions |γ, +cmin〉 and
|γ,−cmin〉 have the same energy means that no matter how small the overlap 〈γ,−cmin|H|γ, +cmin〉 they will mix
maximally. Thus it is possible to do better by considering the symmetric and anti-symmetric wavefunctions

|ψeven〉 = eicp (cos(α) |0γ〉+ sin(α) |1γ〉) + e−icp (cos(α) |0γ〉 − sin(α) |1γ〉)
|ψodd〉 = eicp (cos(α) |0γ〉+ sin(α) |1γ〉)− e−icp (cos(α) |0γ〉 − sin(α) |1γ〉) , (34)

and computing the expectation value of the Hamiltonian in each of these states. The formulas needed to carry out
this computation appear in Appendix B.

The most important results are:

1. For large f2 the energy splitting between the even and odd states is, as expected, exponentially small;

2. This splitting grows as f2 tends towards zero and, in the limit of f2 = 0, becomes of order unity.

These results say that while for large f it is appropriate to think of the splitting as due to tunneling between the
degenerate minima, this is not the case when f → 0. This is true even though cmin stays finite. The reason cmin stays
finite in the limit f → 0 is that a non-vanishing value of cmin produces a state that is an admixture of n = 2 and
higher n states with the n = 0 state. In fact, due to this admixing this calculation produces energies for both the
ground state and first excited state of the pure anharmonic oscillator that are equal in accuracy to our earlier second
order adaptive perturbation theory calculation.

FIG. 3: Effective potential as a function o f c, one global minimum.
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A. Larger n

For larger values of n, things change, even for f À 0. Generically, what happens is that as n grows cmin tends to
zero, but doesn’t quite get there. Thus, as for the case n = 0, there are still two degenerate minima corresponding to
equal and opposite values of cmin and so one can lower the energy by forming the states

|ψeven〉 = eicp (cos(α) |nγ〉+ sin(α) |n + 1γ〉) + e−icp (cos(α) |nγ〉 − sin(α) |n + 1γ〉) (35)

and

|ψodd〉 = eicp (cos(α) |nγ〉+ sin(α) |n + 1γ〉)− e−icp (cos(α) |Nγ〉 − sin(α) |n + 1γ〉) . (36)

The result of such a computation is to show that as Nγ grows the splitting between these states grows. This follows
directly from a computation of the overlap

〈ψodd|H|ψeven〉, (37)

which, using the formulas in Appendix B, can be shown to grow as a function of n. Eventually, no matter what value
we assign to f (so long as it is finite) there is a value of n for which the splitting between the states |ψeven〉 and |ψodd〉
becomes of order unity. This is the point at which it makes no sense to talk about tunneling between states defined
on one or the other side of the potential barrier.

V. TUNNELING BETWEEN ASYMMETRIC MINIMA

In the preceding section I showed how to use adaptive perturbation theory to compute the tunneling between
degenerate minima in a symmetric potential. Clearly, while the adaptive perturbation theory discussion is a rather
simple way to get accurate results, it is by no means the only method that can be used. However, if one wishes to
consider the tunneling in a very asymmetric potential (see Fig. 4) then the familiar techniques are much more difficult
to apply. In particular, if one envisions a problem in which one starts in the lowest state concentrated in the left
hand well and wants to know how it evolves in time, then I know of no simple techniques which allow one to compute
the behavior accurately. In this section I show how to use the techniques of adaptive perturbation theory, plus one
additional trick, to obtain a simple picture of how things change in time.

FIG. 4: Asymmetric potential well.

From the preceding discussion, it should be clear that given a specific form for the potential shown in Fig. 4, we
can use the adaptive trick of rewriting things in terms of shifted Fock states to approximately compute the lowest
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lying state in the left well and a finite but sufficiently large number of n-particle states in the right well. These
computations, augmented by perturbation theory, take care of computing the effects which have nothing to do with
the tunneling. The tunneling contributions come from computing the transition matrix elements between the lowest
lying state shifted to the left of the origin and all the states corresponding to a shift to the right of the origin. This
matrix element is computed as in the case of the symmetric potential discussed in the preceding section. Assuming
we have carried out this step to the desired degree of accuracy, and that the minima are widely separated, so that the
transition matrix element is small, the next step is to compute the time evolution of the state on the left when the
tunneling is taken into account.

A. The Simplified Problem

It is important to observe that, at this point, we have effectively mapped the original problem into a simpler
one; namely, that of a Hamiltonian H which can be decomposed into H = H0 + V , where H0 has a discrete set of
eigenstates |ψj〉 with energies Ej , 1 < j < N , (representing the levels in the right hand well) and a single state |ψ0〉,
with energy E0 (representing the lowest lying state of the left hand well). Moreover, given the potential in Fig. 4, it
will be assumed that E0 lies somewhere in the range of the Ej , i.e., E1 < E0 < EN , and that it is not degenerate with
any of the Ej ’s (I will discuss relaxing the last assumption at a later point). This problem is essentially equivalent to
the Wigner-Weisskopff?? problem of a discrete state decaying to a continuum, except that now it is a discrete state
decaying to a bunch of discrete states.

Since I have assumed that adaptive perturbation theory was used to determine the Ej ’s and E0, the perturbation
V will be obtained by computing the transition matrix element between the state |ψ0〉 and the states |ψj〉. In other
words, the only non-vanishing matrix elements of V will be V0j = 〈ψ0|V |ψj〉 for 1 ≤ j ≤ N . We now wish to discuss
how to compute the probability of finding the system in the state |ψ0〉 or |ψj〉 at any time t, assuming it is, at time
t = 0, in the state |ψ0〉. This is, of course, equivalent to computing 〈ψ0|e−itH |ψ0〉 or 〈ψj |e−itH |ψ0〉.

B. The Resolvent Operator

For reasons which will become clear in a moment, the best way to calculate 〈ψ0|eitH |ψ0〉 for t > 0, is in terms of
the resolvent operator 1/(H − z). This is because the matrix elements of the resolvent operator are directly related
to the Laplace transform of the function in question. Explicitly, consider the Laplace transform

ψ00(z) =
∫ ∞

0

dt e−zt 〈ψj |e−itH |ψ0〉, (38)

where z = c + iω for fixed c > 0 and −∞ ≤ ω ≤ ∞. Because, in our simplified problem, the eigenvalues of H are real
and finite in number, this function is obviously well defined for z in the right-half complex z-plane, and for t ≥ 0 the
inverse transform is given by the contour integral

〈ψj |e−itH |ψ0〉 =
1

2πi

∫ c+∞

c−i∞
ψ00(z)eztdz. (39)

The function is defined in the full complex plane by analytic continuation.
Carrying out the integration in Eq. 38 yields

ψ00(z) = −i〈ψ| 1
H − iz

|ψ〉. (40)

Because the resolvent operator only has poles at the discrete eigenvalues of the operator H, it is convenient to
substitute z → iz and redefine the contour in Eq. 39 to obtain

〈ψ|eitH |ψ〉 = −
∫ −∞+ic

∞+ic

dz 〈ψ| 1
H − z

|ψ〉e−itz (41)

where we have assumed t ≥ 0. Obviously, the same thing can be done for two different states; i.e.,

〈χ|eitH |ψ〉 = −
∫ −∞+ic

∞+ic

dz 〈χ| 1
H − z

|ψ〉e−itz (42)
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The reason for focusing on the resolvent operator is that it will be easy to compute the relevant matrix elements of
the resolvent operator exactly. This is because the resolvent operator satisfies the equation

1
H − z

=
1

H0 − z
− 1

H0 − z
V

1
H − z

, (43)

and therefore the matrix element of interest satisfies the corresponding equation

〈ψ| 1
H − z

|ψ〉 = 〈ψ| 1
H0 − z

|ψ〉 − 〈ψ| 1
H0 − z

V
1

H − z
|ψ〉, (44)

which can be solved by iteration to obtain the formal solution

〈ψ| 1
H − z

|ψ〉 = 〈ψ| 1
H0 − z

∞∑
n=0

(−V
1

H0 − z
)n|ψ〉. (45)

For our problem, this sum can be evaluated in closed form because the state |ψ0〉 is an eigenstate of H0 with
eigenvalue E0 and the only non-vanishing matrix elements of V are of the form V0j = 〈ψ0|V |ψn〉. From this it follows
that the sum in Eq. 45 reduces to a geometric series, which is easily summed to give

〈ψ0| 1
H − z

|ψ0〉 =
1

E0 − z

∞∑
p=0


∑

j

〈ψ0|V |ψj〉〈ψj |V |ψ0〉
(E0 − z) (Ej − z)




p

=
1

E0 − z −∑
j
|〈ψ0|V |ψj〉||2

Ej−z

. (46)

To cast this into a more useful form multiply both the numerator and denominator of the expression by
∏

j(Ej −
z) and rewrite it a rational polynomial. Since the poles of the resolvent operator correspond to the zeros of the
denominator, we see that we can rewrite the resulting expression as

〈ψ0| 1
H − z

|ψ0〉 =
1

E0 − z −∑
j
|V0j |2
Ej−z

=

∏N
j=1(Ej − z)

∏N
j=0(Ēj − z)

, (47)

where we denote the eigenvalues of H as Ēj . Clearly, the Ēj ’s can always be written in terms of the corresponding
eigenvalues of H0 as

Ēj = Ej + δj , (48)

and thus it is the quantities δj which remain to be determined.
Eq. 47 is exact, independent of the size of V . However, since the matrix elements of V are assumed to be quite

small, it is useful to rewrite it in a way that allows us to compute the δj ’s perturbatively. To do this, begin by
rewriting the second term in Eq. 47 as

N∏

j=0

(Ēj − z) =
N∏

j=0

(Ej − z) − |V01|2
N∏

j=2

(Ej − z)

− |V02|2(E1 − z)
N∏

j=2

(Ej − z) − . . .− |V0p|2
p−1∏

j=1

(Ej − z)
N∏

l=p+1

(El − z)

− . . .− |V0N |2
N−1∏

j=1

(Ej − z). (49)

Since |V0j |2 ¿ 1 this implies δj ≈ |V0j |2. Thus, for example, setting j = 0 and choosing z = E0 + δ0, the equation
becomes

0 = −δ0

N∏

j=1

(Ej − E0)− |V01|2
N∏

j=2

−|V02|2 (E1 − E0)
N∏

j=3

− . . . − |V0p|2
p−1∏

j=1

(Ej − E0)
N∏

l=p+1

(El − E0)− . . . − |V0N |2
N−1∏

j=1

(Ej − E0), (50)
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or, in other words,

δ0 = −
N∑

j=1

|V0j |2
Ej − E0

. (51)

The other energy shifts are obtained in a similar manner. For example, if we set z = Ē1 = E1 + δ1 then, to lowest
order in δ1 or |V0j |2, the equation becomes

0 = (E0 − E1) (−δ1)
N∏

j=2

(Ej − E1).− |V01|2
N∏

j=2

(Ej − E1) (52)

This is true because the other terms take the form

−|V02|2 (−δ1)
N∏

j=3

(Ej − E1) − . . . − |V0m|2 (−δ1)
m−1∏

j=2

(Ej − E1)
N∏

l=m+1

(Ej − E1), (53)

which are all of second order in the perturbation. Thus, finally, we have

δ1 =
|V01|2

E0 − E1
. (54)

Similarly, we for all other values of j we obtain

δj = − |V0j |2
E0 − Ej

. (55)

(Note, I have implicitly assumed that the spacing between the levels Ej is larger than the typical value of |V0j |2 and
that E0 is not degenerate with any of the Ej ’s. The second restriction is easy to remove, since if E0 ≈ Ej for some j,
then all we have to treat the computation of δ0 and δj more carefully, solving a quadratic equation for the two roots.
All the other δj ’s remain unchanged. If however the spectrum of the Ej ’s becomes dense, then one has to do a more
careful job for the levels which lie within a distance of order |V0j |2 of E0.)

These results are half of what we need to reconstruct the full time dependence of 〈ψ0|eitH |ψ0〉. From Eq. 39 we see
that since the matrix element of the resolvent operator is a sum of simple poles, we can get the full time dependence
of the matrix element by closing the contour, once we know the residues of the poles. Fortunately, given our previous
discussion, it is easy to compute the residues of the poles. First, we rewrite Eq. 47 as

〈ψ0| 1
H − z

|ψ0〉 =
1

E0 − z −∑
j
|V0j |2
Ej−z

=

∏N
j=1(Ej − z)

∏N
j=0(Ēj − z)

=

∏N
j=1(Ēj − z − δj)∏N

s=0(Ēs − z)
, (56)

and expand the result to first order in δj . This yields the equation

〈ψ0| 1
H − z

|ψ0〉 =
1

Ē0 − z


1−

N∑

j=1

δj

Ēj − z


 . (57)

Next, we note that Eq. 57 explicitly shows that there is a pole at every value z = Ēj , so it becomes a simple matter
to compute the residues to the same order in the perturbation. Letting z → E0 we obtain the result

r0 = −

1−

N∑

j=1

δj

Ēj − Ē0


 , (58)

and, similarly, letting z → Ēj we obtain

rj = − δj

Ēj − Ē0
. (59)
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Combining these results, we see that the amplitude for finding the particle in the state |ψ0〉, at any time t, is given
by

〈ψ0| ei H t |ψ0〉 =
N∑

j=0

−rje
−iĒj t. (60)

It follows from evaluating Eq. 60 at t = 0 that

r0 +
N∑

j=1

rj = −1, (61)

which is easily shown to be true.
To get the amplitude for making a transition to state |ψm〉, we have to compute

〈ψm| 1
H − z

|ψ0〉. (62)

However, since V only causes a transition from |ψm〉 to |ψ0〉, it follows from the integral equation

1
H − z

=
1

H0 − z
− 1

H0 − z
V

1
H − z

(63)

that

〈ψm| 1
H − z

|ψ0〉 =
Vm0

Em − z

(∏N
j=1(Ej − z)

∏N
l=0(Ēl − z)

)
. (64)

Canceling the factors of (Ej − z) we obtain

〈ψm| 1
H − z

|ψ0〉 = Vm0

∏m−1
j=1 (Ēj − z − δj)

∏N
l=m+1(Ēl − z − δl)∏N

k=0(Ēk − z)
. (65)

Expanding this expression to first order in the δ’s we obtain

r̃0 = − Vm0

Ēm − Ē0
+

m−1∑

j=1

δj

(Ēm − Ē0) (Ēj − Ē0)

N∑

l=m+1

δl

(Ēm − Ē0) (Ēl − Ē0)

r̃m = − Vm0

Ē0 − Ēm
+

m−1∑

j=1

δj

(Ē0 − Ēm) (Ēj − Ēm)

N∑

l=m+1

δl

(Ē0 − Ēl) (Ēl − Ēm)

r̃j =
δj

(Ē0 − Ēj) (Ēm − Ēj)
, where j 6= 0and j 6= m (66)

It is important to check that this solution gives the correct boundary condition that at t = 0; i.e., 〈ψm| ei H t |ψ0〉 = 0.
Clearly, this is the same as requiring that the sum of the residues r̃j vanish. Applying the preceding result we see
that

r̃0 + r̃m =
m−1∑

j=1

δj

Ēm − Ē0

(
1

Ēj − Ē0
− 1

Ēj − Ēm

)
+

N∑

j=m+1

δj

Ēm − Ē0

(
1

Ēj − Ē0
− 1

Ēj − Ēm

)

=
m−1∑

j=1

−δj

(Ēj − Ē0) (Ēj − Ēm)
+

N∑

l=m+1

−δl

(Ēl − Ē0) (Ēl − Ēm)
, (67)

and therefore,

r̃0 + r̃m +
m−1∑

j=1

r̃j +
N∑

l=m+1

r̃l = 0, (68)
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which is the desired result.
Given these formulas, we can now write the time-dependent state |ψ0(t)〉 as

|ψ0(t)〉 = eitH |ψ0〉 =
N∑

m=0

〈ψm|eitH |ψ0〉|ψm〉. (69)

It is easy to see that in the case where the eigenvalues of H0 are widely spaced on the scale of |V0j |2, the largest
residues, and therefore the largest contribution to |ψ0(t)〉, comes from |ψ0〉 and the state |ψm〉 for which Em − E0

takes the smallest value. If, however, one takes the limit in which the levels in the right well become dense, as would
be the case if we made the right hand minimum very flat and very wide, then things change. The formula Eq. 46
remains exact, but now the sum over levels is best approximated by an integral over a continuous variable E; i.e.,

〈ψ0| 1
H − z

|ψ0〉 =
1

E0 − z

∞∑
p=0

(∫ Emax

Emin

〈ψ0|V |ψ(E)〉〈ψ(E)|V |ψ0〉
(E0 − z) (Ej − z)

)p

=
1

E0 − z − ∫ Emax

Emin

|〈ψ0|V |ψ(E)〉||2
E−z

. (70)

Now, since E0 lies in the region of integration, we see immediately from the fact that the integral develops an
imaginary part for Emin ≤ z ≤ Emax that the resolvent operator no longer has a pole at real z ≈ E0. Instead, the
zero of the denominator, and thus the pole of the resolvent operator, moves off to a complex value of z on the second
sheet of the function. Now, in order to compute the time dependence of the state one has to deform the contour for
the inverse transform and pick up this pole, giving the usual exponential decay of the state |ψ0〉, plus a background
integral that does not decay exponentially in t for large t.

VI. A LOOK AHEAD TO FIELD THEORY

Before concluding it is worth taking a quick look ahead to the case of an interacting scalar field theory, to see how the
techniques of adaptive perturbation theory can be used to non-perturbatively derive the structure of renormalization.
In this section I will focus on a simple calculation that gives a non-perturbative approximation to mass renormalization
and leave the discussion of how one can capture the structure of wavefunction and coupling constant renormalization
to the next paper.

For the sake of this introduction to the application of the techniques of adaptive perturbation theory to a field
theory, I will focus on the case of a self-interacting scalar field, with a Hamiltonian of the form

H =
∫

dnx

[
1
2
Πφ(x)2 +

1
2
∇φ(x) · ∇φ(x) +

λ

6
φ(x)4

]
, (71)

where the spatial dimension n can be arbitrary. In what follows I assume that everything is defined in a finite
volume, V , so that momenta are discrete. This isn’t necessary, but it will make all of the manipulations which follow
well-defined. Given this assumption, the Fourier transforms of the field and its conjugate momentum are defined to
be

φ(~k) =
1√
V

∫
dnxe−i~k·~xφ(x) ; Πφ(~k) =

1√
V

∫
dnxe−i~k·~xΠφ(x). (72)

In terms of these operators the Hamiltonian can be rewritten as

H =
∑

~k

[
Πφ(−~k)Πφ(~k)

2
+

(~k · ~k + m2)
2

φ(~k)φ(−~k)

]
+

λ

6
1
V

∑

~ki

φ(~k1) φ(~k2)φ(~k3) φ(~k4)δ(
4∑

i=1

~ki). (73)

At this point I set up the adaptive perturbation theory calculation by defining γ(k)-dependent annihilation and
creations operators as follows,

φ(~k) = i

√
γ(~k)

2
(A(−~k)† −A(~k)) ; Π(~k) =

(A(−~k)† +A(~k))√
2 γ(~k)

, (74)

and define the associated vacuum state for this choice of γ(~k)’s,

|vac〉 =
∏

k

|0γ(k)〉, (75)
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by the condition that it be annihilated by all the A(~k)’s.
Adaptive perturbation theory around this vacuum state is now determined by minimizing the vacuum expectation

value of the Hamiltonian with respect to all of the γ(~k)’s. It follows directly from these definitions that the function
to be minimized is

〈vac|H |vac〉 =
∑

k

[
γ(~k)

4
+

(~k · ~k + m2)

4 γ(~k)

]
+

λ

4V


∑

~k

1

γ(~k)




2

. (76)

Obviously, if the range of the momenta appearing in these sums are unrestricted, these expressions diverge, as
happens in all field theories. In the context of perturbation theory one usually deals with this problem by regulating
the integrals and then adding counterterms to the Lagrangian to cancel these divergences. Since I wish to discuss this
theory non-perturbatively, I will adopt a different strategy; namely, I will render the theory well defined by restricting
the operators φ(~k) and Πφ(~k) to be finite in number. This can be done in a variety of ways. One is to put the theory
on a lattice by defining the momentum components to be kµ(j) = 2πj/Lµa, where Lµ is the size of the lattice in the
µ direction, a is the lattice spacing and j is an integer running from −Lµ/a ≤ j ≤ Lµ/a. Another way to accomplish
the same thing, is to keep only those operators φ(~k) and Πφ(~k) for which ~k ·~k ≤ Λ. Since nothing I will say from this
point on requires that I specify a particular scheme, I avoid making any detailed assumptions.

Minimizing Eq. 76 with respect to each γ(~k) yields

1
4
− (~k · ~k + m2)

4 γ(k)2
− λ

2γ(~k)2


 1

V

∑

~k′

1

γ(~k′)


 = 0, (77)

which can be rearranged to give

γ(k)2 = ~k · ~k + m2 + 2 λ


 1

V

∑

~k′

1

γ(~k′)


 . (78)

Setting ~k = 0 we obtain

γ(0)2 = m2 + 2 λ


 1

V

∑

~k′

1

γ(~k′)


 , (79)

which can be substituted into Eq. 78 to give

γ(~k)2 = ~k · ~k + γ(0)2. (80)

Substituting this expression into the equation for γ(0), it becomes the non-perturbative equation

γ(0)2 = m2 + 2 λ
1
V

∑

~k′

1√
~k′ · ~k′ + γ(0)2

, (81)

which is reminiscent of the Nambu Jona-Lasinio equation. This equation obviously has a solution, since the formula
for the vacuum energy clearly diverges both at γ(0) = 0 and γ(0) = ∞ and is finite in between. At this point we
can take the infinite volume limit and replace the sum over ~k’s by an integral up to some cut-off Λ. In this case the
equation to be solved becomes

γ(0)2 −m2 = 2 λ
2p

(2π)p

∫ Λ

0

kp−1dk
1√

~k · ~k + γ(0)2
. (82)

The simplest way to understand the general properties of the solution to this equation is to graph the left and right
hand sides as a function of γ(0) and see where they cross. Clearly, the graph of the left hand side of Eq. 82 is a
parabola that intersects the vertical axis at −m2. The graph of the right hand side of the equation starts at some
large (or in 1+1-dimension infinite) value and then drops monotonically to zero as γ(0) → ∞. Generically, since for
finite γ(0) ¿ Λ, the integral is proportional to Λp−1 for p > 1, and ln(Λ) for p = 1, the point where the parabola
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crosses the graph of the integral will be for large γ(0). The only way to have the graphs cross for a value of γ(0)
that is small with respect to Λ is to make m2 large and negative. In fact, one should really think of Eq. 82 not as an
equation for γ(0), but rather as an equation for m2; i.e., rewrite it as

m2 = γ(0)2 − 2 λ
2p

(2π)p

∫ Λ

0

kp−1dk
1√

~k · ~k + γ(0)2
(83)

and then arbitrarily pick a value of γ(0) and use this equation to determine for what value of m2 the chosen value
of γ(0) will minimize the ground state energy density. This is, of course, nothing but a non-perturbative way of
determining the leading mass renormalization counter term.

While this discussion is amusing, it does nothing to show what one has to do to similarly understand wavefunction
and coupling constant renormalization in a non-perturbative context. That discussion will be the subject of the second
paper in this series.

VII. REPRISE

It was my purpose in this paper to introduce the notion of adaptive perturbation theory as a way of perturbatively
computing quantities that one heretofore didn’t know how to compute in any simple way. I focused on problems in
ordinary quantum mechanics, such as the pure anharmonic oscillator and the problem of computing the eigenstates
of generic double-well problems, as well as computing tunneling between states in distinct wells, in order to exhibit
the versatility of the technique. Finally, I discussed the simplest way to begin to apply these techniques to a field
theory in order to obtain a better behaved perturbation expansion independent of the size of the interaction term. In
addition, I tried to indicate how the same approach would allow one to non-perturbatively approach the computation
of renormalized quantities.

In the next paper I will show how to extend these techniques to non-perturbatively capture the full structure of
renormalization. I will also show how something related to the running coupling constant appears and explain why
this approach essentially forces one to discuss the computation of scattering amplitudes in a way that is intimately
related to the approach used in the parton model.

The key point I would like the reader to take away from this discussion is that, in an interacting theory, the
perturbation theory one uses to compute an interesting quantity must be adapted to the problem at hand. Although
a variational computation based on energy considerations is the tool used to define the appropriate parameters to be
used when dividing the Hamiltonian up into an unperturbed part and and an interaction term, it is the perturbation
theory based upon this division which is crucial to computing quantities other than the energy of a state. This
observation takes us beyond more usual variational methods which cannot be usefully applied to compute matrix
elements of general operators, or scattering amplitudes in a field theory.

VIII. ACKNOWLEDGEMENTS

I would like to thank Carl Bender for useful communications and in particular for pointing out to me the existence
of the papers by Halliday and Suranyi[1].

APPENDIX A. SOME OPERATOR IDENTITES

This appendix is devoted to reminding the reader how to derive useful normal ordering identities that are useful
for carrying out the computations I have already described, as well as the computations in Appendix B.

Theorem:

eα(A†γ+Aγ) = eα2/2 eαA†γ eαAγ (84)

Proof: Assume

eα(A†γ+Aγ) = ef(α) eg(α)A†γ eh(α)Aγ (85)
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and differentiate with respect to α to obtain

(A†γ + Aγ) eα(A†γ+Aγ) =
[

d

dα
f(α) +

d

dα
g(α)A†γ +

d

dα
h(α) eg(α)A†γ eh(α)Aγ e−g(α)A†γ

]
ef(α) eg(α)A†γ eh(α)Aγ . (86)

Successive differentiation of the term eg(α)A†γ eh(α)Aγ e−g(α)A†γ with respect to α gives the identity

eg(α)A†γ eh(α)Aγ e−g(α)A†γ =
∑

n

(g(α)n

n!
[A†γ , [A†γ , [. . . , [A†γ , Aγ ]]] . . .]n. (87)

Observing that [A†γ , Aγ ] = −1 allows us to rewrite this as

eg(α)A†γ eh(α)Aγ e−g(α)A†γ = Aγ − g(α) (88)

Substitute this into Eq. 86 and cancel the factor of eα(A†γ+Aγ) against the term ef(α) eg(α)A†γ eh(α)Aγ on the right hand
side of the equation to obtain

(A†γ + Aγ) =
d

dα
f(α) +

d

dα
g(α)A†γ +

d

dα
h(α) (Aγ − g(α)) . (89)

Equating coefficients of A†γ , Aγ and the unit operator yields the following differential equations:

d

dα
g(α) = 1 ;

d

dα
h(α) = 1 ;

d

dα
f(α) = g(α)

d

dα
h(α) (90)

The initial conditions f(0) = 0,g(0) = 0 and h(0) = 0 follow from the fact that eα(A†γ+Aγ) is the identity operator for
α = 0. Given these boundary conditions, it follows directly that

g(α) = α ; h(α) = α ; f(α) =
α2

2
, (91)

which is what we wished to prove.

A similar calculation proves the following result:

Theorem:

eα(A†γ−Aγ) = e−α2/2 eαA†γ e−αAγ (92)

This identity is used to compute, among other things, the overlap 〈0γ |e−icp|0γ〉 as follows:

〈0γ |e−icp|0γ〉 = 〈0γ |ec
√

γ
2 (A†γ−Aγ)|0γ〉 = e−c2γ/4 〈0γ | ec

√
γ
2 A†γ ec

√
γ
2 Aγ |0γ〉 = e−c2γ/4, (93)

since, by assumption, Aγ |0γ〉 = 0

I mentioned that there was a simple expression for the state |0γ〉 in terms of the states built upon |0γ′〉. The explicit
form of this relation is the following:

Theorem:

|0γ〉 =
√

1− tanh(β)2 e−
1
2 tanh(β) A†γ

2 |0γ′〉, (94)

where tanh(β) = (γ − γ′)/(γ + γ′).

Proof: Given that we introduced that γ-dependent annihilation and creation operators as

x =
A†γ + Aγ√

2γ
; p = i

√
2
γ

(A†γ −Aγ) (95)
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it follows that for two different values of γ

Aγ =
1
2

(γ + γ′)√
γ γ′

Aγ′ +
1
2

(γ − γ′)√
γ γ′

A†γ′ . (96)

By definition Aγ |0γ〉 = 0. Thus we have

1
2

(γ + γ′)√
γ γ′

Aγ′ |0γ〉+
1
2

(γ − γ′)√
γ γ′

A†γ′ |0γ〉 = 0. (97)

Now, consider a state of the form

e
λA†

γ′
2

|0γ′〉. (98)

Requiring that Aγ annihilates this state is equivalent to the statement

1
2

(γ + γ′)√
γ γ′

Aγ′e
λ (A†

γ′ )
2

|0γ′〉+
1
2

(γ − γ′)√
γ γ′

A†γ′e
λ (A†

γ′ )
2

|0γ′〉 = 0. (99)

Moving the factor e
λA†

γ′
2

to the left of each term we obtain

e
λA†

γ′
2
[
1
2

(γ + γ′)√
γ γ′

e
−λ (A†

γ′ )
2

Aγ′ e
λ (A†

γ′ )
2

+
1
2

(γ − γ′)√
γ γ′

A†γ′

]
|0′γ〉 = 0. (100)

Once again, expanding the term e
−λA†

γ′
2

Aγ′ e
λA†

γ′
2

in multiple commutators we obtain the results that Aγ will
annihilate the state if and only if

λ
(γ + γ′)√

γ γ′
+

1
2

(γ − γ′)√
γ γ′

= 0, (101)

or, in other words, if

λ =
1
2

(
γ − γ′

γ + γ′

)
= tanh(β). (102)

This is what had to be proved.

Finally, the normalization factor come from the identity

e
λ A†

γ′
2

|0γ′〉 =
∞∑

n=0

λn

n!

√
2n!|2nγ′〉 (103)

The norm squared of this state is given by the sum

∞∑
n=0

λ2n

n!2
2n! =

1√
1− 4λ2

, (104)

so the normalized state is

|0γ〉 = (1− tanh(β)2)1/4 e
1
2 tanh(β) A†

γ′
2

|0γ′〉. (105)

It is worth noting that another way to derive this result is to observe that

e
β
2 (A†2−A2) (106)

is a unitary operator that satisfies the relation

e
β
2 (A†2−A2) = e−

1
2 tanh(β)A†2 e− ln(cosh(β)) (A†A+ 1

2 ) e
1
2 tanh(β)A†2 . (107)

This result is proven in much the same way as the other normal ordering relations. Putting back the appropriate γ′

dependence in this equation and applying the operator to the state |0γ′〉 gives the desired result.
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APPENDIX B. DETAILS OF DOUBLE WELL CALCULATION

As we already noted, the two degenerate variational states for non-vanishing f2 are defined as:

|χ(c, γ)〉 = e−icp|ψγ(c)〉 (108)

and

|χ(−c, γ)〉 = eicp|ψγ(−c)〉 (109)

(assuming c > 0 throughout).

Once one has found the best choice of variational parameters, still lower energy states are obtained by forming the
even and odd parity combinations:

|ψeven(γ)〉 =
1

Neven
( |χ(c, γ)〉+ |χ(−c, γ)〉 ) (110)

and

|ψodd(γ)〉 =
1

Nodd
( |χ(c, γ)〉 − |χ(−c, γ)〉 ) , (111)

where Neven and Nodd are normalization factors.

To evaluate the normalization factors Neven and Nodd we need to compute the scalar product 〈χ(c, γ)|χ(−c, γ)〉
as well as overlap elements 〈χ(c, γ)|H|χ(−c, γ)〉. The diagonal scalar products are obviously unity and the diagonal
expectation values of the Hamiltonian are taken to be the values that minimize E(c, γ).

Expressing p as a sum of annihilation and creation operators and using the identity for computing the normal
ordered exponential, Eq. 92, allows one to rewrite the overlap as

〈χ(−c, γ)|χ(c, γ)〉 = 〈ψ−c(γ)|e−2icp|ψc(γ)〉 = e−c2γ〈ψ−c(γ)|ec
√

2γA†γ e−c
√

2γAγ |ψc(γ)〉 = e−c2γ〈φ−c(γ)|φc(γ)〉, (112)

where the states 〈φc(γ)| and |φ−c(γ)〉 are defined in terms of the states

|ψc(γ)〉 =
1√

1 + x(c)2
|ψ0(γ)〉 − x(c)√

1 + x(c)2
|ψ1(γ)〉 (113)

and

|ψ−c(γ)〉 =
1√

1 + x(c)2
|ψ0(γ)〉+

x(c)√
1 + x(c)2

|ψ1(γ)〉, (114)

(where x(c) is given by the formula for positive c), to be

|φc(γ)〉 = e−c
√

2γAγ |ψc(γ)〉 (115)

and

|φ−c(γ)〉 = ec
√

2γAγ |ψ−c(γ)〉. (116)

Since the state |ψc(γ)〉 contains only n = 0 and n = 1 states, only the first two terms in the expansion of the
exponential act. Thus, it follows that

|φc(γ)〉 = e−c
√

2γ Aγ |ψc(γ)〉 =

(
1 + c

√
2γ x(c)√

1 + x(c)2

)
|ψ0(γ)〉 − x(c)√

1 + x(c)2
|ψ1(γ)〉 (117)
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and

|φ−c(γ)〉 = ec
√

2γ Aγ |ψ−c(γ)〉 =

(
1 + c

√
2γ x(c)√

1 + x(c)2

)
|ψ0(γ)〉+

x(c)√
1 + x(c)2

|ψ1(γ)〉, (118)

so the overlap is

〈χ(−c, γ)|χ(c, γ)〉 = e−c2γ〈φ−c(γ)|φc(γ)〉 = e−c2γ

(
1 + c

√
2γ x(c)

)2 − x(c)2

1 + x(c)2
. (119)

Thus, the normalization for the state |ψeven(γ)〉 is

Neven =
√

(1 + 〈χ(−c, γ)|χ(c, γ)〉). (120)

Similarly

Nodd =
√

2(1− 〈χ(−c, γ)|χ(c, γ)〉). (121)

Finally, to compute the formula for the expectation value of H in the state |ψeven(c, γ)〉 or |ψodd(c, γ)〉, we need the
following identities:

e−icp H(p, x) eicp = H(p, x− c)
eicp H(p, x) e−icp = H(p, x + c)

e−icp H(p, x) e−icp = H(p, x− c) e−2icp = e−c2γ H(p, x− c) ec
√

2γA†γ e−c
√

2γAγ

= e−c2γ ec
√

2γA†γ H(p− icγ, x) e−c
√

2γAγ

eicp H(p, x) eicp = H(p, x + c) e2icp = e−c2γ H(p, x + c) ec
√

2γA†γ ec
√

2γAγ

= e−c2γ e−c
√

2γA†γ H(p + icγ, x) ec
√

2γAγ . (122)

We then need to evaluate these expressions between the states |ψc(γ)〉 and |ψ−c(γ)〉. Clearly, the first two terms are
equal to E(λ, f2, c, γ)min, which is the minimum value of E(λ, f2, c, γ) obtained by minimizing with respect to c and
γ, since the minima are degenerate.

Given these identities, it is straightforward to evaluate

〈ψeven|H|ψeven〉 =
1

N2
even

[〈χ(c, γ)|H(p, x)|χ(c, γ)〉+ 〈χ(−c, γ)|H(p, x)|χ(−c, γ)〉
+ 〈χ(−c, γ)|H(p, x)|χ(c, γ)〉+ 〈χ(c, γ)|H(p, x)|χ(−c, γ)〉] . (123)

Clearly, the first two terms evaluate to the function E(λ, f2, c, γ) and the remaining terms are

〈χ(−c, γ)|H(p, x)|χ(c, γ)〉 = e−c2γ〈(1 + c
√

2γAγ)ψ−c(γ)|H(p− icγ, x)|(1− c
√

2γAγ)ψc(γ)〉 (124)

and

〈χ(c, γ)|H(p, x)|χ(−c, γ)〉 = e−c2γ〈(1− c
√

2γAγ)ψc(γ)||H(p + icγ, x)|(1 + c
√

2γAγ)ψ−c(γ)〉. (125)

Explicit substitution of the shifted definition of p in H yields

H(p− icγ, x) = H(p, x)− icγp− c2

2
γ2 (126)

and

H(p + icγ, x) = H(p, x) + icγp− c2

2
γ2. (127)

To relate the two cross-terms it is helpful to observe that

〈χ(−c, γ)|O|χ(c, γ)〉 = 〈χ(c, γ)|O†|χ(−c, γ)〉∗. (128)
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Since i p is anti-hermitian, we get a minus sign for that term and plus signs for all the others. Note that the expectation
value of H(p, x) that appears in the cross terms is obtained from Eq. 29 setting c = 0 and evaluating the result between
the states 〈φ−c(γ)| and |φc(γ)〉.

The result for the expectation value of the Hamiltonian in the variational states |ψeven〉 and |ψodd〉 is:

〈ψeven|H|ψeven〉 =
2

N2
even

[
E(λ, f2, c, γ) +

e−c2 γ

1 + x(c)2

(
(1 +

√
2γ c x(c))2

(
γ

4
+

λ f4

6
+

λ

8γ2
− λf2

6γ
− c2 γ2

2

)

+ 2 x(c) (1 +
√

2γ c x(c)) c γ

√
γ

2
− x(c)2

(
5λ

8γ2
+

3γ

4
− λ f2

2γ
+

λ f4

6
− c2γ2

2

))]
(129)

and

〈ψodd|H|ψodd〉 =
2

N2
even

[
E(λ, f2, c, γ)− e−c2 γ

1 + x(c)2

(
(1 +

√
2γ c x(c))2

(
γ

4
+

λ f4

6
+

λ

8γ2
− λf2

6γ
− c2 γ2

2

)

+ 2 x(c) (1 +
√

2γ c x(c)) c γ

√
γ

2
− x(c)2

(
5λ

8γ2
+

3γ

4
− λ f2

2γ
+

λ f4

6
− c2γ2

2

))]
(130)

Clearly, so long as the factor e−c2 γ is small, the splitting between the even and odd states is quite small. Thus
the tunneling between the left and right states is slow. When we go to smaller values of f or larger values of n,
the tunneling rate increases, and at f = 0, minimizing 〈ψeven|H|ψeven〉 and 〈ψodd|H|ψodd〉 with respect to γ and c
leads to energies that agree in accuracy with the second order adaptive perturbation theory calculation for the pure
anharmonic oscillator, which was done without using the shifted wavefunction. Thus, as expected, including the shift
includes the effects of the second order computation.
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