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We are concerned with coherent longitudinal motion in a storage ring, especially with situations
in which coherent synchrotron radiation (CSR) can influence stability of the beam. The collective
force from CSR is usually described by an impedance or a wake function in such a way that the
force depends only on the charge distribution at the present time. This description is exact only for
a rigid bunch, since causality demands that the force depend on the prior history of the bunch. We
show how to treat a deforming bunch by applying the “complete impedance” Z(n, ω), a function
of wave number and frequency. We derive this impedance and study its analytic properties for a
special model: radiation from circular orbits shielded by parallel plates representing the metallic
vacuum chamber. We analyze the corresponding collective force, obtaining the usual formula as a
first approximation, plus easily computed corrections that depend on present and prior values of the
time derivative of the charge density. In related papers we have applied these results in numerical
simulations of instabilities induced by CSR.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

The concept of impedance is often invoked to discuss
beam stability in storage rings [1], for both longitudi-
nal and transverse motion. The longitudinal impedance,
which is presently our main object of interest, specifies
the longitudinal collective force acting on the beam it-
self, in a particular electromagnetic environment. Conse-
quently, it specifies a feedback mechanism that can lead
to instabilities at sufficiently high current. One often
thinks of the impedance as primarily a property of the
environment, namely the metallic vacuum chamber sur-
rounding the beam, but it can also include effects of space
charge and trajectory curvature that are present even in
the absence of a vacuum chamber.

The idea of impedance, at least in its usual elementary
form, has significant limitations. It is useful primarily
when the transverse extent of the beam can be neglected.
Even in that case it does not give the exact form of the
wake field unless the charge distribution is rigid (indepen-
dent of time in the beam frame). To express the collective
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force on an evolving distribution the common practice is
to adopt the formula for the rigid case, merely replacing
the rigid distribution by the evolving one evaluated at
the present time. This is not correct in principle, since
causality and the finite velocity of light demand that the
present field depend on prior values of its source. This is
obvious in the case of particles following a curved trajec-
tory, since a wave emitted from a bunch at a particular
time can catch up with the bunch at a later time when
the bunch has an altered form.

In this report we extend the scope of the impedance
description to account for retardation with bunch defor-
mation. This requires a function Z(n, ω) of two variables
(wave number and frequency). We call this function the
complete impedance, to distinguish it from the impedance
as conventionally defined which is Z(n) = Z(n, nω0),
where ω0 is the angular revolution frequency. We call
Z(n) the elementary impedance. We derive and ana-
lyze the complete impedance only for a special model,
the case of radiation from circular orbits with a paral-
lel plate model of the vacuum chamber. The analysis
points to certain features that can be expected in a more
general setting, but also features that must be quite pe-
culiar to the model. At present we cannot offer a model-
independent version of the extended impedance picture,
but we expect that other explicitly soluble models can be
analyzed along the lines of the present study.
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The collective force as expressed in terms of Z(n, ω)
involves a sum on n and integrals on ω and the time t,
and is therefore expensive to evaluate numerically. For-
tunately, one can find systematic approximations to the
force that are easy to compute.

Much of the present analysis was motivated by our
work on numerical simulation of many-particle longitudi-
nal dynamics in the presence of CSR [2–4]. Accordingly,
the viewpoint of the following is that the evolving charge
density is not a given function, but is determined dynam-
ically in a self-consistent manner. For that we carried
out a time-domain integration of the nonlinear Vlasov or
Vlasov-Fokker-Planck equation, but macroparticle simu-
lations could be used as well.

In Section II we find the general form of the longi-
tudinal collective force, and also the radiated power, in
terms of the complete impedance and the time depen-
dent Fourier transform of the charge distribution. The
expression for the force must be evaluated anew at each
time step in a self-consistent simulation. Since an evalu-
ation of the exact formula would be too expensive, it is
essential to find good approximations that are easier to
compute. In Section III we derive a systematic sequence
of approximations. At lowest order we find the simple
adaptation of the rigid bunch formula mentioned above,
which was employed in Refs. [2, 3]. The first correction,
which was explored numerically in [4], involves present
and prior values of the time derivative of the charge den-
sity. The work of Sections II and III depends on detailed
analytic properties of the complete impedance, which are
determined in Section IV. We find both the longitudinal
and transverse forces, although it is usually believed that
the latter have minor dynamical importance. Section V
gives a summary and the outlook for further work.

II. COLLECTIVE FORCE IN TERMS OF THE
COMPLETE IMPEDANCE

We work in cylindrical coordinates (r, θ, y), with the y-
axis perpendicular to perfectly conducting infinite plates
located at y = ±g , h = 2g. We suppose that the
charge/current distribution has the form of a “vertical
ribbon beam”. In the bunch frame the line density is
λ(θ, t), and in the laboratory frame the normalized par-
ticle density ρ and current density J are as follows:

ρ(r, θ, y, t) = λ(θ − ω0t, t)
δ(r −R)

R
H(y) ,

J = ( Jr, Jθ, Jy ) = ( 0, Qβ0cρ, 0 ) ,
∫ 2π

0

λ(θ, t)dθ = 1 , λ(θ + 2π, t) = λ(θ, t) ,

∫ g

−g

dyH(y) = 1 , (1)

where Q = ∓eN is the total charge and ω0 = β0c/R is
the angular velocity.

We shall define the impedance in terms of the mean
value of the longitudinal electric field with respect to the
transverse distribution:

E(θ, t) =
∫ ∞

0

rdr

∫ g

−g

dy
δ(r −R)

R
H(y)Eθ(r, θ, y, t)

=
∫ g

−g

Eθ(R, θ, y, t)H(y)dy . (2)

By (1) the beam current is

I(θ, t) =
∫ ∞

0

dr

∫ g

−g

dyJθ(r, θ, y, t) = Qω0λ(θ − ω0t, t) ,

(3)
which has the formal Fourier transform

Î(n, ω) =
1

(2π)2

∫ ∞

−∞
dteiωt

∫ 2π

0

dθe−inθI(θ, t)

=
Qω0

2π

∫ ∞

−∞
dtei(ω−nω0)tλn(t) , (4)

where

λn(t) =
1
2π

∫ 2π

0

dθe−inθλ(θ, t) . (5)

Depending on the model of λn(t), the formal transform
(4) is not necessarily a proper Fourier transform. For
instance it may contain a delta-function component, as
in the idealized case of a rigid bunch with λn(t) = λn =
const. In that case we have

Î(n, ω) = Qω0λnδ(ω − nω0) . (6)

To allow a deforming bunch we apply the Laplace
transform rather than the Fourier transform, redefining
Î to be

Î(n, ω) =
Qω0

2π

∫ ∞

0

ei(ω−nω0)tλn(t)dt , Im ω > 0 . (7)

To maintain contact with the familiar notation of Fourier
analysis, we use ω rather than the conventional Laplace
variable s = −iω as the variable conjugate to t.

To be precise we assume physically reasonable condi-
tions on λn(t) for t > 0, namely that it has a continu-
ous second derivative and that |λn|, |λ′n|, |λ′′n| are each
bounded. Then with Im ω = v > 0 the following Laplace
transforms exist:

λ̂n(ω) =
1
2π

∫ ∞

0

eiωtλn(t)dt , (8)

λ̂′n(ω) =
1
2π

∫ ∞

0

eiωtλ′n(t)dt

= −iωλ̂n(ω)− 1
2π

λn(0) . (9)

Since λn and λ′n are both smooth and bounded, the in-
version theorem [10] guarantees that

λn(t) = lim
U→∞

∫ U+iv

−U+iv

e−iωtλ̂n(ω)dω , t > 0 , (10)
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and similarly for λ′n(t). The improper integral defined
as a symmetric limit in (10) is often called the “princi-
pal value”. It exists under weaker conditions than are
required for existence of separate integrals over the two
half-lines (−∞ + iv, iv) , (iv,∞ + iv). We shall under-
stand all ω-integrals to be principal values, without a
notational indication.

Correspondingly, we take the Laplace transform of
Maxwell’s equations with respect to t. The transform
of terms involving time derivatives of fields will produce
terms from the values of those fields at t = 0, as in (9).
We set those initial values to zero, since we are inter-
ested only in two problems: (1) the initial value prob-
lem to be discussed below, in which the beam current
and the field are zero for t ≤ 0; and (2) the question
of stability of an equilibrium state under a small pertur-
bation of the charge distribution, the latter being zero
until t = 0. In problem (2) we are concerned only with
the additional field produced by the perturbation, which
is zero for t ≤ 0. The field of the beam in equilibrium
enters only in the determination of the equilibrium state.

Defining Ê(n, ω) to be the double transform of E(θ, t)
(Fourier in θ, Laplace in t), we then find through solution
of Maxwell’s equations that Ê is proportional to Î; see
Section IV. This proportionality defines the impedance
Z:

−2πRÊ(n, ω) = Z(n, ω)Î(n, ω) . (11)

This does not imply that Z(n, ω) is itself a proper
Fourier-Laplace transform of a continuous function. An
expression for Z(n, ω) is given in Eq.(63).

From (11) and (7), and the inversion theorems for
Laplace and Fourier transforms, we find the induced volt-
age V as

V (θ, t) = −2πRE(θ, t) =

ω0Q
∑

n

einθ

∫

Imω=v

e−iωtZ(n, ω)λ̂n(ω − nω0)dω .

(12)

Except for a constant factor, V is the collective force that
appears in the Vlasov equation; see Eqs.(12,20) of [2]. To
retrieve the case of a rigid bunch we take v = 0 and put
(6) in place of (7) in (12) to obtain

V (θ, t) = ω0Q
∑

n

ein(θ−ω0t)Z(n, nω0)λn . (13)

The quantity Z(n) = Z(n, nω0) is what is usually
called the impedance [1]. It is not entirely adequate to de-
scribe the time dependent case with evolving bunch form.
We need instead the function of two variables Z(n, ω),
wave number (n/R) and frequency, which we shall call
the complete impedance. One might conjecture, however,
that a first approximation to the collective force would
be obtained merely by replacing λn by λn(t) in (13), thus

V (θ, t) ≈ ω0Q
∑

n

ein(θ−ω0t)Z(n, nω0)λn(t) . (14)

We shall in fact derive this approximation, and correc-
tions to it as well, in Section III. This amounts to saying
that the force at time t is calculated as though the bunch
form at time t−∆t had held constant at all earlier times.
Clearly, retardation effects are not treated exactly.

The formula (12) seems to involve λn(t′) for t′ > t,
which would mean a violation of causality. To show that
such contributions in fact drop out, we invoke the fact
that Z(n, ω) is analytic and bounded as a function of
ω for Imω > ε, any ε > 0. This and other required
properties of Z are proved in Section IV. Writing Ω =
ω − nω0, we first integrate twice by parts on t′ so that
(8) takes the form

λ̂n(Ω) =
1

2πiΩ

[
−λn(0) +

λ′n(0)
iΩ

+
1
iΩ

(∫ t

0

+
∫ ∞

t

)
eiΩt′λ′′n(t′)dt′

]
. (15)

Now it is seen that the term in the ω-integrand from
∫∞

t
contributes nothing to (12). It is analytic for Imω > ε >
0 and O(|ω|−2), the latter because exponential increase
of e−iωt is compensated by exponential decrease of the∫∞

t
. We can push the contour to a semi-circle at infinity,

getting zero in the limit.
Now define λ̃n(Ω, t) as (15) minus its final term which

we have just discarded. Convergence of the ω-integral of
the first term in λ̃ follows from the asymptotic behavior
of Z(n, ω) stated in (70); i.e., since Z tends to a con-
stant (plus an oscillating term) the integral converges by
virtue of oscillations of the factor e−iωt. The remaining
ω-integrals converge absolutely.

Undoing the partial integrations that led to (15), we
of course get rid of boundary terms at t′ = 0 but acquire
boundary terms at t′ = t:

λ̃n(Ω, t) =
1
2π

[
−λ′n(t)eiΩt

Ω2
+

iλn(t)eiΩt

Ω
+

∫ t

0

eiΩt′λn(t′)dt′
]
.

(16)

When (16) is used in (12), the ω-integral of its first term
is seen to be zero, again by analyticity and decay as |ω|−2.
The resulting expression of V is

V (θ, t) = ω0Q
∑

n

einθ

∫

Imω=v

dωZ(n, ω)

· 1
2π

[
iλn(t)

e−inω0t

ω − nω0
+ e−iωt

∫ t

0

dt′ei(ω−nω0)t
′
λn(t′)

]
.

(17)

The ω-integral of the first term in the square bracket
exists only by virtue of the integral’s definition as the
principal value. The same is true of the integral of the
second term.

We can take the limit as v → 0 in (17) by applying the
usual rule for pushing a contour of integration against a
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pole. Actually, there are other poles on the real axis to
be accounted for, since Z(n, ω) has poles as a function of
ω at the wave guide cutoffs. That matter is discussed in
Section IV.

In Section III we shall derive approximations to V (θ, t)
which are more economical to evaluate than (17). For
that we make stronger assumptions on smoothness of
λn(t), namely that for m ≥ 0 it have m + 2 continuous
and bounded derivatives, with derivatives up to order
m + 1 vanishing at t = 0:

λn ∈ Cm+2 , |λ(k)
n (t)| ≤ M , k = 0, 1, · · · ,m + 2 ,

λ(k)
n (0) = 0 , k = 0, 1, · · · ,m + 1 . (18)

Thus we switch on the current with a certain degree of
smoothness at t = 0. One can think of the switching
on as a model of the beam injection process in a storage
ring. Since we make no restriction on the magnitude of
derivatives for t > 0, any profile of current building up
from zero, even a step function, can be approximated by
a function satisfying our conditions. With assumptions
(18) we can integrate by parts as many as m + 2 times
in (8), and discard

∫∞
t

by the same argument as before,
to cast (12) in the form

V (θ, t) =

ω0Q
∑

n

einθ

∫

Imω=v

e−iωtZ(n, ω)µnk(ω − nω0, t)dω ,

µnk(Ω, t) =
1

2π(−iΩ)k+2

∫ t

0

eiΩt′λ(k+2)
n (t′)dt′ ,

(19)

for any k ∈ {0, 1, · · · , m}. In Section III we shall use (19)
to derive approximations to V .

To compute the instantaneous radiated power, note
that the work done by the field E on a charge element
dQ when the charge moves a distance Rdθ = Rω0dt is
equal to dW = dQE(θ, t)Rω0dt. The radiated power for
the charge element is the corresponding rate of change
of field energy, −dW/dt. Putting dQ = Qλ(θ − ω0t, t)dθ
and integrating over θ we find the total radiated power,
from all charge elements. From (11) that is

P(t) =
Qω0

2π

∫
dθλ(θ − ω0t, t)

∑
n

einθ

·
∫

Imω=v

e−iωtZ(n, ω)Î(n, ω)dω

= Qω0

∑
n

einω0tλ∗n(t)
∫

Imω=v

e−iωtZ(n, ω)Î(n, ω)dω .

(20)

In the case of the rigid bunch one can put v = 0 and
apply (6) to obtain the well known formula

P = (Qω0)2
∑

n

ReZ(n, nω0)|λn|2 . (21)

As in (14), we replace λn by λn(t) in (21) for the approx-
imation to P(t) used in numerical explorations to date
[3]. In general the ω-integral in (20) can be expressed as
in (17) or (19). Applying (17) we get

P(t) =
(Qω0)2

2π

∑
n

λ∗n(t)
∫

Imω=v

dωZ(n, ω)

·
[

iλn(t)
ω − nω0

+
∫ t

0

dt′ei(ω−nω0)(t
′−t)λn(t′)

]
. (22)

III. APPROXIMATIONS TO THE
COLLECTIVE FORCE

In this section we assume conditions (18) on the par-
ticle density. These conditions form the basis for a ra-
tional mathematical discussion, but it must be admitted
that the conditions are difficult to verify, since in prac-
tice λn(t) is determined by a numerical realization of self-
consistent dynamics. Nevertheless, an important part of
(18), the requirement that time derivatives up to some
order be zero initially, can be simulated in a numerical
solution of the Vlasov equation. For that we multiply
λn(t) by a “smooth ramp” f ∈ Cm+2 that is zero for
t < 0, has vanishing derivatives up to order m + 1 at
t = 0, and is equal to 1 for t greater than some small t0.
This was done in Ref.[4].

One could, in principle, find the collective force in a
time dependent Vlasov integration by direct numerical
evaluations of the two integrals and the sum in (17) or
(19). The integral over t′ would evolve dynamically in
steps δt of t. This would be an expensive algorithm,
however, involving evaluation of many negligible contri-
butions. It is expected that only components of the elec-
tric field with phase velocity close to the particle velocity
will have a big effect on the beam, which is to say that the
important part of the ω-integral should lie near ω = nω0.
To see that mathematically consider (19) with k = 0, and
suppose that λn(t) can be approximated by a quadratic
function of t over any interval of length δt, which is to
say that λ′′n(t) is constant over such an interval. Then
the integral in (19) is

∫ t

0

dt′eiΩt′λ′′n(t′)

= δt sinc
(Ωδt

2π

) N−1∑

j=0

eiΩ(j+1/2)δtλ′′n(jδt) , (23)

where sinc(x) = sin(πx)/(πx), δt = t/N and Ω =
ω − nω0. Take v = 0, which is the relevant value in
following considerations. The sinc factor is strongly con-
centrated where |Ω|δt . 2π. This is to be contrasted
with the total concentration at Ω = 0 in the case of
a rigid bunch existing for all time. Writing δt = µTs,
where Ts is the synchrotron period, we may state the
concentration condition as a limit on the deviation of the
phase velocity from the nominal particle velocity. Since
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the phase velocity is ω/kn, where kn = n/R is the wave
number, we see that for (23) to be appreciable we must
have

|ω/kn − β0c|
β0c

. ωs

µnω0
. (24)

In the example of Ref. [2] we have ωs/ω0 = 0.0045 and
the important n are around 700. If the variation of λn(t)
can be regarded as quadratic over a hundredth of a syn-
chrotron period, which may be a reasonable guess in view
of our simulations to date, then µ = .01 and the rela-
tive deviation of phase velocity from the nominal parti-
cle velocity is small compared to 1 at important n, be-
ing 6.4 · 10−4. Since (24) refers to the spectrum of the
source, it is only a necessary condition for a particular
phase velocity to be involved. For a sufficient condition
one requires in addition that the impedance Z(n, ω) be
appreciable in the region where ω/kn satisfies (24).

Notice that there is an additional mechanism to con-
centrate the ω-integral near nω0, in that there is a second
order pole in (19) at that point. For higher values of k
in (19) there is even more concentration, both because
of higher order poles Ω−(k+2) and because λ

(k+2)
n tends

to be constant over bigger intervals δt, giving sharper
peaking of the sinc factor.

Although the above argument is not very precise, it
does give a motivation for expanding the impedance in
(12) as follows:

Z(n, ω) = Z(n, nω0)+D2Z(n, nω0)(ω−nω0)+· · · , (25)

where D2 denotes partial derivative with respect to the
second argument of the function. This cannot be done
for n such that nω0 is close to the poles of Z at waveg-
uide cutoffs, ±αpc, which are displayed in (68). We can,
however, subtract the pole contribution Z∗ and expand
the remainder:

Z̃(n, ω) = Z(n, ω)− Z∗(n, ω) =

Z̃(n, nω0) + D2Z̃(n, nω0)(ω − nω0) + · · · (26)

Both Z∗ and Z̃ are analytic and bounded for Im ω > v >
0, which implies that the contribution of Z∗ to (12) can
be written either as in (17) or as in (19), and similarly
for Z̃. Applying (17) with Z∗ in place of Z, we evaluate
the ω-integral by the method of residues to find

V∗(θ, t) =

−ω0QZ0πR

2β0h

∑

n6=0

ein(θ−ω0t)sgn(n)
∑

p

Λp

∫ t

0

dt′λn(t′)

·
[
A(p, n)eiA(p,n)(t′−t) + B(p, n)eiB(p,n)(t′−t)

]
,

(27)
A(p, n) = αpc− nω0 , B(p, n) = −αpc− nω0 . (28)

To evaluate the contribution of Z̃ through use of a
truncated Taylor expansion (26), we assume conditions

(18) with m equal to the degree of the Taylor polynomial.
Putting the Taylor polynomial of Z̃ in place of Z in (19)
and choosing k = m, we see that the resulting ω-integral
converges quadratically. We evaluate the contribution of
any monomial Ωk in the polynomial by using µnk in (19).
Thus the integral for Ωk is

e−inω0t

2π(−i)k+2

∫

ImΩ=v

dΩ · e−iΩt

Ω2

∫ t

0

eiΩt′λ(k+2)
n (t′)dt′ .

(29)

At every order k we have concentration of the integral
near Ω = 0, both from the second order pole and from the
t′-integral in analogy to (23). This provides an heuristic
justification for using the Taylor expansion, since at every
order the integrand is large only in a neighborhood of the
expansion point.

The integral in (29) can be evaluated by pushing the
contour to a semi-circle at infinity in the lower half-plane.
Its value is −2πi times the residue of the second order
pole, which is

[
d

dΩ
(
e−iΩt

∫ t

0

eiΩt′λ(k+2)
n (t′)dt′

)]

Ω=0

= −iλ(k)
n (t) .

(30)
Thus the contribution to V from the Taylor polynomial
of Z̃ is

Ṽ (θ, t) =

ω0Q
∑

n

ein(θ−ω0t)
m∑

k=0

1
k !

D
(k)
2 Z̃(n, nω0)ikλ(k)

n (t) .

(31)

The first term of the sum contains an alarmingly large
piece from −Z∗(n, nω0). One is relieved to find that this
is cancelled by a part of (27), namely the boundary term
that arises when (27) is integrated by parts.

Invoking that cancellation, we find the full approxima-
tion to V , based on replacing Z̃ by its Taylor polynomial:

V (θ, t) ≈ 2ω0QRe
∞∑

n=1

ein(θ−ω0t)

[
Z(n, nω0)λn(t)

+
m∑

k=1

1
k !

D
(k)
2 Z̃(n, nω0)ikλ(k)

n (t)− i
Z0πR

2β0h

∑
p

Λp

·
∫ t

0

dt′λ′n(t′)
(

eiA(p,n)(t′−t) + eiB(p,n)(t′−t)

)]
.

(32)

We were able to replace the full sum on n by twice the
real part of the sum on positive n, because the summand
S satisfies S(n) = S(−n)∗ , S(0) = 0.

The integral in (32) represents retardation effects as-
sociated with wave guide cutoffs. It is expected to be
largest at those (p, n) for which A(p, n) = αpc − nω0 is
small, giving a primarily reactive effect. The presence of
the integral does not add a lot to the cost of a dynamical
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calculation, since one can store each of the integrals as a
matrix M(p, n, t), and update that matrix at each time
step δt by adding the integral from t to t + δt.

In the numerical work of Refs. [2, 3] we retained only
the first term of (32). Preliminary numerical work to
assess the role of correction terms in (32) was reported
in [4], where the full formula with m = 1 was applied.
The added terms seemed to have minor importance, and
we take that as justification for neglecting them in [2, 3].
A more thorough investigation should be made, however,
since the Vlasov integration of [4] did not include a case
of fully developed instability.

The reader might have noticed that the terms from the
Taylor polynomial of Z̃ can be obtained more directly by
putting Z̃ for Z in (12) and invoking the Laplace in-
version theorem. The various terms in the polynomial,
multiplied by λ̂n(Ω), give Laplace transforms of deriva-
tives of λn(t), provided that enough initial value terms
are zero. This calculation gives the same result we have
obtained, and the conditions to use the inversion theorem
are weaker than (18); namely, for an m-th degree polyno-
mial, that λn have only m + 1 continuous and bounded
derivatives, and that λ

(k)
n (0) = 0 , k = 0, · · · ,m − 1

when m ≥ 1. Our stronger conditions (18) are needed
to justify the Taylor expansion through the argument
about concentration of the integral near Ω = 0. Concen-
tration from two sources, the second order pole and the
t′-integral, is not obtained under the weaker conditions.

The function Z̃(n, ω) is free of poles at ω = ±αpc, but
it does have a logarithmic singularity at those points from
log(γpR) in (67). Fortunately, the coefficient Up(n, ω) of
the logarithm is exactly the function that displays the
shielding cutoff; it and its derivatives with respect to ω
are totally negligible at ω = nω0 = αpc, a point far below
the shielding cutoff for mode p as defined in (73) below.
Effectively, Z̃(n, ω) behaves as an entire function of ω
near nω0, and therefore will be well represented by its
Taylor polynomial of appropriate degree.

IV. FIELDS IN THE PARALLEL PLATE
MODEL

The longitudinal field for the parallel plate model was
derived in the early work of references [5, 8], but those
papers dealt only with the steady state, effectively find-
ing only the elementary impedance. The elementary
impedance for pillbox and toroidal models of the vac-
uum chamber was found in Ref.[9]. The technique of
that paper, which is easily generalized to get the com-
plete impedance, is applied here to the simpler case of
perfectly conducting parallel plates. The model could
be extended to allow finite conductivity of the plates by
using the technique of nonharmonic Fourier series intro-
duced in [12] and [9].

All field components can be expressed in terms of the
Fourier-Laplace transforms of Ey and Hy. The fields may

be represented as
[

Ey(r, θ, y, t)
Hy(r, θ, y, t)

]
=

∫ ∞

−∞
dωe−iωt

∞∑
−∞

einθ
∞∑

p=0

·
[

cos[αp(y + g)]Êynp(r, ω)
sin[αp(y + g)]Ĥynp(r, ω)

]
, αp =

πp

h
, (33)

where the ω-integral follows a path ω = u+ iv with some
fixed v > 0. The other fields and the charge/current
densities have similar expansions with sine or cosine of
αp(y + g) chosen by the following rules:

(Er, Hθ, Hr, Eθ) ←→ (sin, cos, cos, sin)
( Jr, Jθ, Jy, ρ ) ←→ (sin, sin, cos, sin) (34)

The Maxwell equations are satisfied term-by-term in the
Fourier-Laplace developments, as are the boundary con-
ditions,

Hy = 0 , Er = Eθ = 0 , y = ±g . (35)

The Fourier-Laplace amplitudes of Ey,Hy must satisfy
the wave equations

[
1
r

∂

∂r

(
r

∂

∂r

)
−

(
Γ2

p +
n2

r2

)][
Êynp

Ĥynp

]
=

[
Z0( −i(ω/c)Ĵynp + Qαpcρ̂np )
( −∂(rĴθnp)/∂r + inĴrnp )/r

]
, (36)

Γ2
p = α2

p − (ω/c)2 . (37)

Z0 =
(µ0

ε0

)1/2 = 120π Ω (MKS) =
4π

c
(cgs) .

(38)

In general, the Laplace transform of the terms of
Maxwell’s equations with time derivatives would lead to
initial-value terms, but we set those to zero following the
argument in Sec. II before (11). We first solve the equa-
tions (36) for real ω and Γ2

p > 0, later performing an
analytic continuation to Imω ≥ 0.

The general solution of (36) is the general solution of
the homogeneous equation (a linear combination of mod-
ified Bessel functions [11], §9.6) plus a particular solution
of the inhomogeneous equation, thus

Êynp(r) = AnpIn(Γpr) + BnpKn(Γpr) + eynp(r) ,

Ĥynp(r) = CnpIn(Γpr) + DnpKn(Γpr) + hynp(r) .

(39)

Given any particular solutions eynp, hynp the coefficients
Anp, · · · , Dnp must be chosen to satisfy the boundary
conditions; namely,

Êynp(0) < ∞ , (40)

lim
r→∞

exp(Γpr)Êynp(r) < ∞ , Γp > 0 ,

(41)
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and similarly for Ĥynp. Here (41) means that below the
frequency of the waveguide cutoff the field must die ex-
ponentially away from the source.

It is easy to construct particular solutions by the
method of variation of parameters, in such a way that
those solutions satisfy the boundary conditions by them-
selves. Then no solution of the homogeneous equations
need be added. Specializing to the source for our model,
in which Jr = Jy = 0, we get the fields meeting all con-
ditions as

[
Êynp(r)
Ĥynp(r)

]
=

[
Kn(Γpr)

∫ r

0

uduIn(Γpu) + In(Γpr)
∫ ∞

r

uduKn(Γpu)
]

·
[ −Z0Qαpcρ̂np(u)

(uĴθnp(u))′/u

]
(42)

Noting the value of the Wronskian [11], §9.6.15,

In(x)K ′
n(x)−Kn(x)I ′n(x) = − 1

πx
, (43)

it is easy to check that (42) satisfies (36). The boundary
conditions (40,41) are easily verified as well. Because the
sources are confined to a finite region of r, the second
term drops out at large r, and the large-r behavior is
given by the Kn, which decreases as exp(−Γpr)r−1/2.
At small r, the asymptotes In(x) ∼ (x/2)n/n! , Kn(x) ∼
(x/2)−n(n − 1)!/2 (n 6= 0) , K0(x) ∼ − ln x show that
the fields are bounded at r = 0, for the type of sources
that we consider.

By the Lorentz force law , the longitudinal and trans-
verse forces on the particles are determined by the fields

Eθ , Fr = Er + β0Z0Hy , Fy = Ey − β0Z0Hr (44)

In Fourier space the Maxwell equations can be solved
algebraically for the corresponding Fourier amplitudes:

Êθnp =
i

Γ2
p

[
nαp

r
Êynp +

Z0ω

c

(∂Ĥynp

∂r
+ Ĵθnp

)]

F̂rnp =
1
Γ2

p

[
αp

∂Êynp

∂r
+

Z0ωn

cr
Ĥynp

]
+ β0Z0Ĥynp

F̂ynp =
β0

Γ2
p

[
ωn

cr
Êynp + Z0αp

(∂Ĥynp

∂r
+ Ĵθnp

)]
+ Êynp

(45)

To compute (42), note that by (1), (34), and (4) we
have

ρ̂np = Φnpδ(r −R)/R , Ĵθnp = Qβ0cρnp ,

Φnp = Hp
1
2π

∫ ∞

0

ei(ω−nω0)tλn(t)dt

Hp =
1
g

∫ g

−g

sin[αp(y + g)]H(y)dy . (46)

Hence evaluation of (42) gives

Êynp(r) = −Z0QαpcΦnp

[
θ(r −R)Kn(Γpr)In(ΓpR) +

θ(R− r)In(Γpr)Kn(ΓpR)
]

,

Ĥynp(r) = −ΓpQβ0cΦnp

[
θ(r −R)Kn(Γpr)I ′n(ΓpR) +

θ(R− r)In(Γpr)K ′
n(ΓpR)

]
,

(47)

where

θ(x) =
{

1 , x ≥ 0 ,
0 , x < 0 .

(48)

Thus Êynp is continuous at r = R, but the magnetic field
makes a jump that can be computed from (43):

Ĥynp(R + 0)− Ĥynp(R− 0) =
Qβ0cΦnp

πR
. (49)

Of course, Ampère’s Law requires a jump at the ribbon
beam. There is no discontinuity in Êθnp and F̂ynp since
∂Ĥynp/∂r + Ĵθnp is continuous.

Introducing (47) in (45) and evaluating at r = R ± 0
we obtain

Êθnp(R) =

−iZ0QcΦnp

[(αp

Γp

)2 n

R
Kn(ΓpR)In(ΓpR) +

ωβ0

c
K ′

n(ΓpR)I ′n(ΓpR)
]

(50)

F̂rnp(R + 0) =

−Z0QcΦnp

[α2
p

Γp
K ′

n(ΓpR)In(ΓpR) +

(
β0 +

ωn

cRΓ2
p

)
β0ΓpKn(ΓpR)I ′n(ΓpR)

]
(51)

F̂ynp(R) =

−Z0QcΦnp

[
αp

(
1 +

β0ωn

cRΓ2
p

)
Kn(ΓpR)In(ΓpR) +

β2
0αpK

′
n(ΓpR)I ′n(ΓpR)

]
(52)

and

F̂rnp(R + 0)− F̂rnp(R− 0) =
Z0QcΦnp

πR

[(αp

Γp

)2 − β2
0 −

β0ωn

cRΓ2
p

]
(53)

The longitudinal impedance is defined in terms of the
longitudinal field averaged over the transverse distribu-
tion, as in Eq.(2). By (34) the Fourier series for Eθ in-
volves Hp sin[αp(y + g)]. We define the dimensionless
factor Λp in terms of the y-average of that factor, noting
(46):

Λp = hHp

∫
sin[αp(y + g)]H(y)dy = 2(gHp)2 . (54)
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If H(y) is even we have Λp = 0 for even p. For the
case of a square step distribution, constant for y ∈
[−δh/2 , δh/2] and zero otherwise, we have

Λp = 2sinc2(x), x =
pδh

2h
. p odd , (55)

For a Gaussian distribution with r.m.s. width σy ¿ h
and the y-average taken over [−σy , σy] we have

Λp = 2sinc(x)e−x2/2 , x =
pσy

h
, p odd . (56)

In either case Λp ≈ 2 for small p, which means that there
is not much dependence on the vertical size of the beam,
since at the values of n of interest only a small number of
p modes are unshielded. In the numerical work of [2–4]
we chose the square step model.

Now suppose that (ω/c)2 < α2
1, which is to say that

the frequency is below all waveguide cutoffs. Then by
(11), (4) and (46), we get the longitudinal impedance
from (50) and (54) as

Z(n, ω) =

2πiZ0R
2

β0h

∞∑
p=1

Λp

[(αp

Γp

)2 n

R
In(ΓpR)Kn(ΓpR) +

ωβ0

c
I ′n(ΓpR)K ′

n(ΓpR)
]

, ω2 < (α1c)2 . (57)

Below all cutoffs the impedance is purely imaginary. At
higher frequencies the Γp become imaginary one-by-one
as the ascending cutoffs are passed, giving the impedance
a real part.

In a similar way one can derive horizontal and vertical
transverse impedances from the forces (51) and (52). We
leave to the reader the appropriate definitions of those
impedances, which may depend on the application of in-
terest.

The low frequency limit of the elementary longitudi-
nal impedance can be derived from (57) by the ordinary
large-argument expansions of In,Kn ([11], §9.7.1), sup-
posing that πR/h is large compared to 1. The resulting
formula is the same as the corresponding one for the pill-
box or rectangular torus model, given in Eq.(4.12) of [9]:

Z(n, nω0)
n

∣∣∣∣
n=0

=
iZ0

β0

∞∑
p=1

Λp

p

[
1
γ2
0

+
3β2

0 + 1
8

(
h

πpR

)2]

(58)

For a general complex frequency in the upper half-
plane it is convenient to express the impedance in terms
of the analytic function

γp(ω) = ((ω/c)2 − α2
p)

1/2 = (−Γ2
p)

1/2 , (59)

defined in the ω-plane with a cut from −αpc to αpc, and
positive for ω > αpc. With this definition we have

γp(−ω) = −γp(ω) , |ω| > αpc , (60)

and the boundary values on the cut satisfy

γp(u + i0) = i|γp(u + i0)| = iΓp(u) , −αpc < u < αpc .
(61)

Now recall the following relations that hold for −π <
arg x ≤ π/2 [11], §9.6.3, 9.6.4:

In(x) = i−nJn(ix) ,

Kn(x) = (π/2)in+1[Jn(ix) + iYn(ix)] , (62)

where Jn and Yn are Bessel functions of the first and
second kinds, respectively [11], §9.1. Substituting (62) in
(57) and applying (61) we find

Z(n, ω) =

Z0
(πR)2

β0h

∞∑
p=1

Λp

[
ωβ0

c
J ′|n|(γpR)H(1)′

|n| (γpR)

+
(αp

γp

)2 n

R
J|n|(γpR)H(1)

|n| (γpR)
]

, Imω > 0 .

(63)

Here and in the following we invoke the Hankel functions
H

(1,2)
n (x) = Jn(x)±iYn(x). We have used Bessel function

behavior under n → −n ([11], §9.1.5), to state (63) in a
form correct and convenient for either sign of n.

Since Jn(z) is an entire function of z, and Yn(z) is
analytic in the z-plane with a cut along the negative real
axis [11, 13], we see from (63) that Z(n, ω) is analytic
in the upper half ω-plane at fixed integer n. To describe
and study the singularities of Z on the real ω-axis, it is
useful to define the functions

Up(n, ω) =
ωβ0

c
J ′2|n|(γpR) +

(αp

γp

)2 n

R
J2
|n|(γpR)

Vp(n, ω) =
ωβ0

c
J ′|n|(γpR)Y ′

|n|(γpR)

+
(αp

γp

)2 n

R
J|n|(γpR)Y|n|(γpR) , (64)

thus

Z(n, ω) = Z0
(πR)2

β0h

∞∑
p=1

Λp

[
Up(n, ω) + iVp(n, ω)

]
. (65)

Referring to the expressions of Jn and Yn by power
series ([11], §9.1.10, 9.1.11) we see that Up involves
only even powers of γp, and represents an entire func-
tion of ω. On the other hand, Vp involves poles and
branch points on the real axis where γp = 0. By [11],
§9.1.11, the functions Yn(z) − (2/π) ln(z/2)Jn(z) and
Y ′

n(z)−(2/π) ln(z/2)J ′n(z) are meromorphic (analytic ex-
cept for poles) in the whole z-plane. Consequently, it is
useful to rewrite Vp as Vp = V

(1)
p + V

(2)
p where

V (1)
p = Vp − 2

π
ln

(γpR

2
)
Up , (66)

V (2)
p =

2
π

ln
(γpR

2
)
Up . (67)
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Now V
(1)
p (n, ω), involving only even powers of γp, is mero-

morphic in ω, whereas V
(2)
p (n, ω) is an entire function of

ω times the logarithmic factor that is analytic in the ω-
plane with branch cut [ −αpc , αpc ]. The poles of V

(1)
p

come from γ−2
p and J ′|n|Y

′
|n|, except for n = 0 in which

case there is no pole. The poles alone make the following
contribution to the impedance:

Z∗(n, ω) = isgn(n)(1− δ0n)
Z0πR

2β0h

∑
p

Λp

·
[
nω0 − αpc

ω − αpc
+

nω0 + αpc

ω + αpc

]
,

(68)

where sgn(n) is the sign of n. The pole location ω = ±αpc
is the p-th wave guide cutoff for the parallel plate system.
Below the cutoff frequency the p-th mode is “evanescent”
(spatially localized), then at cutoff turns into a propagat-
ing wave, allowing energy to radiate to infinity. Corre-
spondingly, this is also the point at which Up + iVp first
acquires a real part, as the frequency is increased from
zero. As we shall see, the poles are associated with re-
tardation effects in the deforming bunch formalism.

The poles do not show up as infinities or even
sharp peaks in Z(n) = Z(n, nω0), since Z∗(n, nω0) =
i sgn(n)Z0(πR/β0h)

∑
p Λp is bounded and independent

of n except for a sign. Consequently, it is likely that the
poles have not been noticed by previous investigators,
who studied mostly Z(n).

In Section II we encountered the question of the asymp-
totic behavior of Z(n, u + iv) , u → ±∞ , v > 0. Let us
first use the reflection properties of Bessel functions ([11],
§9.1.35, 9.1.39) and Eq. (60) to write the impedance in
a form convenient to show its behavior at u = −∞. We
have

Z(n,−ω) = Z0
(πR)2

β0h

∞∑
p=1

Λp

·
[
ωβ0

c
J ′|n|(γpR)H(2)′

|n| (γpR)

−(αp

γp

)2 n

R
J|n|(γpR)H(2)

|n| (γpR)
]

, (69)

where on the right hand side γp = γp(ω). As a check
of (69) one may verify the reality property Z(n, u) =
Z(−n,−u)∗ using (63), (60), (61). Now evaluate (63)
at ω = u + iv and (69) at ω = u − iv, and apply
the large-argument asymptotic forms of Bessel functions
([11], §9.2). The result is

Z(n, u + iv) ∼ Z0πR

h

[
1− e2iuR/c

] ∑
p

Λp ,

u → ±∞ . (70)

Now we see that the ω-integral of the first term in the
square bracket of (17) exists since it is understood as the

symmetric limit of (10), the constant term in Z being the
same in the two limits of (70). The integral with factor
exp(iuR/c) converges by virtue of oscillations, without
the benefit of asymptotic cancellations.

In deriving (70) we have invoked uniform convergence
of the p-series with respect to u to justify taking the limit
under the sum. Such convergence holds for the Gaussian
model of the vertical distribution, as is seen from (56)
and the integral representation ([14], III.14.19a)

H(1)
n (z) =

[
2
πz

]1/2
ei(z−πn/2−π/4)

Γ(n + 1/2)

·
∫ ∞

0

e−ttn−1/2

[
1 +

it

2z

]n−1/2

dt . (71)

The corresponding formula for H
(2)
n (z) is obtained by

changing i to −i in (71), and an integral representation
for Jn is given by Jn = [H(1)

n + H
(2)
n ]/2. Using these

results and remembering that γp never vanishes because
v > 0, one can show that the coefficient of Λp in the p-
sum of (63) or (69) has a bound of the form Cp2 where C
is a constant, independent of u. By (56) and the Weier-
strass M -test, the p-sum converges uniformly in u. A
similar result holds for any vertical distribution that is
sufficiently smooth to ensure that

∑
p p2|Λp| converges.

In a similar way we can find the asymptotic behavior
of Z(n, ω) as ω tends to infinity along any direction in
the upper half plane. To get the behavior in the first
quadrant put ω = iv + ρ exp(iφ) , 0 ≤ φ ≤ π/2 in the
right hand side of (63) and let ρ → ∞ at fixed φ. For
behavior in the second quadrant do the same in (69), but
with −π/2 ≤ φ ≤ 0. Thus we find that Z is bounded at
infinity in the upper half plane, a result that we require
in closing contours at infinity.

For further analysis we require a method to evaluate
the Bessel functions. Since the important values of n
are quite large, asymptotic expansions for large n are
essential. We are mainly interested in ω close to nω0,
so we consider evaluation of Jn(nz) , Yn(nz) and the
corresponding differentiated functions, where

nz = γp(nω0)R = n
[
β2

0 −
(πpR

nh

)2]1/2
. (72)

The transition from exponential to oscillatory behavior
of the Bessel functions occurs near z = 1, with expo-
nential decrease of Jn(nz) and increase of Yn(nz) as z is
decreased below transition, and similarly for the deriva-
tives. It is then reasonable to define the shielding cutoff
n0(p) for the p-th mode, and the corresponding z, as fol-
lows (assuming β0 ≈ 1):

n0(p) = πp
[R

h

]3/2
, z =

[
β2

0 −
( h

R

)1/2]1/2
. (73)

This generalizes our previous shielding cutoff [2], which
was for p = 1, and ensures that Up(n, nω0) first becomes
appreciable on increasing n at roughly n = n0(p).
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Since the behavior of the Bessel functions changes
rapidly near z = 1, it is convenient when working in
that region to use expansions that are accurate at large
n uniformly in z. We use the Olver expansions ([11],
§9.3.35-9.3.46) which are expressed in terms of Airy func-
tions and are uniform in z to a remarkable extent, in the
entire sector | arg z| ≤ π − ε, any ε > 0. Using results of
Decker [15], we get a fast evaluation of the Olver expan-
sions, as explained in [9].

For z a bit less than 1 the function Up(n, ω) of (65) be-
comes negligible, but we still have to evaluate Vp(n, ω).
For that it is sufficient to use the simpler Debye expan-
sions [16]. Instead of evaluating the individual Bessel
functions and then combining their values numerically,
it is essential first to make an analytic reduction of Vp

which accounts for close cancellations of exponential fac-
tors (very large or very small in this region). This was
done in [16] for the torus impedance. To retrieve the par-
allel plate case from Eq.(2.19) of [16], put σ

(M,E)
np = 0.

Also note that the definition of Λp in the present paper
is twice that of [16].

In practice we make the change from Olver to Debye
expansions at about z = 0.9. We take enough terms
in the p-expansion to give a negligible remainder, but
in many cases the first term alone gives a fairly good
estimate, especially in the important region near the first
shielding cutoff. Evaluating the first term, p = 1, by the
leading term in the Olver expansion, we get the result
(for β0 = 1) given in Ref.[17],

ReZ(n)
n

= 2Z0

[πR

hn

]2 exp
[− 2

3n2

(πR

h

)3]
. (74)

The results mentioned in connection with Eq.2 of Ref.[2]
can be read off from this formula. The exact evaluation
for Fig.1 of [2] included all modes up to p = 43, but the
higher p affect mainly the behavior at large n.

V. SUMMARY AND OUTLOOK

We have shown how to extend the impedance formal-
ism to account correctly for a beam with evolving charge
density. This was done for a particular model in which
the particles move on circular orbits between conduct-
ing parallel plates. The basic technique was to make a
Fourier-Laplace transform of the Maxwell equations and
the charge/current source, then make a detailed study of

the analyticity of the solution in the complex frequency
ω. It will be interesting to study other soluble models
in a similar way, for instance that in which the parallel
plates are replaced by a closed pillbox. Models includ-
ing electrical resistance of the vacuum chamber, with or
without trajectory curvature, are also of interest.

The mathematics of this work is interesting and much
more subtle than we expected at the outset. One has
to be quite careful because of surprising cancellations
and convergence questions. We were able to give rea-
sonable assumptions on the charge density so that most
of our conclusions follow rigorously, except that we have
no analytic estimate of accuracy of the approximations
displayed in Eq. (32). The first approximation has been
the mainstay of simulations to date. More work will be
needed to clarify the quantitative importance and phys-
ical meaning of higher terms, especially the integral in
(32) which arose from poles at waveguide cutoffs.

The transverse part of the CSR force has usually been
ignored in dynamical simulations, on the belief that its
electric and magnetic components nearly cancel for rel-
ativistic velocities. It would be worthwhile to test this
assumption concretely in a simulation, using the expres-
sions for the transverse force given in Section IV.

A complementary approach to the CSR force is to
work directly in space-time, rather than with integral
transforms. This was done for the same physical model
by Murphy, Krinsky and Gluckstern [18]. Their analy-
sis does not deal with our questions of retardation with
bunch deformation, since it deals with the steady state
case and just results in a wake function, approximately
the Fourier transform of our elementary impedance. In
the time-dependent case with evolving bunch one can
write down the exact force as an integral over the space-
time Green function of the system. Evaluation of this
integral would be too expensive, but one could look for
approximations analogous to those that we derived by
integral transforms. That is another interesting topic for
further research.
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