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Abstract

With a view toward creating solid block copolymers wherein the order-disorder transition can be
accessed many times we investigate the nature of order-disorder transitions in cross-linked diblock
copolymer melts using synergistic theory and experiment. A mean-field theory based on a coarse
grained free-energy and the Random Phase Approximation (RPA) is developed for the system
of interest. The quenched distribution of cross-links is averaged using the replica method. The
phase behavior of a particular A-B block copolymer melt with a randomly cross-linked B-block is
determined as a function of the Flory-Huggins interaction parameter () and the average number
of cross-links per chain N.. We find for a cross-link density greater than N} the B monomers

~1/2_ The cross-links strongly oppose ordering

are localized within a region of size { ~ (N, — N})
in the system as £ becomes comparable to the radius of gyration of the block copolymer chain.
As such the order-disorder transition temperature Topr decreases precipitously when N, > N/.
When N, < N}, Topr increases weakly with N.. Experiments were conducted on cross-linked
polystyrene-block-polyisoprene copolymer samples wherein the polyisoprene block was selectively
cross-linked at a temperature well above the order-disorder transition temperature of the pure
block copolymer. Small angle X-ray scattering (SAXS) and birefringence measurements on the

cross-linked samples are consistent with the theoretical prediction. Topr decreases rapidly when

the cross-linking density exceeds the critical cross-linking density.

*The first two authors contributed equally to the paper
tCorresponding author



I. INTRODUCTION

The fact that molten block copolymers undergo reversible order-disorder transitions is
well-established [1, 2]. In the ordered state, the blocks are microphase separated into struc-
tures with either crystalline (e.g. spheres arranged on a body centered cubic lattice) or lig-
uid crystalline (e.g. cylinders arranged on a hexagonal lattice) symmetry. In the disordered
state, block copolymers are isotropic liquids. Microphase separation of block copolymers
is exploited in a number of practical applications such as thermoplastic elastomers and ad-
hesives [3, 4, 5, 6]. In these traditional applications, the microphase separation transition
is used once during the life time of the product - the material is processed in the isotropic
(liquid) state and used in the ordered (soft solid) state. Our objective is to create solid block
copolymer materials wherein the order-disorder transition is accessed numerous times during
the life-time of the product. This would enable the use of block copolymers in new appli-
cations that rely on reversible changes in the mechanical properties of solids such as shape
memory, actuators, and artificial muscles[7, 8, 9, 10]. The possibility of using cross-linked
networks in such applications was recognized long ago [11]. Polymer networks immersed in
solvents can swell and shrink reversibly is response to changes in thermodynamic potentials
such as solvent quality, pH, etc. [11, 12, 13]. It has proven difficult to exploit the swelling of
elastomers in practical applications (e.g. artificial muscles) due to two reasons: (1) the large
changes in sample volume lead to fatigue and eventual degradation of mechanical integrity,
and (2) the kinetics of the phase transition is slow because it is limited by the diffusion of
solvent in and out of the material [14]. It is thus desirable to design solids wherein changes
in material properties do not require changes in volume or diffusion across macroscopic
dimensions.

Cross-linking reactions have been used to create a variety of polymeric nanostructures.
Block copolymer micelles with cross-linked shells are being considered for use as drug de-
livery vehicles [15, 16, 17, 18]. Macromolecules with novel architectures such as worm-like
and mushroom-like structures have been produced by a combination of block copolymer
self-assembly and cross-linking [19, 20, 21]. Periodic structures formed in block copolymers
and their blends have been stabilized by cross-linking [22, 23]. These cross-linked struc-
tures have been used as templates for preparing nanostructured inorganic materials [24, 25].

The objective of these studies [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] was to ”fix” the



nanostructures.

Our objective is to create cross-linked nanostructures that disassemble and reform spon-
taneously and reversibly in response to changes in temperature. We begin with a melt of a
linear polystyrene-polyisoprene diblock copolymer that exhibits an ordered phase composed
of polystyrene cylinders arranged on a hexagonal lattice in a polyisoprene matrix. The
ordered phase melts into a disordered liquid when heated above 114°C. We added a cross-
linking agent to the block copolymer and conducted the cross-linking reaction at 160°C, i.e.
in the disordered state. The cross-linking agent used in this study selectively cross-links
the polyisoprene chains. Synergistic theoretical and experimental work was conducted to
elucidate the phase behavior of these cross-linked systems.

We derive coarse grained free energy for cross-linked diblock copolymer melts. The cross-
links are treated as a permanent quenched disorder following the method of Deam and
Edwards [26]. We resort to the replica method in order to average over the cross-links. The
Random Phase Approximation (RPA) [2, 27] is employed to evaluate the free energy as an ex-
pansion in powers of the density variables. This enables determination of the order-disorder
transition temperature of our system as a function of cross-linking density. Experimental
characterization of our cross-linked block copolymers was based on swelling data, optical
birefringence, and small angle X-ray scattering (SAXS). Our initial experimental findings
are reported in ref. [28]. The article is organized as follows : In Sec. IIA we introduce
the model and derive the coarse grained free energy. The mean field analysis and the phase
diagram are presented in Sec. IIB. Details of the calculations for Sec. II are provided in the
Appendices. The experimental details (SAXS and Birefringence) are given in Sec. IIL. In
the next section (Sec. IV) we discuss the results of the experiments and compare that with

the analytical calculations. Conclusions are offered in Sec. V.

II. THEORY
A. The Free energy

Consider a polymer melt of volume V' with m copolymer chains, each of which consists of
N monomers with volume fraction f between the A (polystyrene (PS)) and B (polyisoprene
(PI)) blocks. The energy of the system is given by the standard Edwards Hamiltonian



29, 30] :

3t fd?
H/kpT = ; Wl%/o ds <£> +V({r:}), (1)
where {r;} describes the configuration of the ith chain in 3D, [y is the persistence length

(Kuhn length) and the excluded volume interactions between monomers are described by,

V({r;}) = Z Z vabN /ds/ds'(5 ri(s) —r;(s")),

3,7=1a,b=1

(2)
where v11, v92 and v are the strengths of couplings between A-A, B-B and A-B monomers
and [, = fof and [, = ffl The Flory-Huggins parameter [1, 27] x = (vio — (v11 +v20)/2)v71,
where v is the average monomer volume. Phenomenologically x [31] varies with the temper-
ature as x = a + b/T, where a and b are system dependent parameters. In the experiments
[28] the polyisoprene segments are cross-linked in the disordered phase by using dicumyl
peroxide (DCP). However first we consider the general case with cross-links between A-A,
B-B and A-B and later we focus on the experimentally relevant case where only the B-B
type of cross-links are present in the system. If there are R;;, Ry and Ry, permanent cross-
links between A-A, B-B and A-B respectively, the probability a particular realization of a
certain type (A-A, B-B or A-B) of cross-links can be expressed by the Deam-Edwards form
[26]. The constraint due to the /th cross-link between the segment s; of chain 7, and the
segment s; of chain 4; is described by 6(r;,(s;) — 1z (s;,)). Thus the probability distribution

for a particular cross-link configuration {r; (s;);r;(s;)} is given by

Poy({ri,(s1); ry Sl ) o Hé r; (1) l)) (3)

where a = {1,2}, b = {1,2} and (- - -). The set of cross-linked segments {r; (s;);rs(s})} is
drawn from the equilibrium configurations in order to eliminate the vast number of cross-
linked configurations which correspond to unphysical conformations of the chains [26, 32].
Instead of using the distribution with fixed number of cross-links it will turn out to be
convenient to carry out calculations later if the total number of cross-links is allowed to
fluctuate around the mean in a quasi-Poisson manner [33, 34]. The probability distribution

after the inclusion of the fluctuations in the total number of cross-links can be described by,

e e )“ﬁ(sr,, ) ()

2m



The parameters {4} determine the average number of cross-links per macromolecule in the
following manner : p2,f?/2 ~ Ry /m, ulf(1 — f) & Ria/m and p3,(1 — £)?/2 =~ Ry /m.

The normalization factor Ny is given by

zm:Z Rib! (;f_me>R“b <ﬁLdSl/deE5(ri,(5l) —I‘i;(é‘?))>

ds /b ds' 5(ri(s) — rj(s'))] > |

(5)

(---) denotes average over configurations with the Boltzmann weight e?¥ (8 = (kgT)™").

The free-energy F' of the system, averaged over the cross-link distribution can be expressed

as,
2 oo Rgpp m m
=5 [ Do) [] [ >33 [ s Pattr i ny (D | m 2, (6)
ab=1 L Ryp=1 i=1 ij=1¢4=1 7@ b
where

2= [ Dinisle # T] T] o) - ry(sh) @

ab=11=1
In order to evaluate the average of In Z over the realizations of cross-links we employ the
replica trick [26, 35, 36]. The structure of Eq. (6) allows us to consider the system as a
collection of n + 1 replicas where the additional Oth replica system generates the cross-link
distribution described by Eq. (4). The free-energy F' can be obtained from the identity,

11 Z 1_21
F=_—3"1'jp=>rt =1
B ”lli)% nZl

, (8)

where Z,,,, is defined as

Zun = [ Pisles -3 {i o s (55) 4 v({rg})} "
ail L;‘Q‘—"mvié/ads/bds’ Ct[()é(rg“(s) — r}“(s'))] : (9)

In the above equation {rQ} refers to the polymer configuration in the a th replica system.

The index a runs from 0 to n implying average over n+ 1 replica copies of the system. Note
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that the cross-links induce coupling between different replica systems which is reflected
in Eq. (9). Now we will focus on the experimentally relevant case [28] with only B-B
(polyisosprene-polyisosprene) type cross-links present in the system. We denote pgo by
w4 in all further calculations from now. In order to investigate the equilibrium phases of
the system we construct (Appendix A) a coarse grained free-energy as a functional of the
densities of A and B monomers using the Random Phase Approximation (RPA) [27]. RPA
works remarkably well for polymer melts [2, 37] where density fluctuations are weak. The

density variables for the monomers A and B are defined as,

m I
6 =Y [ dssen —a2(s) (10)

and
mo a1
s =Y [ dsoan = 12(s) (1)
i=17f
respectively. One can introduce 3(n+1) dimensional vectors, such as X = {xy, x1, X2, -, X, }

to express the coupling between the replica copies due to cross-links in a compact form

(33, 38]. We define density variables p4(f) and pg(f) as

pa(E) = Z/ ds T[ 6= - x2(s)) :Z/ ds (¢ — #4(5)) (12)
i=1 V0 a=0 i=1 V0
and
m 1 n m 1
pp(d) = Z/ ds T[ 6(x= —x2(s)) :Z/ ds 6(5 — #4(5)), (13)
=17/ a=0 i=1 7 f
which allows us to write the last term in the free energy (Eq. (9)) as

(p?V/2m) [ depp(t)pp(¥). This form is similar to the excluded volume interaction
—xvN? [dr[pa(£)pa(E) + 2pa(t)pp(E) + pp(T)pp(E)] in di-block copolymers. The variables

p% p(r®) and pa (%) are not independent but are related to each other as,

prnr) = [ doan(R)I6 — ). (14)
In Fourier space the above relation translates to

3.5k = p4.5(0, -~ 0, K%, 0--,0) (15)
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A

where p4 p(K°, k', - - k*, - - k™) = py p(k) are the Fourier transforms of p4 p(#) defined as

pap(k) = /df‘ e p1,5(F). (16)

A

It is useful to decompose p4(k) and pp(k) in different replica sectors to provide a clear
physical interpretation. We adopt the same decomposition scheme used by Goldbart et.
al [33] in dealing with cross-linked homopolymer systems. According to that scheme the

A~

variable p4(k) can be split in the following manner.

o) =pA(R)5ﬁ,o+<Z 1 a) <1—aﬁ,o>pA<f<>+(1—z 1 a) (15 )pa(K)

a=0 f=0,5#a
= (pa)o + (pa)1 + pa

a=0 B=0,8#4a

The first term (pa)o in Eq. (17) is non-zero when all the elements in {k®} are zero and we
can say that (pa)o belongs to the zero replica sector. The second term (p4); would fall in
the one replica sector where all but one of {k®} is zero. (p4); would denote the variable
0% (k®) which is the density in the a-th replica system. The last term p4 resides in the higher
replica sector where more than one of the {k®} are non-zero. The presence of a non-zero
higher replica sector in pa (k) would reflect coupling between different replica systems. Now
we set out to study the ordering transition in the cross-linked diblock copolymer melt by
using the above variables and decomposition scheme.

In block copolymer systems the microphase segregation transition is described by the

order parameter
(%) = (1 = f)pa(r®) — fpp(r®). (18)

The above definition makes [ dr®®(r®) = 0 or in fourier space ¥*(k* = 0) = 0. (¢*(r®)) is
finite when the system undergoes a transition from the disordered state to the ordered state.
If we assume the system is incompressible, which is a very good approximation for polymer

melts [2, 37|, the total density is a constant throughout the sample and can be written as

() = 75 (%) + P %) = 77 19)

The variables ¢ (#) and ¢(t) are defined as ¥(&) = (1 — f)pa(¥) — fpu(F) and c(F) = pa(t) +
pp(#). ¥(k) obeys the constraint ¥(k = 0) = 0. The free-energy F of the system can be
calculated using the RPA (Appendix A) which to fourth order in ¢ and c is given by,

8

(17)



~ ~ ~

8P = [ [P0 00—k + TR + T ko) +
/121,122 [F$12¢¢(121)¢(1;2)¢(—121 — ko) + F%cw(f{l)w(f{g)c(—f{l — k) +
T (ky)e(kse)e(—ki — ko) + Tk )e(ks)e(—ky — 122)} +

[ rtiawtio s -k -k +
et e (ko) (ko) e~ — ko = ko) + D) 46 (o b (o (ko) e ket — ey — ) +

T6) (ki )e(ke)c(ks)e(—ki — ks — ks) + T{ c(ky)e(ks)c(ks)e(—k; — ks — k)| . (20)

ccee

The functions I' are calculated from the two and higher order correlation functions of the
monomer positions {r*} [2, 37, 39]. The free-energy in Eq. (20) can be decomposed as
F = Fy + F, + F, where Fy, F; and F contain contributions from the zeroth replica sector,
one replica sector and two or higher replica sector of 1(k) and ¢(k), respectively. The
cross-links couple different replica systems which manifests in a non-zero F. In cross-linked
homopolymers the system goes into a ‘gel’ or ‘amorphous solid’ state [33, 40] beyond a
critical density of cross-links which is marked by the presence of a non-zero part in the
higher replica sector of ¢(k) and a non-zero F. In un-crosslinked di-block copolymer melts
the system undergoes a first order microphase segregation transition for f < 1/2 [2] and a
second order transition at f = 1/2 [41] from a disordered state to various ordered phases as

the temperature is lowered below the transition temperature Topr.

B. Mean field phase diagram

We follow a variational calculation within a mean field approximation to study the equi-
librium phases of the cross-linked copolymer system. The variational ansatz used for the

A

density field c(k) is the same as the one proposed in Ref. [40] for homopolymers :

~

c(k) = car(k) = m[(1 — ) 0y o + ¢ Jics 0 exp(—E°4?)] (21)

where k¢ = Y7 k* and k2 = k-k = 3" k®-k® The above ansatz describes a
state where a fraction ¢ of total number of monomers is localized in a region of size £. In

uncrosslinked systems & = oo. The cross-links couple the replicas as can be seen from the

9



partition function Z,,; (Eq. 9) which can result in a finite £ indicating the presence of a
gel phase where fraction g of the total monomers is localized in a region of length scale &.
The one replica sector part of ¢y (k) is ¢3;(k®) = m dia o implying that each replica system
is incompressible. We perform a mean-field analysis of the free energy in the following way.
We substitute (k) in the free-energy F' and minimize F with respect to y(k). ¥ (k)

calculated from the condition §F /8¢y, (k) = 0 is given to the lowest order in ¢ as

vu(k) = —mg Pcw(lf)&cs,oexp( £2k?) ( Z H 5kﬂ0) ko) (22

Fww(k) a=0 3=0,8+#a

In the liquid state £ = oo which imply both &,; = 0 and 3, = 0. In the gel state, where 1/¢
is small but non-zero both &3, and 1, do not vanish at large length scales ; i.e. k < 1/ — 0
where ¢y — const and Y — (1 —2f — fu?) f(1 — f)NI2k? + O(k*) (see Appendix B). This
would suggest that the effect of cross-linking is not significant at length scales much smaller
than the localization length £. This fact is reflected in the change in Tppr which will be
discussed at the end of this section. The minimum of F'[¢, 1] is sought from the conditions
OF[¢,1]/0q|,,, ¢, = 0 and OF[e,1]/0€|4, .6, = 0. F[Cu, %) as shown in Appendix B is
given by [42],

BF = —mIn(£2V2/3) [ﬁ (1 - az(f)> +as(f)e’ + O(q")

2 \2 2
mNIZ [3q?
&2 |4

In the limit where £ — oc the term proportional to In(£2) is much larger than the term

390, () + by () +0(q4>} Lo (23)

proportional to 1/£? term, therefore we can minimize the coefficient of In(£2) with respect to
¢. Minimization obtains ¢, (—€ + a3(f)gm) = 0, where e = f2u?/2—1/2 — ay(f) = N. — N}
: N, = f?11?/2 being the number of cross-links per chain and the critical cross-link per chain
N} = 1/2 + as(f) = 1/2 [43] (since as(f) = 0, see Appendix B). The solution ¢, = 0
becomes unstable as f2u? > 1 or N, > N and ¢, = ¢/a3(f) + O(e?). Minimizing F with
respect to £ yields two solutions, i.e., 1/€2, = 0 and 1/&2 = ¢/(Ni2by(f)). The solution
with finite £2, becomes stable when € > 0 which can be seen by calculating 92F /02, Next
we compute Fi[c%,,*] by substituting ¢, and &,. The free-energy Fi[c$;, ¥?] in the limit
n — 0 characterizes the order to disorder transition. Fi[c$,,?] is given by (see Appendix

B),

10



8107 = 30 | [ (Paalle) = o = oV + ) ) () +

a

/ka - (P%w(k?, k3) + A3(k“)) P (k) (kS)y* (—k§ — k)

+ / TG 5 (8, K5, KE) 90 ()9 (kS)o* (k) v (—k¢ — kS — ks)} :
k‘f, kg,kg
(24)
where

1 ) L . . o
Ay (k%) = V( / dk T (k* K, —k')cM(k')aM(—k')+r§;ﬁm(ka,k',—k')¢M(k')¢M(—k')>
(25)

and

m a 1o
AS(ka) = qu(p%c(ov kl ) k2) : (26)

In the above equation x., = p*>V/(2m) and Ay and Az can be calculated by substituting the
ansatz for ¢y (Eq. (21)) and 93 (Eq. (22)). In the disordered phase 1* = 0. Below the
transition temperature TS, ordering takes place on the length scale of k! oc N'/2l; where
Ffﬁi(k) has a pronounced minimum. The different ordered states can be investigated from
the ansatz [2] ¢¥(k®) = 1/ 2221[5(18‘ + Qi) + d(k* — Q;)], where |Q;| < k. Tpr
can be calculated from the conditions F; [t]/0%|y=y; = 0, O Fi[thi]/0%7|y=y: > 0 and
Fi[Yf] = 0 at the disorder to order transition. The transition temperature 75}, is related

to the transition temperature Topr of the uncrosslinked system as

Ay — N,f2 -
T6pr = Topr (1 + %TODT) , (27)

where Ay = mV ~!A,. For cross-link densities N, < 1, A, = 0 and the transition temperature

increases (Fig. 1) with the cross-link density as
T¢pr = Topr(1 — Nef *Topr/Nb) ™. (28)

This basically reflects the fact that in the liquid state cross-links help ordering by bringing
the B blocks together. However, when N, > N} the system transforms into the gel state
where A, > 0 (detailed calculations shown in Appendix C). A, can be expressed as a function

of the gel fraction ¢ and the localization length £ as
Az = ¢*(toIn(€?) + LNIG /€% + O(E7")) + O(q"), (29)
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where t, and ¢, are positive constants. Both ¢ and £~! increase as the cross-link density
increases which, in turn decreases T§,,;. The system can be in different phases (as shown
in Fig. 1) depending on the values of YN and N.. The line (xV); separates the disordered
phases from the ordered phases. If YN < (xN); the system undergoes a continuous transition
from the liquid phase to the amorphous phase as IV, increases above N}. A similar transition
is also predicted for cross-linked homopolymers [33]. For cross-link densities N, < N} the
copolymer melt shows standard first order phase transition for f < 1/2 and a second order
transition [41] at f = 1/2 [2, 37] from the disordered liquid phase to the ordered phase
(lamellar phase) as the xN is increased above (x/V);. In this regime, the cross-links increase
the transition temperature slightly ; i.e., T, > Topr because the cross-links in the B
blocks help phase segregation in the liquid state by bringing the B blocks together. The
ordered phase at y N > (x/N); which can be viewed as an ordered phase in a liquid matrix
(denoted as ordered phase I in Fig. 1) undergoes a continuous transition to an ordered
phase in a gel matrix (denoted as ordered phase II in Fig. 1) as the cross-link density rises
above N}. This phase (ordered phase II) is different from the ordered phase in a liquid
matrix (ordered phase I) in the following manner. In ordered phase II, a fraction ¢ of the
monomers is localized in a region of size £ which is much larger than the radius of gyration
R¢ ~ N'2[,. Since the ordering in the 1) field takes place on a length scale of the order of
R¢ we observe ordered structures within the region £&. However £ decreases as N, increases
and the ordered structures cease to exist when £ < Rg. Thus the ordered solid transforms
into the disordered solid as N, is increased. The point B is a bi-critical point [45] where

both the critical lines for liquid to disordered solid and ordered liquid to ordered solid meet.

III. EXPERIMENTAL METHODS

A polystyrene-polyisoprene (SI) copolymer was synthesized and characterized by meth-
ods described in ref. [31]. The weight-averaged molecular weights of the polystyrene and
polyisoprene blocks were 8 x 10® g/mol and 24 x 10® g/mol, respectively, and we refer to the
polymer as SI(8-24). The volume fraction of polystyrene, f, was determined to be 0.210,
using NMR spectroscopy. The ratio of the weight to number averaged molecular weights
(M,,/M,,) was estimated by gel permeation chromatography to be 1.03. The glass transition

temperature (7,) of the polystyrene microphase was determined, using a TA Instruments

12



DSC model 2920 with a heating rate of 10°C/min, to be 51°C.

Mixtures of dicumyl peroxide (DCP) and SI(8-24) were prepared by dissolving prede-
termined amounts of the components in benzene. The mixture was dried first at room
temperature for 20 h, followed by further drying in a vacuum oven at 70°C for 4 h. The final
DCP concentration in the mixture was determined by weighing the dry mixture. The finite
vapor pressure of DCP at 70°C led to measurable losses of DCP during sample preparation.

DCP/SI(8-24) mixtures were molded into disks with 10 mm diameter and 1 mm thickness
using a Carver press at room temperature. The disk was placed in a Parr high-pressure
vessel and heated for 2 hrs at 160°C and 300 psi under a nitrogen blanket. This led to
the formation of bubble-free cross-linked samples. All of the experiments described below
were performed on the disks thus obtained. Samples are labeled according to the weight
% of DCP which ranged from 0.40 to 4.06 % (Table 1). Reheating the samples to 160°C
resulted in no changes in the properties of the sample as measured by the probes given below.
We thus conclude that our synthesis protocol leads to complete consumption of the cross-
linking reagent. We also subjected disks of homopolystyrene and homopolyisoprene to the
same protocol and found that the homopolystyrene molecular weight remained unchanged,
while the homopolyisoprene was converted to a cross-linked gel. It is thus obvious that our
protocol results in the selective cross-linking of the polyisoprene chains.

The network structure of our samples was studied by immersing them in toluene, a good
solvent for both polystyrene and polyisoprene, while order-disorder transition temperatures
were determined by birefringence and SAXS. Birefringence experiments were conducted on
an apparatus described in ref. [46]. The samples were capped with fused quartz windows,
placed in a thermostated oven between crossed polarizers, and the fraction of incident light
power (from a Nd: YAG laser with wavelength A = 532 nm) that was transmitted (I/Iy)
was monitored as a function of thermal history. SAXS experiments were performed on beam
line 1-4 of the Stanford Synchrotron Radiation Laboratory (SSRL) using samples encased
between Kapton windows. The following is the configuration of the beamline: X-ray wave-
length A = 1.488 A, wavelength spread ~ 1%, and beam diameter ~ 0.5 mm. The reciprocal
space, ranging from k = 0.076 nm~! to 1.6 nm™! (where, k¥ = 47w sin(/2)/)), was probed
for this measurement. The samples were held between Kapton films inside a thermostated
oven. The scattering pattern was recorded with a CCD camera and azimuthally averaged.

After the subtraction of the background and empty cell scattering, the measured scattering
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data were converted to absolute scattering intensity using a secondary standard provided

by SSRL.

IV. EXPERIMENTAL RESULTS

Cross-linked samples weighing about 0.02 g were immersed in excess toluene for 12 h.
Samples with DCP wt. % < 0.6 dissolved completely, leaving no trace of a gel. These
samples also did not maintain their shape when heated in the dry state to 160°C. Immersing
samples with DCP wt. % > 0.65% in excess toluene resulted in the formation of a swollen
gel. These samples also maintained their shape when heated in the dry state to 160°C. We
conclude that the gel point of our cross-linked samples is obtained when the DCP wt. % is
in the vicinity of 0.65. The polymer volume fraction in the swollen state ¢ was determined
by weighing the swollen gels. We accounted for the difference in densities of toluene and
SI1(8-24), but ignored the volume change of mixing. The values of ¢ thus obtained are given
in Table 1.

According to the Flory-Erman theory (FE) [13] homopolymer networks undergoing affine
deformation during swelling, ¢ obeys the relationship

In(1—¢) +x¢* + ¢ = — (%) Vig'? [1 — %(1 — ¢ /3 (30)

where x is the Flory-Huggins interaction parameter between monomers of the polymer chain
and the solvent, Vj is the unswollen sample volume, and V; is the molar volume of solvent.
Parameters X and p depend on the network structure. For randomly cross-linked networks

Mark and coworkers have shown that [47, 48]

X _ p(Ne —3)
4 1
no_ p(Ne—1)
Vo  2M, (32)

where p is the polymer density, M,, is the number-average molecular weight of the polymer
precursor and N, is the average number of cross-links per chain.
Eqgs. 30-32 are strictly applicable to randomly cross-linked homopolymers. Our system

is considerably more complex because we have randomly cross-linked one of the blocks of
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a block copolymer. Unfortunately, theories that address the swelling of cross-linked block
copolymers have not yet been developed. Lacking a better alternative, we used Eqs 30-32 to
obtain an estimate of V., with the measured values of ¢ and M, = 32 kg/mol. Due to the
absence of a measured x between the cross-linked SI block copolymers and toluene, we used
X = 0.371, a volume averaged value of x,s = 0.41 (polystyrene and toluene) and x,; = 0.36
(polyisoprene and toluene) [49]. The values of N, thus obtained are denoted as NI'F and
given in Table 1. Extensive characterization of polyisoprene networks obtained by DCP
cross-linking has led to the conclusion that one cross-link per DCP molecule is obtained in
the system [50]. We can thus obtain a second estimate of N, from the DCP concentration in
our samples. This estimate is called N, and is also given in Table 1. It is clear from Table
1 that there is reasonable consistency between N, and NI®. Due to the many unanswered
questions regarding the applicability of the FE theory to cross-linked block copolymers, we
have chosen to use N, as a measure of the cross-linking density of our samples.

In Figure 2, we show typical small angle X-ray scattering profiles, I(k), obtained from our
samples. We restrict attention to temperatures between 70°C (above T}) and 170°C (just
above the cross-linking temperature). The data were obtained as a function of increasing
temperature with 10 min equilibration time at each temperature. At 70°C, I(k) from the
pure block copolymer, SI[0.00], contains a primary peak at k,, = 0.31 nm~', a second order
peak at ky = 0.53 nm~! (Figure 2a). The ratio ky/k,, is about /3 which is in agreement
with that expected from cylinders arranged on a hexagonal lattice [51, 52]. The scattering
profiles of SI[0.00] are sensitive functions of temperature. The primary peak scattering
intensity I(k,,) changes by a factor of 10 in our temperature window. The qualitative
characteristics of I(k) change abruptly when 7 is increased from 100 to 110°C: the width of
the primary peak increases abruptly and the second order peak vanishes. This is a standard
signature of an order-to-disorder transition [53, 54, 55, 56]. We thus conclude that Topr of
S1[0.00] is 105 + 5°C.

In Figures 2b, 2¢, 2d, and 2e we show I(k) measured from SI[0.65], SI[1.16], SI[1.94],
and SI[4.06], respectively. We see that cross-linking suppresses the second order scattering
peak [compare Figs. 2(a) and 2(b), for example]. The primary scattering peak is thus the
dominant feature of the SAXS profiles from our cross-linked solids. The scattering peak
at high temperatures (above 110°C) from SI[0.00] - Figure 2(a) - is due to concentration
fluctuations. The SAXS profiles in Figures 2(a) through 2(d) at 170°C are independent of
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DCP concentration (see Figures 2a-d). This implies that cross-linking has little effect on
the concentration fluctuations obtained in the disordered state when the DCP wt. % is
less than 1.94. In contrast, the structure of the ordered phase is strongly affected by cross-
linking, as can be seen by examining the scattering profiles at 70°C at various cross-linking
densities (Figures 2(a) through 2(d)). At very high cross-linking density, we find that SAXS
intensity at 170°C is suppressed. This can be seen by comparing the data obtained from
SI[4.06] (Figure 2e) with that obtained from the samples with lower cross-linking density.
This indicates very high cross-linking densities can lead to homogenization of our sample.
Since we are primarily interested in solid samples that undergo reversible order-disorder
transitions, the remainder of the paper is focused on samples DCP wt. % < 1.94.

The scattering profiles from ordered phases are often expressed as a product P(k)S(k),
where S(k) is the contribution due to the periodicity and P(k) is the form factor of the
individual structures that are placed on the periodic lattice (e.g. cylinders). We propose a

natural extension of this for periodic structures made up of chain molecules,
I(k) = P(k)S(k)C(k) (33)

where C(k) is the contribution due to chain connectivity. C'(k) will become irrelevant in
the strong segregation limit (i.e. C(k) — 1) where mixing between the two blocks is not
permitted except in the infinitely thin interface between the microphases. It is clear, however,
that our systems are far from the strong segregation limit [2, 57, 58, 59]. In the disordered
state, when T > Topy, I(k) is dominated by chain connectivity contributions. We thus
used the measured scattering profile at the highest temperature 170°C, I(k)r—1700c as a

measure of C'(k) and define a normalized scattering intensity
In(k) = I(k)/I(k)r=170°C - (34)

It should be clear from the arguments given above that Iy (k) will be dominated by the form
factor P(k) and the structure factor S(k). Typical results for Iy(k) are shown in Figure
3a.where we show results obtained from SI[0.70] at 70°C. The arrows represent the locations
of V/3ky,, and V/Tk,, expected from a hexagonal lattice [60]. Plots of the normalized intensity
show clear evidence of the higher order peaks corresponding to a hexagonal phase (Figure
3a). In contrast, the I(k) profiles shown in the inset of Figure 3a show virtually no evidence

of higher order peaks.
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In order to estimate the area under the higher order peaks, we approximate the scattering

profile in the region 0.4 < k£ < 1.6 by the functional form

I(k) = by exp (—%) + ey exp (—@) + (a1 + f2a3> (35)

where, a1, as, az, by, by, bs, c1, co, and c3 are fitting parameters. The first two terms in Eq. 35

account for the v/3k,,, and v/7k,, peaks while the last term accounts for the g—dependence
of the background. The curve in Figure 3a is the least squares fit of Equation 35 through
the data. The fitting procedure enables determination of the area under the second order
peak Ay = by/7hs.

Figures 3b-d show the effect of increasing temperature on Iy (k) for SI[0.70]. It is evident
that the higher order peaks diminish in intensity with increasing temperature. At 150°C we
see the higher order peaks are no longer evident [Figure 3(d)]. The solid curves in Figures
3b-d are least-squares fits to Equation 35, and they enable determination of the temperature
dependence of A, for SI[0.70].

We obtained Iy (k) from all of the samples listed in Table 1, and estimated the tem-
perature dependence of A, using Equation 35 as described above. The results are shown
in Figure 4a were Ay from different samples is plotted as a function of temperature. The
finite values of A, obtained at temperatures < 110°C from samples with DCP wt. % < 1.06
clearly indicate the presence of a hexagonal ordered phase in this temperature range. Since
A, is related to the extent of long-range order in our system, which, in turn, must depend
on cross-linking density, it is no surprise that the values of A, depend on cross-linking den-
sity. We expect a decrease in long-range order with increasing cross-linking density. This is
consistent with the trends seen in Figure 4a. A point worth noting, however, is that values
of Ay from samples with DCP wt. % < 1.06 at a given temperature are comparable in
magnitude. For example, A5 at 70°C from the pure block copolymer SI[0.00] is 0.058 while
that from SI[1.06] at the same temperature is 0.038. This implies that the intensity of the
second order peak in both uncrosslinked and cross-linked samples is similar. This is not at
all obvious in the unnormalized I(k) data shown in Figure 2 (compare Figure 2a and 2c).
Recall that our samples were made by cross-linking the disordered state at 160°C. It is clear
that when the DCP wt. % < 1.06 the ordered phase reappears upon cooling.

An abrupt change in ordering behavior is seen in Figure 4a when the DCP wt. % is

increased from 1.06 to 1.16. For samples with DCP wt. % is > 1.16 we see negligible values
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of Ay across the entire temperature window. This implies that when the DCP wt. % is
> 1.06 the ordered phase does not reappear upon cooling.

It is clear from Figure 4a that at temperatures > 120°C the values of Ay for all our
samples reaches a ”baseline” that lies between 0.01 and 0.00. Deviations from this baseline
were considered as signatures of an ordered phase. Our method for determining 7T pr from
the SAXS data is shown in Fig. 4b where we show the temperature dependence of A,
of SI[0.70]. We fit a straight line through the high temperature data (" > 130°C) and
identified the first point of departure from this line as the order-disorder transition. We
identified Topr of all of the samples with DCP wt. % < .06 in this manner.

Birefringence measurements can also be used to detect the presence of anisotropic struc-
tures such as lamellar and hexagonal phases in block copolymers [31, 62]. Figure 5 shows
the temperature dependence of light intensity I leaking through our samples held between
crossed polarizers, normalized by the incident intensity (Ip). We find that the temperature
dependence of /1y, shown in Figure 5, is similar to that of Ay, shown in Figure 4. Samples
with DCP wt. % < 1.06 show finite birefringence signals at low temperatures. In contrast,
samples with DCP wt. % > 1.16 show negligible birefringence at all accessible temperatures.
The birefringence signal I/[, from samples with DCP wt. % < 1.06 approach ”baseline”
values ranging from 0.03-0.00. We estimate Topr from the birefringence data using the same
methodology as that described above for the SAXS data (see Figure 4b). The birefringence
data confirm all of the conclusions made on the basis of the SAXS data.

We are interested in solids that undergo reversible order-disorder transitions. In Figure
6(a) we show the temperature dependence of the SAXS peak intensity I, obtained from
SI[0.70] during a heating and cooling cycle. It is clear that the changes in the sample
structure as seen in the SAXS data are reversible. In addition there is no evidence of
hysteresis in the data shown in Fig. 6a. In Figure 6(b) we show the birefringence results
obtained in heating and cooling cycles from samples SI[0.70]. It is evident that SI[0.07] must
be supercooled substantially below Tppr before the signatures of a fully ordered sample
are obtained. The absence of hysteresis in the SAXS measurements and the presence of
hysteresis in the birefringence measurements was observed in all of the samples with DCP
wt. % < 1.06. This is due to the difference in length scales probed by the two techniques.
SAXS probes the local structure on the length scale of the periodicity of the ordered phase

(20 nm) while the birefringence measurements probe the structure on the length scales of the
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ordered grains (1 pm). The data shown in Figure 6(b) were obtained from two independent
heating and cooling cycles. There is virtually no difference between the birefringence data
obtained from the two cycles. It is thus clear that the order-disorder transitions in our
solids can be accessed repeatedly and reversibly. We have thus accomplished our objective

as stated in the Introduction.

V. DISCUSSION

In Figure 7, we show the dependence of T pr on cross-linking density as measured by both
birefringence measurements and SAXS. We use a dimensionless parameter N, norm = N/ (N,
at gelation point) to quantify the cross-linking density (abscissa in Figure 7). The solid lines
in Figure 7 represent the experimentally determined phase diagram. The phase diagram
contains three kinds of phases: disordered liquids (DL), disordered solids (DS), and ordered
solids (OS). The ordered solid is confined to a region of box-like shape indicating the presence
of two regimes: (1) a regime where T pr is independent of temperature (N, porm When < 1.7)
and (2) a regime where ordered solids cannot be observed in our experimental window
(Ne,norm > 1.7).

The dashed curve in Figure 7 represents the theoretically predicted boundary of the
ordered solid phase (OS). The temperature dependence of the Flory-Huggins interaction
parameter x between polystyrene and polyisoprene is known (x = 0.0064+20.0/7 [31]). This
enables a direct comparison between theory and experiment with no adjustable parameters.
For the theoretical curve, N, norm = 2N, because N, at the gel point is 0.5 (Figure 1).
The dashed curve in Fig. 7 is obtained by with these inputs and the results given in
Fig. 1. It is evident in Fig. 7 that the theoretical phase diagram captures the essential
features of the experimental observations: namely the existence of two regimes. There are
however, two differences between theory and experiment. (1) The theory predicts that Topr
increases from 115°C to 130°C with cross-linking density when N, o, is less than unity.
The experimental data does not support this conclusion. While the scatter in the data do
not rule out an increase in Tppr with increasing cross-linking density, the magnitude of
the increases, if is exists, is some what smaller than that predicted theoretically. (2) The
value of N, at the gel point in theory is 0.5 (Figure 1) while that obtained experimentally

is 1.49 (Table 1). These discrepancies reflect the complexity of cross-linked systems. It is
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worth noting that many aspects of cross-linked homopolymer systems are not completely
understood [63, 64].

To our knowledge, the fact that block copolymer chains composed of hundreds of re-
peat units can undergo reversible order-disorder transitions despite the attachment of
one of the blocks to a cross-linked network has not been shown in previous studies
(15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. However liquid crystalline elastomers [7, 65, 66, 67,
wherein low molar mass mesogens covalently attached to an elastomeric network, do exhibit
reversible nematic-to-isotropic phase transitions in response to changes in temperature. Con-
siderable insight into the phase behavior of these systems has been obtained through a com-
bination of careful synthesis, characterization, and theory [7, 65]. In a closely related study
Sakurai et al. [23] examined the effect of cross-linking on the morphology of a polystyrene-
block-polybutadiene-block-polystyrene (SBS) copolymer. The SBS copolymer exhibited a
lamellar phase in bulk at all accessible temperatures. A disordered sample was prepared
by adding adequate amounts of dioctylphthalate (DOP), a common solvent for the both
polystyrene and polybutadiene blocks. The polybutadiene blocks were cross-linked in the
disordered state and the DOP was then solvent-extracted to obtain a dry but cross-linked
SBS sample. It was found that these cross-linked SBS samples were disordered. How-
ever, annealing these samples led to the reappearance of the lamellar phase. This study
demonstrates that cross-linking does not impede order formation when the driving forces
for order formation are sufficiently large. The changes in structure seen in the cross-linked
SBS samples upon annealing are, however, irreversible. There was no possibility of obtain-
ing a disordered phase in these cross-linked samples because the order-disorder transition
of the block copolymer was inaccessible even in the absence of cross-links. The materials
studied in ref. [23] were thus not suitable for studying reversible order-disorder transitions

in cross-linked block copolymers.

VI. CONCLUSIONS

We have accomplished our goal of synthesizing and characterizing cross-linked block
copolymer solids that undergo reversible order-disorder transitions, thereby opening the door
to applications such as shape memory materials and artificial muscles. Ordered solids were

synthesized by selectively cross-linking the polyisoprene chains of a polystyrene-polyisoprene
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block copolymer, at temperatures well above

the order-disorder transition of the pure block copolymer in the absence of cross-links.
The resulting networks were characterized by swelling experiments, which gave N, the
average number of cross-links per chain, and birefringence and SAXS experiments which
enabled the determination of the order-disorder transition temperature, Topr, as a function
of N.. Two regimes of behavior were observed: (1) below a critical value of N., Topr was a
weak function of cross-linking density, and (2) above a critical value of N., Topr decreases
extremely rapidly with cross-linking density. We also developed a field theoretic model to
understand the origin of this behavior. Below a critical cross-link density N = 0.5 the
system undergoes the standard microphase segregation transformation as the temperature
is lowered below the transition temperature T pr. For cross-link densities above the critical
cross-link density the monomers are localized within a region of size £ ~ (N, — N)~1/2. If
the localization length is much larger than the radius of gyration (i.e £ > R,) the chains
microphase separate within that length scale giving rise to a different ordered phase (ordered
phase II) compared to the ordered phase of the uncrosslinked chains (ordered phase I).
The ordering transition cease to exist as { becomes comparable to R, which is reflected
in the sharp decrease of Topr for N, > N}. The theory thus provides the microscopic
underpinnings of the unusual phase behavior obtained from our cross-linked block copolymer

samples.
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APPENDIX A: DERIVATION OF THE FREE ENERGY FUNCTIONAL
WITHIN RPA

In this appendix we set out to derive the partition function Z,,; in terms of the density
variables p4(r) and pp(f) using the Random Phase Approximation (RPA). The partition

function 2., is defned as,
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(A2)
and
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(A3)
One can expand (Q) = [D[ti(s)] Pa({t:})Ps({f;}) as a power series in 4 p(f) and
write (@) = exp(In(@®)). In order to evaluate Z,.; we need to calculate the in-

tegrals in 4 p(f) which are approximated using RPA. According to RPA [27, 37|

the integrand expli [ df (pa(2)ya(®) + pp(#)y5(F)) + Q)] = exp[F,[va; V8, pa, p5]]
is replaced by exp[F,[v4, Vs, pa,ps]] where O6F,[va,7VB,pa, = 0 and
SF,[va,7B, pa, PB] . = 0. The above conditions yield to linear order in ps and
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PB,

Ya = i(Wi1pa + Wizpp)
v8 = i(Wa1pa + Waopg)
(A4)

where in Fourier space, Wi, = Vm™'f2gy(fz)/D, Wi, = =Vm~™'f(1 — f)gw(fz, (1 —
f)z)/D =Wa and Was = Vm™' (1= f)?g2((1— f)z)/ D, where D = f*(1—f)*[ga(fx)g2((1 -
Hz) — gio(fz, (1 = fz)?]. g2(y) = 2/y*(y + {exp(—y) — 1}) is the Debye function [37].
g12(z,y) = 1/(xy) (1 + exp(—z — y) — exp(—z) — exp(—y)) and z = NI2(k - k) /6. Substitut-
ing pa =¥+ fcand pg = (1 — f)c— 1) we get the free-energy F' given by Eq. (20). It turns
out
T8 = Typ —Xer — N2> x* [ dwe0
a=0  B=0,B+a

(A5)
where 'y, = %(Wn + Wao —2Whs), Xer = p2V/2m and x® = v{, /24 0S5 /2 —v%. [yy can be
approximated very well by the following form [37] which is based on the asymptotic forms

of the function at k — 0 and at k — oo.

. VmT' [ NI2K? 9 s(f)
Lyp(k) = —5 (12f(1—f)+Nl3f2(1—f)2k2_f(1—f)> 40

The function s(f) ~ O(1) is introduced to keep the function within 4% accuracy [37]. Clearly
Ty (k) has a minimum at k2, = \/108/[f(1 — f)N2i&]. The value of Ty (k) at k = k,, is

N[ 3 s(f) \_ N
Fow (k) = 2po< Fa—7p - f)2) ~ 25,0

ng) = fWu+1-2f)Wio— (1 — )W — uy + NQZUJ& H 0,0 (A8)
a=0 B=0, f#a

(A7)

1 n n
ry = §(f2W11 +2f(1 = [)Wi + (1 = )*Way) — wer + N Zwa H k8,0 (A9)
a=0 B=0, B#a

where po = V/(mN), u® = fusy + (1 = 2)u5, — (1= oSy, ter = [u2V/m, w® = 3208 +
2f(1 = flvg, + (1 — f)*vS) and we, = f2u?V/2m. The calculation of the terms higher than
the quadratic order in p4 and ppg are straightforward but tedious. However we will need only

the values of the functions in the k — 0 limit which will be shown at appropriate places.
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APPENDIX B: CALCULATION OF F
1. Contribution from the many replica sector of c;; and ¥y,

We calculate the part (F') of the free energy F[t), ¢] which arises due to the many replica
sector part of the density field ¢ and the order parameter field ¢). Since both ¢ and 1) are
proportional to g, F' can be calculated as a polynomial in ¢ and for a cross-link density close
to N7, ¢ is small and terms in lower powers of g are more significant. The contribution to
the term proportional to ¢% in F is from the following terms :

A . 3m 6m? N A
[ ate| (v 0+ 3 10,8 + S 1200, 0, ewgen (10 + (T + Tl (0.

m2 R P . . 2m 3m? ~
+ 772 0bec(0: 0, k))wmkwm—k) + (rfiz () + 57 Tyec(0,10) + 575 T (0, 0, k))

xoM(fc)i/)M(—R)} (B1)

The part proportional to ¢ is from:

L Am . R A
/dkldkz [( Bk, ko) + Vrgﬁcc(o ki, kQ))CM(kl)CM(kz)CM(—kl — ko) + (Fwwzp(kla ks) +

m N N S 2m PO
VFSp;zpc(O ki, k2)>¢M(k1)¢M(k2)¢M(—k1 — ko) + (F’E{)J)C(kl’ ko) + 7F5p1,3)cc(0’ ki, kz))
A SO 3Im - o\ . . SO
xYur (k1) (ko) Crr (ki — ko) + (Fgc)c(kla k) + qu(/jlc)cc(oa ki, k2))¢M(k1)5M(k2)5M(—k1 - k2):|
(B2)

There will also be contributions to the ¢* term in F' from the [ d‘kF wM( k)pnr(—k) and
fdkF Y (K)én (k) terms of Eq. (B1) originating from the ¢? order term in 1 (k).
However since those terms are proportional to k% we do not need them to calculate az(f).

In order to calculate the coefficients as(f) and az(f) in Eq. (23) we need to collect the
terms in Eq. (B1) and Eq. (B2) which are proportional to In(£2). Thus ay(f) is proportional
to

2
(3 10,0+ T 18(0,0,0)) [ akeu(iies (i (83)

and a3(f) is proportional to

4 ~ ~ ~ ~ ~ ~
(rgig(o 0) + yrgﬁgc(o, 0, 0)) / dkydky Epr (ki) (ky)en(—ky — ko) (B4)
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The coefficient, by(f) is calculated from the part proportional to €72 in Eq. (B2) which is

3m (3)" 6m2 (a)" VAN R " (2) 2m (3)
2 Iy (0,0) + Ve r...(0,0,0) dk (k- k)em(k)em(—k) + ( Ty, (0) + “Tp (0,0)

3m L. .

2 10.(0.0,0)) [ dkew (k) (B5)
In the above expression the double prime in the superscript denotes second derivative with
respect to k, i.e., f'(0) = 82f(1A<)/81A<2|1~(:0. bs(f) can be calculated from the part propor-
tional to £ 2 in Eq. (B2). However we will not need b3(f) to calculate &2 to order O(e),

hence the calculation will not be shown here.

2. k — 0 limit of the ' functions

The k — 0 limit of the I'® functions are the following :

) oV 2f*=2f+5)V @V
Ly (k) = omNIZf2(1— f)2(k-k)  8mf*(1—f)?  2m
=N 32X ] b +O((k - K) 9
a=0 B=0,8#0

r ) V(1—2f) VA —6/2+8f—3)NB(k k) Vfp

Amf(1 - f) 288mf(1 — f) m
+N? Zua H Ows 0 + O((f{ ‘ 1;)2)
a=0 £=0,#a

(B7)

. Vo V2 (4f2—Af + 9Nk - k)
r®k) —» — — N2§ w®

ﬁ b 0 + O((k - k)?)

a=0  f=0,f#a

(B8)

Calculation of higher order I' functions involve evaluation of higher order correlation func-
tions in 1;’s. We will not show the detailed calculations here but will present the calculation
of T&) as an example ; the other I' functions can be calculated in similar fashion.
2
. 1 . . .
Pk ko) = =2 ) Z Gabc ky, ko — ki, —ko) G (k1) Gy (ko — k1) G} (—ko) Ty o

a,b,c=1a' b/ /=
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In the above equation, 7, = f, 7» = 1 — f and G (k = [ dsi [ dsy(e ik-(#(s1)~ #(s2)))y where
(---)o implies average over polymer configurations with the Boltzmann weight e ?#° where
BHy = Y7, 3/(2NE3) [ ds (di;/ds)>. The inverse G (k) = (=1)TGy,(k)/ det |G (K)|.
The function Gabc(kl, k, — lAcl, —Rz) is given by,

G((ﬁ))c(kl’ f{2 — 1;1, —IA{Q) = m/dsl /dSQ /d83< exp |:’ll;1 . f'(Sl) -+ 2(122 — f{l) . f‘(Sg) — ZIA{Q . f‘(83):| >

—m/dsl/dSQ/dsgexp[ Nig {kQ\SQ s1] +k§\s3—52\}]

N2
= m/d81/d52/d83 (1 - %{kﬂ&@ - 81‘ +k§|83 —82|} —{—O(kil,k;l,k%k%)) (BlO)
a b c

A systematic diagrammatic way of calculating the G functions can be found in Ref. [39].

0

Since we are interested in the k* and k? terms in the ' functions we will expand the G

functions and collect the terms proportional to k° and k2. Using the above equations we get

re )(kl,lAcg) - _

cce

V2 [8f3—4f2—10f2+29 ~ 4f2—4f+9{Nzgk§ | NG

4 1.4 1.21.2
6m2 24 24 6 6 }:| +O(k17k2’k1k2)

(B11)
3. (k) in the limit k — 0

Using Eq. (B7) and Eq.(B8) we obtain

Ioy (k)

I (L—2f = fu?) F(1 = F)NIGE® + O(k*) (B12)
Thus
Uar(k) = [—gm(1 — 2f — fu?) f(1 — F)NIZE* + O(k*)] ( Z H Sy o) o) -
a=0 8=0,8#+a

(B13)
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4. Replica Integrals

All the replica integrals are evaluated in the limit n» — 0. The integral,
I = /df{ et (K)Ear (—K)
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The integral

IQ - /df(l d-f{g EM(].A{l)EM(lACQ)EM(—Rl —lA{Q)

s 3 [0 o1 @i ko) SMOC [ gz
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The second and third integral in the last line can be evaluated using Eq.(B14). We calculate
the first integral here.

/ dR1 d—RQ 51(15 0 61(25 0 e_(ﬁ%+1;§+(1;1+122)2)§2

_ / Tk, dk, dcl dc? o~ (R2E2-4R3E2 + (koo )262) ier s Hien ks

(n+1) /2 R 2
— (&rg?) /dc1 des [ ik, exp< 3¢ = k2 4k (c1+c2/2)>

( ) (2 dey dey exp (‘ (n+ 1)C1 (41 (n+ e C2>
487284

vV Vv 62 62 6£2
- V2(n+1)3/2 (48#254)
= 1/V? = 3n/V2In(4V/37E2V 2%) + O(n?) (B16)
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Thus

I =— n (ln(4\/§7r§2V2/3) — gln 2) + O(n?)
(B17)
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The expansion lim, 02" = 1 + nln(z) + n?/2(In(z))? + O(n®) and the integrals [69] for
hypergeometric functions [68] have been used in the above derivation.

The integral,

L = / & ey (k) thar (—K)

) F(Q) k))2 -
= —m2q2/dk5k507( d();)( A)) e K¢ (B19)
L (k)
In the limit £ — oo the significant contribution comes from k ~ 1/§ — 0. Therefore one
can expand

(P(2)(1A())2 { 1— 2f 2f} ) o L
7A:V SN = £)*mii(k-k)(1+ O((k - k)))(B20
SOt i (1= £)mi(l- k) (1 + O((k - K)))(B20)
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Thus we can use the integral in Eq. (B6) to evaluate the (k - k) part of the integral.

5. Calculation of as(f), a3(f) and by(f)

We can calculate the coefficients in Eq. (23) using the results from the last sections.

as(f) =0 (B21)

as(f) = (B22)

1
2

(1= 2f)2(24f% — 362 — 46 + 29) N Af2—4f +9

ba(f) = 55296 (1 — f) 288

(B23)

In experiments f = 0.25 where a; = 0, a3 = 1/2 and b,(0.25) = 0.028.

APPENDIX C: CALCULATION OF A,

In order to calculate As in Eq. (25) to order ¢%/£* we can Taylor expand F%cc(k"‘, K, k')
around k’ = 0 upto order k' - k. Since wM(lA(’) x gk’ -k’ we do not need to consider the

second term in Eq. (25) in the calculation of A, till O(¢?/£?).

1 ol 1 n ~ ~ ~ ~
Ao(k) = / ax [rfj;w(ka,o, 0) + 5T ek, 0,0) (K ') [ens (K)ens (1K) (C1)

Since the phase separation occurs at the length scale of k! we calculate Ay at k = k,, =
(108/(f(1 = f)N?1g)"/*.
¢’V

m

A (Knm) (to(km, £) In(€?) + t1(km, £)/€7)

(C2)

From our calculations ty(ky,, 0.25) = 1.115 and ¢;(k,, 0.25) = 0.212.
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Table 1

Sample | DCP (wt %)|Swelling ratio (¢)|N,,* (perchain)|NFZ?
S1[0.00] 0 o° 0 N/AC
S1[0.40] 0.4 o° 0.95 N/AC
S1[0.65]|0.65 0.0485 1.53 2.35
S1[0.70]|0.70 0.0367 1.65 2.23
SI[1.06]|1.06 0.0748 2.40 2.73
SI[1.16]|1.16 0.0833 2.73 2.89
SI[1.58]|1.58 0.1386 3.71 4.33
SI[1.94][1.94 0.1464 4.56 45
SI[4.06]|4.06 0.2620 9.54 11.3

a. Calculated based on stoichiometric ratio of DCP to SI block copolymer.

b. Calculated based on swelling equilibrium results and F-E theory.

c. Sample disassembled when placed in excess toluene.
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FIG. 1: The phase diagram in the x N — N, plane at f = 0.25, where N is the number of monomers
in each chain, N, is the average number of cross-links per chain, y is the Flory-Huggins parameter
and f is the volume fraction between A (PS) and B (PI) blocks in the copolymer chain. The
curved line separating the disordered phases from the ordered phases is a plot of (x/N); vs N.. The
cross-linked melt undergoes a continuous transition across the solid line from the liquid phase to
the disordered solid phase as N, crosses N at where xN < (xN);. At xN > (xN); the system
changes continuously from an ordered phase in liquid matrix (ordered phase I) to an ordered phase
in gel matrix (ordered phase II) as N, increases above N}. The phase transition from the disordered

phase to the ordered state at a constant cross-link density IV, is first order. B is a bi-critical point.
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FIG. 2: SAXS intensity profile I(k) as a function of scattering vector k for (a) SI[0.00] (b) SI[0.65]
(c) SI[1.16] (d) SI[1.94] (e) SI[4.06] at various temperatures.

36



1-2:\ ‘ T T T T ‘1\\ T ‘ T T \: 1I2:I ‘ 1T T T 1T 1T T \:
115 : E 11+ ]
10~ E 10" ]
g 09° g 0 ]
-Z 08" 040608 1 1214 _Z gr E
r ) ] r 1
0.7 - 0°C - 0.7 -
*a gnd O
ol b by o 0 0 ol oo b b b b i
04 06 08 1 12 14 04 06 08 1 12 14
k () k (nm)
1-2 F I ‘ T T T ‘ T T ‘ T T ‘ T ]
11- (©) -
10- ;
0.9 ; O @O@@g@g
g . E_ 0@6)@ 0 _E
—Z 08 - 3
07c E
i 150°C ]
06F .
E | ‘ L1 1 ‘ L1 l L1 1 ‘ L1 1 ‘ L1 .
14

04 06 08 1 12
k (nm)
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was below 60°C, the glass transition temperature of the polystyrene microphase.
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