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It is assumed that the dark energy observed today is frozen as a result of a phase

transition involving the source of that energy. Postulating that the dark energy de-coherence

which results from this phase transition drives statistical variations in the energy density

specifies a class of cosmological models in which the cosmic microwave background (CMB)

fluctuation amplitude at last scattering is approximately 10−5.

PACS numbers: 98.80.Bp, 98.80.Jk, 95.30.Sf

In a previous paper (reference [1], equation 14), it has been shown that the fluc-

tuation amplitude of the Cosmic Microwave Background (CMB) can be theoretically

estimated to be of the order 10−5, in agreement with observational evidence, using a

minimal set of assumptions. Although the scale parameter of the cosmological expan-

sion at the time of dark energy de-coherence enters the calculation, the final result

depends only on the normalized dark energy density ΩΛ, the red shift at last scatter-

ing zLS, and the red shift at the time when the energy density of the non-relativistic

pressure-less matter observed today was equal to the radiation energy density zeq. The

observation that the final result was independent of any specifics at the time of de-

coherence suggested to the authors of this paper that this result is more general than
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the mechanism suggested in reference [1]. This paper examines the generality of the

previous result, and presents a plausible justification for the size of the fluctuations at

the time of de-coherence. A tentative conclusion is that any phenomenological theory

that accepts the “cosmological constant” Λ, or the dark energy density ρΛ = Λ
8πGN

,

or the deSitter scale radius RΛ =
√

3
Λ
, as a reasonable way to fit the observational

data over the relevant range of red shifts, and which also assumes some sort of phase

transition that decouples the residual dark energy from the subsequent dynamics of

the energy density, will fall within a class of theories all of which fit the magnitude

of the observed fluctuations.

A likely candidate for the dark energy is some form of vacuum energy. Physical

systems for which vacuum energy density directly manifests include those that exhibit

the Casimir effect[2]. Lifshitz and his collaborators[3] demonstrated that the Casimir

force can be thought of as the statistical superposition of the van der Waals attractions

between individual molecules that make up the attracting media resulting from the

zero-point motions of the sources (independent of the couplings involved). Since

these motions are inherently a quantum effect, one expects these systems to exhibit

the space-like correlations consistent with a quantum phenomenon.

A weakly interacting sea of the quantum fluctuations due to zero point motions

should exhibit statistical variations in this “dark energy” density. At de-coherence,

one should be able to use simple counting arguments to quantify these variations. If

the zero-point motions of the sources have a statistical weight Ω(EA) associated with

a partition A having energy EA while holding total energy fixed, then the probability

of such a partitioning is given by

P (EA) =
Ω(EA)

Ωtot

=
ΩA(EA) ΩĀ(Etot − EA)

Ωtot

, (1)

where Ā represents everything external to the A partition. Requiring that the most

likely configuration of energy partitions results when (the log of) this probability is

maximized, this distribution gives a uniform dark energy distribution if

1

EA
Λ

≡ d

dEA
logΩ(EA) , EA

Λ = EĀ
Λ ≡ EΛ. (2)

Here EΛ is an intensive energy (chemical potential) associated with the statistical

reservoir and boundary conditions. This result is analogous to the zeroth law of
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thermodynamics. Similarly, using arguments analogous to those used to establish the

second law of thermodynamics, logΩ(E) is expected to be a non-decreasing function

for previously isolated systems placed in mutual contact.

If one next examines a “small” partition A for which the reservoir Ā has energy

Etot −EA, one can examine the (log of the) lowest order fluctuations from uniformity

for the reservoir to show that

ΩĀ(Etot − EA) ∼= ΩĀ(Etot) e−E/EΛ, (3)

thus defining a probability distribution of the form

P (E) =
e−E/EΛ∑
E′ e−E′/EΛ

. (4)

For such an ensemble, the fluctuations-dissipation theorem gives

< (δE)2 > = E2
Λ

d

dEΛ
< E > . (5)

A typical equation of state will connect the extensive variable < E > to another

extensive variable that counts the available degrees of freedom NDoF . On dimensional

grounds, the terms in a typical equation of state which depend on EΛ should take

the general form < E >= NDoF
Ea

Λ

εa−1 , where ε is a constant with dimensions of energy.

The expected fluctuations are then given by

< (δE)2 >

< E >2
=

a

NDoF

(
ε

EΛ

)a−1

= a
EΛ

< E >
. (6)

As seen from the second form in equation 6, the dimensionless fluctuations are of

the order of 1
NDoF

, i.e. inversely proportional to a dimensionless extensive parameter

relative to the scale of the de-coherence. In terms of the densities, one can directly

write <(δE)2>
<E>2 = <(δρ)2>

ρ2 ∼ ρΛ

ρ
.

Therefore, the energy available for fluctuations in the two point correlation func-

tion is expected to be given by the cosmological dark energy, in a manner similar

to the way that background thermal energy kBT drives the fluctuations of thermal

systems. This means that the amplitude of relative fluctuations δρ/ρ is expected to

be of the order

∆PT ≡
(

ρΛ

ρPT

)1/2

(7)
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where ρPT is the cosmological energy density at the time of the phase transition that

decouples the dark energy. The scale dependence of this form will be explored in the

remainder of this letter.

Next, such a phase transition which occurs during the epoch of radiation dom-

ination will be considered. Using the densities at radiation-matter (dust) equality

ρM(zeq) = ρrad(zeq), one can extrapolate back to the phase transition period to de-

termine the redshift at that time. The (non-relativistic) plasma is expected to scale

using ρM(z) = ρMo(1 + z)3 until it is negligible, whereas, the radiation scales during

the early expansion using ρrad(z) = ρPT

(
1+z

1+zPT

)4
. Ignoring threshold effects (which

give small corrections near particle thresholds while they are non-relativistic), this

gives

1 + zPT =

[
ρPT

ρMo

(1 + zeq)

] 1
4

. (8)

Here, ΩMo is the present normalized mass density.

For adiabatic perturbations (those that fractionally perturb the number densities

of photons and matter equally), the matter density fluctuations grow according to[4]

∆ =

⎧⎪⎨
⎪⎩

∆PT

(
R(t)
RPT

)2
radiation − dominated

∆eq

(
R(t)
Req

)
matter − dominated

(9)

This allows an accurate estimation for the scale of fluctuations at last scattering in

terms of those during de-coherence given by

∆LS =

(
RLS

Req

)(
Req

RPT

)2

∆PT =
(1 + zPT )2

(1 + zeq)(1 + zLS)
∆PT . (10)

Using equations 8, 10, and 7, this amplitude at last scattering is given by

∆LS =
(1 + zPT )2

(1 + zeq)(1 + zLS)

(
ρΛ

ρPT

)1/2

∼= 1

1 + zLS

√
ΩΛo

(1 − ΩΛo)(1 + zeq)
∼= 2.6 × 10−5,

(11)

where a spatially flat cosmology and radiation domination has been assumed. The

values taken for the phenomenological parameters are given by ΩΛo
∼= 0.73, zeq

∼=
3400, and zLS

∼= 1100. This estimate for a transition during the radiation dominated

regime is independent of the density during the phase transition ρPT , and is of the
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order observed for the fluctuations in the CMB (see [4] section 23.2 page 221). It

is also in line with those argued by other authors[5] and papers[6]. Fluctuations in

the CMB at last scattering of this order are consistent with the currently observed

clustering of galaxies.

If the phase transition were to occur during the epoch of pressure-less matter

domination, zeq > zPT > zLS, the fluctuation amplitude will be seen to demonstrate

weak dependence on the time of the phase transition. The acoustic wave has coherent

phase information that is transmitted to the CMB at last scattering. There must have

been a significant enough passage of time from the creation of the acoustic wave to

the time of last scattering such that peaks and troughs of the various modes should

be present at δt > λ
vs

, where λ is the distance scale of the longest wavelength (sound

horizon), and vs ∼ c/
√

3 is the speed of the acoustic wave. Generally, if the phase

transition occurs while the energy density is dominated by dark matter/plasma, then

the amplitude satisfies

√
ρΛ

ρPT
=
√

ΩΛo

Ωrad o(1+zPT )4+ΩMo(1+zPT )3+ΩΛo

=
√

ΩΛo

(1−ΩΛo)(1+zPT )3
(

1+zeq
2+zeq

)(
1+

1+zPT
1+zeq

)
+ΩΛo

.

(12)

This gives an amplitude at last scattering of the order

∆LS
∼=
(

1 + zPT

1 + zLS

)√√√√ ΩΛo

(1 − ΩΛo)(1 + zPT )3
(
1 + 1+zPT

1+zeq

) , (13)

which varies from 2 × 10−5 if the phase transition occurs at radiation dust equality,

to 4 × 10−5 if it occurs at last scattering.

As an example of a phase transition such as has been discussed, consider cold

dark bosonic matter made up of particles of mass m. For non-relativistic bosonic

dark matter, the relationship between number density and critical density for a free

bose gas is given by
N

V
=

ζ(3
2
)Γ(3

2
)

(2π)2h̄3 (2mkBTcrit)
3/2 . (14)

Since the dynamics is assumed non-relativistic, ρm
∼= N

V
mc2, giving the following

requirement for a macroscopic quantum system made up of bose condensed cold dark
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matter: (
mc2

)5/2 ∼= ρm

(2kBTcrit)
3/2

(2π)2(h̄c)3

ζ(3
2
)Γ(3

2
)

. (15)

In order for the macroscopic space-like quantum coherent state to persist, the ambient

temperature must be less than the critical temperature. If the phase transition occurs

while the dark matter is cold (m > kBTPT ), its density can be assumed to depend

on the redshift by ρm = ρmo(1 + z)3. The temperature of the photon gas is expected

to likewise scale with the redshift when appropriate pair creation threshold affects

are properly incorporated in the manner Tγ(z) ≈ Tγo(1 + z)(g(0)/g(z))1/4, where

g(z) counts number of low mass thermal degrees of freedom available at redshift z.

Substitution into equation 15 gives

(
mc2

)5/2
< (1 + z)3/2

(
g(z)

g(0)

)3/8
ρmo

(2kBTγo)
3/2

(2π)2h̄3

ζ(3
2
)Γ(3

2
)
. (16)

Thus, the upper limit on a condensate mass roughly satisfies

mc2 < (1 + z)3/5

(
g(z)

g(0)

)3/20

× (1.2 × 10−11GeV ). (17)

If the transition occurs as late as last scattering, this mass must be as low as 0.8eV .

However, during earlier epochs the mass of the condensate particles can be consider-

ably larger.

Thus, it has been shown that if a general phase transition which freezes the cosmo-

logical effects of the dark energy (which thereafter can be represented as a cosmologi-

cal constant) occurs sufficiently prior to last scattering, statistical fluctuations driven

by the dark energy produce density perturbations of a magnitude that will evolve to

be of the order 3× 10−5 at last scattering. It is particularly profound that this result

is independent of the particulars of the mechanism of dark energy de-coherence.
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