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Atomique of France.

1



I. INTRODUCTION

The computation of on-shell amplitudes in the maximally supersymmetric (N = 4) gauge

theory (MSYM) has proven to be a useful laboratory for developing computational tech-

niques in perturbative gauge theories. Explicit results for amplitudes have in turn assisted

the development of Witten’s recent twistor-space topological string theory [1, 2], a candi-

date for a weak–weak dual to the supersymmetric gauge theory. This string theory gener-

alizes Nair’s earlier description [3] of the simplest gauge-theory amplitudes. (Berkovits and

Motl [4, 5], Neitzke and Vafa [6], and Siegel [7] have given alternative descriptions of the

candidate topological string theory.)

One-loop amplitudes in the maximally-supersymmetric theory can also be regarded as

terms in a computation of amplitudes in perturbative QCD. In particular, the amplitudes

where all external states are gluons can be decomposed into three terms, corresponding to

the amplitude in the N = 4 theory; to the contribution of a matter multiplet in the N = 1

supersymmetric theory; and to the contribution of a scalar circulating in the loop. Moreover,

in special cases, we show that coefficients of some integral functions in N = 4 gauge theory

are identical to those of QCD.

At tree level, three infinite sequences of gluon amplitudes were conjectured by Parke and

Taylor [8] in the mid 1980s, and quickly proven by Berends and Giele [9]. Amplitudes with

zero or one negative-helicity gluons, and an arbitrary number of positive helicity, vanish.

Amplitudes with two negative-helicity gluons, so-called ‘MHV’ amplitudes, have a very

simple form.

Investigations of the twistor-space structure of known analytic results for more compli-

cated helicity patterns led Cachazo, Svrček, and Witten (CSW) [10] to formulate a new

set of rules for computing tree amplitudes in gauge theories. These rules employ vertices

that are particular off-shell continuations of the MHV amplitudes. The vertices are sewn

together using scalar propagators. These rules have made it straightforward to write down

new analytic expressions for infinite sequences of amplitudes and currents with three or

more negative-helicity legs, that is helicity configurations beyond MHV [10–14]. They have

also been used to obtain amplitudes containing a Higgs boson coupled to QCD via a mas-

sive top-quark loop (in the infinite-mass limit) [15] and to obtain electroweak vector boson

currents [16]. A natural question is whether one can compute similar amplitudes at one
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loop, and what light they shed on the structure of the twistor-space string dual to the gauge

theory.

The unitarity-based method [17–20] makes use of the simple forms of tree amplitudes

to produce, in turn, simple forms for infinite sequences of one-loop amplitudes. In this

approach, we sew together products of on-shell tree amplitudes, and directly reconstruct

Feynman integrals with the same analyticity properties. It makes use of the (standard) cuts

of amplitudes, corresponding to the absorptive parts of amplitudes, and also introduces the

non-standard notion of generalized cuts [20–23] which has been used effectively in a variety

of one- and two-loop calculations. We have employed both standard and generalized cuts

for the calculations described in this paper. The unitarity-based techniques are enhanced by

combining them with knowledge of the basis of dimensionally regularized one-loop integral

functions that can appear in the results [17, 24, 25]. The basis required for one-loop N = 4

super-Yang–Mills amplitudes is reproduced in appendix appendix B. Knowledge of the basis

reduces the problem to one of determining the coefficients in front of the integral functions.

We have also made use of the requirement that the infrared divergences match the known

universal form [26] for parts of the computation.

Recently, stimulated in part by the computation by Brandhuber, Spence and

Travaglini [27] of the N = 4 MHV amplitudes from CSW diagrams [10], there has been

a great deal of progress in obtaining and analyzing one-loop amplitudes in N = 4 and

N = 1 theories using the unitarity method and twistor-motivated ideas [23, 28–37]. These

new results have also made it clear that the simplicity of tree amplitudes is inherited by

their one-loop counterparts.

In this paper, we shall compute all next-to-MHV one-loop n-gluon amplitudes, that is

one-loop amplitudes with three negative-helicity gluons and (n−3) of positive helicity. Some

of the all-n coefficients appearing in the amplitudes were also computed elsewhere [23, 31, 36]

These amplitudes in N = 4 super-Yang–Mills theory were computed previously for n = 6 in

ref. [18], and for n = 7 in refs. [23, 32]. For these two cases, using parity one can reduce the

number of negative helicities to three or less; hence the next-to-MHV amplitudes exhaust

the set of non-MHV amplitudes.

As a by-product of our computation, we have uncovered new representations of the NMHV

n-point tree amplitudes. These representations arise from the required form of infrared di-

vergences in any one-loop amplitude [26]. These new representations suggest that there
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is a more general formalism than MHV vertices for systematically and directly generating

the tree amplitudes. The equivalence between the different representations appears to re-

quire a stronger symmetry than the gauge invariance needed to remove the CSW reference

momentum.

This paper is organized as follows. In section II, we describe our notation. Our calcula-

tional approach is discussed in section III, with the results given in section IV. Consistency

checks on the results, as well as the derivation of a few sets of coefficients from collinear

limits of ones obtained by direct calculation, are described in section V. The new represen-

tations of n-point tree amplitudes, obtained from the infrared divergent terms, are presented

in section VI. Finally, we discuss twistor-space properties of the box coefficients, for NMHV

and more general amplitudes, in section VII. Our conclusions and outlook are presented in

section VIII. We also include two appendices. The first contains an explicit demonstration

that our all-n box coefficients are co-planar, as required [23, 33]. The second contains the

basis of box integral functions.

II. NOTATION

We use the trace-based color decomposition [38, 39] of amplitudes. At tree level, this

decomposition is,

Atree
n ({ki, hi, ai}) =

∑
σ∈Sn/Zn

Tr(T aσ(1) · · ·T aσ(n)) Atree
n (σ(1h1, . . . , nhn)) , (1)

where Sn/Zn is the group of non-cyclic permutations on n symbols, and jhj denotes the j-th

momentum and helicity hj . The T a are fundamental representation SU(Nc) color matrices

normalized so that Tr(T aT b) = δab. The color-ordered amplitude Atree
n is invariant under a

cyclic permutation of its arguments.

We describe the amplitudes using the spinor helicity formalism. In this formalism ampli-

tudes are expressed in terms of spinor inner-products,

〈j l〉 = 〈j−|l+〉 = ū−(kj)u+(kl) , [j l] = 〈j+|l−〉 = ū+(kj)u−(kl) , (2)

where u±(k) is a massless Weyl spinor with momentum k and plus or minus chirality [39, 40].

Our convention is that all legs are outgoing. The notation used here follows the standard
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QCD literature, with [i j] = sign(k0
i k

0
j ) 〈j i〉∗ so that,

〈i j〉 [j i] = 2ki · kj = sij . (3)

(Note that the square bracket [i j] differs by an overall sign compared to the notation com-

monly used in twistor-space studies [1].)

We denote the sums of cyclicly-consecutive external momenta by

Kµ
i...j ≡ kµ

i + kµ
i+1 + · · · + kµ

j−1 + kµ
j , (4)

where all indices are mod n for an n-gluon amplitude. The invariant mass of this vector is

si...j = K2
i...j . Special cases include the two- and three-particle invariant masses, which are

denoted by

sij ≡ (ki + kj)
2 = 2ki · kj, sijk ≡ (ki + kj + kk)

2. (5)

In color-ordered amplitudes only invariants with cyclicly-consecutive arguments need appear,

e.g. si,i+1 and si,i+1,i+2. We also write, for the sum of massless momenta belonging to a set

A,

Kµ
A ≡

∑
ai∈A

kµ
ai

. (6)

(The sets that will appear in explicit expressions will be of cyclicly consecutive external

momenta.) For non-MHV loop amplitudes, longer spinor strings than (2) will typically

appear, such as 〈
i+

∣∣ /KA

∣∣j+
〉

and
〈
i−

∣∣ /KA /KB

∣∣j+
〉

. (7)

The simplest color-ordered amplitudes are the maximally helicity-violating (MHV) Parke-

Taylor tree amplitudes [8], which have two negative-helicity gluons and the rest of positive

helicity,

Atree MHV
m1m2

(1, 2, . . . , n) = i
〈m1 m2〉4

〈1 2〉 〈2 3〉 · · · 〈n 1〉 , (8)

where m1,2 label the negative-helicity legs.

For one-loop amplitudes, the color decomposition is similar to the tree-level case (1) [41].

When all internal particles transform in the adjoint representation of SU(Nc), as is the case

for N = 4 supersymmetric Yang–Mills theory, we have

A1-loop
n ({ki, hi, ai}) =

�n/2�+1∑
c=1

∑
σ∈Sn/Sn;c

Grn;c(σ) An;c(σ) , (9)
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where �x� is the largest integer less than or equal to x. The leading color-structure factor

Grn;1(1) = Nc Tr(T a1 · · ·T an) , (10)

is Nc times the tree color factor. The subleading color structures are given by

Grn;c(1) = Tr(T a1 · · ·T ac−1) Tr(T ac · · ·T an). (11)

Sn is the set of all permutations of n objects, and Sn;c is the subset leaving Grn;c invariant.

The one-loop subleading-color partial amplitudes are given by a sum over permutations

of the leading-color ones [17]. Therefore we need to compute directly only the leading-color

single-trace partial amplitudes An;1.

The N = 4 SYM amplitudes may be expressed as a sum of scalar box integrals I4,

multiplied by coefficients which are rational functions of spinor products [17]. It is convenient

to multiply these integrals by suitable dimensionful combinations of kinematic invariants in

order to obtain ‘box functions’ F whose series expansions in ε only contain logarithmic or

polylogarithmic dependence on the kinematic invariants. The necessary box functions F 4m,

F 3m F 2mh F 2m e and F 1m (and for n = 4, F 0m), are listed in appendix B. The kinematics

of each box function appearing in an n-point amplitude is determined by canceling (n − 4)

propagators from the n-point diagram with external legs in the order 1,2,3,. . . , n. In ref. [23]

we labeled the box integrals for n = 7 by a triplet of integers, say (i′, j′, k′), corresponding

to the three propagators canceled from the heptagon diagram with external legs in the

order 1, 2, 3, . . . , 7. This labeling scheme becomes very cumbersome for discussing the all-

n case, since the number of integers required grows with n. Here we therefore choose to

label the integrals, and their kinematic coefficients, by a quartet (i, j, k, l) of distinct integers,

corresponding to the four uncanceled propagators. In the seven-point case, this quartet is the

complement of the triplet (i′, j′, k′) used in ref. [23], {i, j, k, l}∪{i′, j′, k′} = {1, 2, 3, 4, 5, 6, 7}.
See fig. 1 for examples of this labeling. (We also use the notation B(i, j, k, l) for the labeled

box functions, instead of F (i, j, k, l), in order to avoid confusion with the twistor-space

co-linear operator Fijk discussed in section VIIA.)

We write the N = 4 leading-color partial amplitude as [17, 24, 25]

AN=4
n;1 = iĉΓ (µ2)ε

∑
i,j,k,l

cijklB(i, j, k, l) , (12)
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FIG. 1: Examples of box integral functions B(i, j, k, l) appearing in seven-point amplitudes;

the arguments i, j, k, l are the uncanceled propagators: (a) the one-mass box B(3, 4, 5, 6) =

F 1m(s34, s45, s345), (b) the ‘easy’ two-mass box B(3, 4, 6, 7) = F 2me(s345, s456, s45, s712), (c)

the ‘hard’ two-mass box B(3, 5, 6, 7) = F 2mh(s56, s345, s712, s34), and (d) the three-mass box

B(2, 4, 6, 7) = F 3m(s671, s456, s71, s23, s45).

where cijkl is the kinematic coefficient and

ĉΓ =
1

(4π)2−ε

Γ(1 + ε)Γ2(1 − ε)

Γ(1 − 2ε)
(13)

is a ubiquitous prefactor, and µ is the trivial scale dependence of all dimensionally-regulated

one-loop amplitudes. While the N = 4 theory is ultraviolet-finite, on-shell amplitudes still

have infrared divergences which are also regulated dimensionally, and sneak in a dependence

on µ.

For a given helicity amplitude, the number of box functions, and box coefficients, is the

number of un-ordered quartets of distinct integers (i, j, k, l) with each integer running from

1 to n, and all four unequal. This number is just (n
4
). These include,

• one-mass boxes shown in fig. 1a (n boxes),

• the easy two-mass boxes shown in fig. 1b, plus cyclic permutations (n(n − 5)/2 boxes

in total),

• the hard two-mass boxes shown in fig. 1c (n(n − 5) boxes),

• the three-mass box shown in fig. 1d (n(n − 5)(n − 6)/2 boxes).

We take the three negative helicity gluons to be labeled by m1, m2, m3.
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FIG. 2: A generalized triple cut. The three propagators cut by the dashed lines are required to be

‘open’.

III. CALCULATIONAL APPROACH

Computing an infinite series of amplitudes would require computing an infinite number of

Feynman diagrams. The unitarity-based method, however, can reduce such a computation

to a finite one. We use it.

In the unitarity-based method, we reconstruct a loop amplitude from tree amplitudes by

requiring that internal propagators go on shell. Letting two propagators go on shell corre-

sponds to extracting the absorptive parts, which are just phase space integrals over products

of tree amplitudes. In most cases it is convenient to also use generalized cuts [20–23], where

multiple propagators go on shell. Taking a generalized cut corresponds to extracting those

contributions to a loop amplitude where all cut propagators are required to be present. The

generalized cuts have the property of reducing the building blocks of loop computations to

the simplest possible set of tree amplitudes. They can even reduce higher-loop calculations

to integrals over products of tree amplitudes [20, 22]. In all cases, one reconstructs the loop

integrals giving rise to the required ordinary or generalized cuts. In the present calculation,

that only requires identifying the appropriate integral in the basis set.

Our coefficients were entirely obtained from the generalized triple and quadruple cuts by

augmenting them with infrared consistency conditions as well as collinear and soft behaviors.

The soft and collinear limits allow us to obtain unknown coefficients from explicitly computed

ones. When required infinite series of tree-level amplitudes are known, the unitarity method

enables us to compute infinite series of one-loop amplitudes. The combination of the various
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methods allows to give explicit formulæ for all coefficients in NMHV n-point amplitudes.

In general, we must compute these cuts in D dimensions. For one-loop amplitudes in

supersymmetric theories, however, it suffices to compute them in four dimensions [17, 18].

(The reconstructed loop integral is still computed in D dimensions, of course.) The four-

dimensional amplitudes are most efficiently and conveniently handled in a helicity basis.

Starting from tree amplitudes rather than diagrams means that the extensive cancellations

that occur in gauge theories are taken into account before any loop integrations are done,

which greatly reduces the complexity of the calculations.

In extracting the triple cut, terms which vanish as the cut propagators go on shell may

be dropped. The utility of this procedure comes from two aspects: the triple cut itself

may be represented as a product of three tree amplitudes; and the resulting expression

isolates coefficients of a more limited class of integrals than the ordinary (absorptive) cut.

In the calculations we perform, these coefficients turn out to be the simplest of all integral

coefficients (and even simple in an absolute sense). All three-mass and hard two-mass box

coefficients may be determined from a triple cut. In an NMHV loop amplitude, each tree

amplitude making up a triple cut will be an MHV amplitude, that is with two negative-

helicity gluons, be they external or (cut) internal ones.

The quadruple cuts show very simply that all four-mass box coefficients must vanish in

an NMHV amplitudes. These cuts are given by products of four tree amplitudes. However,

there are only seven negative-helicity gluon legs available: three are external gluons, and

four are gluons crossing the cuts (one for each of the four cuts). Hence at least one of the

four tree amplitudes must have fewer than two negative-helicity gluons, and will therefore

vanish.

Having determined the three-mass and hard two-mass box coefficients from the triple

cuts (or equivalently the ordinary cuts), we can determine the easy two-mass and one-mass

coefficients in two independent ways. The first is to return to the ‘ordinary’ cuts, and

compute them. In this case, we will have the product of an MHV and an NMHV amplitude

forming the cut. Depending on the configuration of the external negative-helicity gluons

(and on the channel we cut), contributions will come either from gluons alone circulating in

the loop (a ‘singlet’ contribution) or from all states in the N = 4 multiplet (‘non-singlet’).

The tree-level CSW rules make it easy to write down analytic expressions for the NMHV

amplitudes, but unfortunately the form they yield — containing off-shell momenta either in
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the original CSW form or in the modified ‘projected’ form — is not directly suitable for use in

the unitarity-based method, because it is not clear what propagators should be reconstructed

from these unusual denominators. For the gluon amplitudes, however, a corresponding

expression in terms of on-shell spinor products and invariants alone is known [12], and it

is this expression we have used in computing the cuts. This provides a computation of the

(subset of) easy two-mass and one-mass box coefficients that have singlet cuts, that is which

have a cut that isolates all three negative helicities on one side of the cut. (We computed

all such coefficients except one-mass ones with negative helicities on all massless legs.) The

calculation starts with an octagon integrand, which reduces to a sum of box integrands

via spinor algebra and the introduction of appropriate ‘cubic’ invariants [23]. Brute-force

integral reduction techniques (e.g. Brown–Feynman or Passarino–Veltmann [42]), which

introduce nasty spurious Gram-determinant denominators, were not required.

The other method of determining these coefficients is to use the infrared consistency

equations. These equations arise from confronting our knowledge of the structure of infrared

singularities in the amplitude with the presence of singularities in individual box functions.

On general grounds [26], we know that only nearest-neighbor two-particle invariants can

appear in infrared-singular terms, which have the form,

AN=4
n;1

∣∣∣
ε pole

= − ĉΓ

ε2

n∑
i=1

( µ2

−si,i+1

)ε

×Atree
n , (14)

where µ is an arbitrary scale. On the other hand, the box functions, listed in appendix B

contain singularities with coefficients s−ε for a much larger set of invariants s. In general,

eq. (14) implies that the coefficient of any given ln(−si,i+1)/ε must be equal to the tree; and

the coefficient of any other ln(−si...j)/ε must vanish. Both types of equation are non-trivial.

There are n(n−3)/2 such equations corresponding to the number of independent kinematic

invariants. Each box function, listed in appendix B, contains various ln(−si,i+1)/ε and

ln(−si,i+1,i+2)/ε terms with coefficients 0, ±1 or ±1
2
. The constraints arising from eq. (14)

thus become simple linear relations among the coefficients, some of which involve the tree

amplitude. As mentioned at the end of section there are a total of n one-mass boxes and

n(n − 5)/2 easy two-mass boxes which together precisely match the number of infrared

consistency equations.

It turns out that for n odd the system of equations is non-degenerate (verified numerically

up to n = 29), so using the infrared consistency equations we can solve for all easy two-mass
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FIG. 3: The box integral functions labeled by the clusters of masses.

and one-mass box coefficients in terms of the three-mass and hard two-mass ones. For n

even it turns out that there is one redundant equation, so that we can solve for all but one

easy two-mass or one-mass box coefficient. Of course, once we have obtained the solution for

odd n, we can confirm that the solution also holds for even n by taking collinear limits, as we

shall mention in section V. The solutions obtained from the infrared consistency equations,

as it turns out, yield a simpler analytic (but numerically identical) form for the singlet

coefficients than the direct computation discussed above. We have also used these infrared

consistency equations to obtain the non-singlet easy two-mass and one-mass coefficients.

IV. RESULTS

In this section we present the results for the box coefficients cijkl appearing in eq. (12).

It is convenient to label the coefficients in terms of clusters. For X = A, B, C, let X1 denote

the first massless momentum in X, and X−1 the last massless momentum.

As mentioned in the previous section, from the generalized quadruple cuts we see that

the four-mass box coefficients all vanish.

The three-mass box coefficients are all given by a single ‘term’. This simplicity is tied to

the very constrained twistor space structure of such coefficients. A three-mass box integral

has a unique massless ‘singlet’ leg s, followed clockwise around the loop by three massive

clusters A, B and C, as shown in fig. 3d. (The momenta within each cluster are of course

also ordered clockwise.) Then the three-mass box coefficient is given by,

c3m(m1, m2, m3; s, A, B, C) =
[H(m1, m2, m3; s, A, B, C)]4

〈1 2〉 〈2 3〉 · · · 〈n 1〉 K2
B
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× 〈A−1 B1〉
〈s−| /KC /KB |A−1

+〉 〈s−| /KC /KB |B1
+〉

× 〈B−1 C1〉
〈s−| /KA /KB |B−1

+〉 〈s−| /KA /KB |C1
+〉 , (15)

where all the dependence on the mi is contained within H. In the cases where the singlet

leg s has positive helicity, we find,

H = 0, m1,2,3 ∈ A, (16)

= 0, m1,2,3 ∈ B, (17)

= 〈m1 m2〉
〈
s−

∣∣ /KC /KB

∣∣m3
+
〉
, m1,2 ∈ A, m3 ∈ B, (18)

= 〈m1 m2〉 〈s m3〉K2
B, m1,2 ∈ A, m3 ∈ C, (19)

= 〈m1 m2〉
〈
s−

∣∣ /KC /KB

∣∣m3
+
〉
, m1,2 ∈ B, m3 ∈ A, (20)

= 〈m1 m2〉
〈
s−

∣∣ /KA /KB

∣∣m3
+
〉

+ 〈m3 m2〉
〈
s−

∣∣ /KC /KB

∣∣m1
+
〉

m1 ∈ A, m2 ∈ B, m3 ∈ C, (21)

plus cases obtained by exchanging A and C (using reflection/flip symmetry). An alternative

form for the last case is,

H = 〈s m1〉
〈
m3

−∣∣ (/ks + /KC) /KB

∣∣m2
+
〉

+ 〈s m3〉
〈
m1

−∣∣ /KA /KB

∣∣m2
+
〉
, m1 ∈ A, m2 ∈ B, m3 ∈ C. (22)

In the cases where the singlet leg has negative helicity, s = m3, we find,

H = 0, m1,2 ∈ A, (23)

= 〈m1 m2〉
〈
s−

∣∣ /KC /KB

∣∣s+
〉
, m1,2 ∈ B, (24)

= 〈s m1〉
〈
s−

∣∣ /KC /KB

∣∣m2
+
〉
, m1 ∈ A, m2 ∈ B, (25)

= 〈s m1〉 〈s m2〉 K2
B, m1 ∈ A, m2 ∈ C, (26)

plus cases obtained by exchanging A and C.

All the other box coefficients are given by appropriate sums of c3m quantities. In many

instances, eq. (15) will then be required when the set A or C ‘degenerates’ to a single leg.

(X1 = X−1 = X if the cluster degenerates to a single massless momentum.) The formula

is perfectly well-defined in this limit. On the other hand, the set B will never be allowed

to degenerate to a single leg, because the K2
B factor in the denominator of eq. (15) would
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then vanish. In the following equations, m1,2,3 do not play any distinguished role, and for

simplicity we shall suppress these arguments.

The hard two-mass boxes are defined by two adjacent singlet legs, s1 and s2, followed

by two adjacent massive clusters A and B, as shown in fig. 3c. Their coefficients are given

simply by the sum of two c3ms:

c2mh(s1, s2, A, B) = c3m(s1, {s2}, A, B) + c3m(s2, A, B, {s1}) . (27)

In section V we will confirm this formula using soft limits.

The easy two-mass boxes are defined by a singlet leg s1 followed cyclicly by a massive

cluster A, then another singlet leg s2, then a final massive cluster B, as shown in fig. 3b.

They are given by a pair of double sums over c3m coefficients. In the first sum, leg s1 is

treated as a singlet, the first massive cluster must include s2, and the second massive cluster

must not degenerate to a massless leg. Otherwise there are no restrictions on the sum. The

second sum can be obtained from the first sum by exchanging the roles of s1 ↔ s2 and

A ↔ B. The result is,

c2me(s1, A, s2, B) =

M(s1,s2)∑
k=0

M(s1,s2)−k∑
l=0

c3m(s1, Â(s1, s2, k), B̂(s1, s2, k, l), Ĉ(s1, s2, k, l))

+

M(s2,s1)∑
k=0

M(s2,s1)−k∑
l=0

c3m(s2, Â(s2, s1, k), B̂(s2, s1, k, l), Ĉ(s2, s1, k, l)) ,

(28)

where

Â(s1, s2, k) = {s1 + 1, . . . , s2 + k} , (29)

B̂(s1, s2, k, l) = {s2 + k + 1, . . . , s2 + k + l + 2} , (30)

Ĉ(s1, s2, k, l) = {s2 + k + l + 3, . . . , s1 − 1} , (31)

and

M(s1, s2) = n − 4 − [(s2 − s1) mod n] . (32)

A schematic depiction of the double sum (28) is provided in fig. 4. Note that there is

a certain cyclic ‘handedness’ to the sum, in that the ‘buried’ leg s2 is clockwise from the

singlet leg s1 in the first sum, and similarly in the second sum. There is an alternative
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FIG. 4: Schematic depiction of the easy two-mass box coefficients, expressed as a double sum over

three-mass box coefficients.

representation where this handedness is reversed, which we have numerically verified to be

equivalent.

The one-mass boxes are defined by three adjacent singlet legs, s1, s2 and s3, followed by

a massive cluster A, as shown in fig. 3a. Their coefficients are given by the degeneration of

the easy two-mass formula, plus a single additional term:

c1m(s1, s2, s3, A) = c2me(s1, {s2}, s3, A) + c3m(s2, {s3}, A, {s1}) . (33)

Many of the above coefficients also carry over to the corresponding amplitudes in QCD.

We can apply the generalized cuts to determine which coefficients in QCD are identical to

those given above. Many types of integral functions beyond those appearing in the N = 4

results also contribute to the full QCD results — scalar triangle integrals, scalar and tensor

bubble integrals — and their coefficients are of course undetermined by the calculations in

this paper. Let us assume that we are working in a basis of integrals where the only box

integrals appearing are those in D = 4 − 2ε. Whenever a box coefficient can be determined

from a (generalized) cut in which only gluons are allowed to propagate around the loop, then

the fermion and scalar contributions are absent, and the QCD coefficient is exactly the same

as the coefficient in N = 4 super-Yang–Mills theory. Suppose, for example, a box integral

has a massive leg out of which only positive-helicity gluons flow. Inspecting the cut which

separates that leg from the rest of the amplitude, we see that only gluons can contribute.

Thus having an ‘all-plus mass’ is a sufficient condition for a box coefficient in QCD (or in

the pure-glue theory) to be determined by the N = 4 formulæ given in this section. It is

worth noting that amongst the three-mass boxes, the only case which does not satisfy this

condition is m1 ∈ A, m2 ∈ B, m3 ∈ C (eq. (21)). In the cases of the hard two-mass and

one-mass boxes, for QCD and N = 4 to give the same result, another sufficient condition is

that two adjacent massless legs have the same helicity.

14



V. CONSISTENCY OF THE RESULTS

We have performed a number of non-trivial checks on the amplitudes. One simple check

is against all previously computed [17, 23, 32] N = 4 amplitudes, when the number of

legs n is taken to be six or seven. Another check, discussed in section III and valid beyond

n = 7, is our computation of many of the easy two-mass and one-mass box coefficients in two

independent ways, using the infrared consistency conditions and also direct computation.

Amplitudes are constrained by a variety of non-trivial requirements. Their analytic prop-

erties are tightly constrained because all kinematic poles and cuts must correspond to prop-

agation of physical particles. They must also have infrared singularities corresponding to

the universal emission of soft and collinear gluons.

In the collinear region, ka → zkP , kb → (1 − z)kP , where kP is the momentum of the

quasi-on-shell intermediate state P , with helicity h. In this limit, massless color-ordered

tree amplitudes behave as

Atree
n

a‖b−→
∑
h=±

Splittree
−h (z, aha , bhb) Atree

n−1(. . . (a + b)h . . .) , (34)

where Splittree
−h are tree-level splitting amplitudes [39]. At one loop, the generalization is,

A1-loop
n;1

a‖b−→
∑
h=±

(
Splittree

−h (z, aha , bhb) A1-loop
n−1;1 (. . . (a + b)h . . .)

+ Split1-loop
−h (z, aha , bhb) Atree

n−1(. . . (a + b)h . . .)
)

, (35)

where the Split1-loop
−h are one-loop splitting amplitudes, which are tabulated in the second

appendix of ref. [17]. This reference also contains a discussion of the behavior of the collinear

limits of one-loop amplitudes and integral functions. We will refer to the original amplitude

as the ‘parent’ and the resulting amplitude appearing in the collinear limit as the ‘daughter’

amplitude.

Besides providing non-trivial checks, collinear limits also allow us fill a small gap in our

calculation of coefficients using the infrared consistency conditions, which appears when

the number of legs is even. Recall that as discussed in section III, for even n there is one

redundant equation, and accordingly we are missing one equation needed to completely

determine the easy two-mass and one-mass box coefficients (which we collectively refer to

as ‘easy-class’). For odd n we have exactly the right number of equations. One simple
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FIG. 5: An easy two-mass box where positive helicity legs a and b are buried inside a cluster.

way around this problem is to prove the correctness of coefficients for even n by taking the

collinear limits of the (n + 1)-point (odd) case. Because we are missing only one equation,

the confirmation of even a single easy-class coefficient is sufficient to prove that our solution

is complete. We can therefore choose the simplest collinear limits to evaluate. A suitably

simple limit arises when the two color-adjacent legs becoming collinear, a and b, both have

positive helicity, and are buried inside a cluster in the parent easy two-mass box coefficient,

as shown in fig. 5. If a or b is adjacent to one of the massless legs of the easy two-mass box,

the analysis is more complicated, but we do not need to consider such cases.

According to eq. (35), there are contributions proportional to the one-loop splitting func-

tion Split1-loop as well as those proportional to the tree splitting functions Splittree. Let us

examine the latter terms, because their contributions are entirely dictated by the collinear

behavior of the box coefficients c2me.

To understand the collinear limits we need to inspect the easy two-mass box coefficients.

These coefficients are sums of three-mass box coefficients, as given in eq. (28). In a given

term in the sum, if a and b belong to a single mass of the coefficient c3m with three or more

legs in the mass, it maps very simply into the terms in the daughter sum because only sums of

momenta in the parent cluster appear in the formula (15), i.e., ka +kb → kP in the daughter

coefficient. We obtain an overall tree splitting amplitude factor of 1/(
√

z(1 − z) 〈a b〉),
coming from the

1

〈1 2〉 〈2 3〉 · · · 〈n 1〉 (36)

prefactor of the coefficient.

There are, however, some special cases to consider. Suppose that in the given term under
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consideration in the sum, a and b are the only legs in one of the massive cluster arguments

to c3m. If the (a, b) cluster is A or C, corresponding to fig. 3, then the limit works as above,

because massless legs are allowed in the sum over three-mass coefficients if they are in the A

or C position. If a and b are the only members of B, then in the collinear limit there is no

corresponding daughter coefficient in the sum, so all such coefficients must be non-singular

in the collinear limit. An investigation of the numerator factors, using eqs. (16), (19), (23)

and (26), shows that they are indeed non-singular and therefore do not contribute. Finally,

for the term in the three-mass sum where a and b straddle two adjacent massive legs, either

A and B, or B and C, there is also no collinear singularity due to the factors of 〈A−1 B1〉
and 〈B−1 C1〉.

There are also contributions to the loop splitting functions. These terms arise from

discontinuities in the integrals, and also from hard two-mass and one-mass box integrals [43].

The latter terms are easily identifiable because the box integral function does not reduce

to a daughter integral function (instead it reduces to a contribution to the loop splitting

function). The issue of contributions proportional to the loop splitting function is separate

from the contributions proportional to the tree splitting function, so it is not directly relevant

to determining the lower-point coefficients. (It could of course be used as an additional check

on the amplitudes.)

The soft limit, in which the momentum of one gluon is scaled to zero, provides another

check on our results. (The soft limit may be phrased in a Lorentz-invariant way as the

simultaneous limit sas, ssb → 0 when (a, s, b) are a sequential triplet of external momenta.)

This limit also provides an alternative way to obtain the relation (27) between the hard

two-mass and three-mass coefficients. The soft limit of an amplitude obeys an equation very

similar to that for a collinear limit. At one loop, as ks → 0,

A1-loop
n;1 (. . . , s − 1, s, s + 1, . . .)

ks→0−→ Stree(s − 1, shs, s + 1) A1-loop
n−1;1 (. . . , s − 1, s + 1, . . .)

+ S1-loop(s − 1, shs, s + 1) Atree
n−1(. . . , s − 1, s + 1, . . .) , (37)

where Stree and S1-loop are tree and one-loop soft functions. The tree soft functions are just

eikonal factors [39],

Stree(a, s+, b) =
〈a b〉

〈a s〉 〈s b〉 , Stree(a, s−, b) = − [a b]

[a s] [s b]
. (38)

As was the case for the collinear limits, the contributions proportional to the loop soft

functions are easily separated from the ones proportional to the tree soft function. In the
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FIG. 6: The three-mass box integrals that may be used to verify all hard two-mass coefficients.

Leg s becomes soft.

N = 4 theory, the soft functions arise entirely from discontinuities in the box functions,

or from box functions that do not reduce properly (map smoothly) to daughter integral

functions. (Discontinuities arise because of infrared divergences [43]). To obtain relations

between (n + 1)- and n-point coefficients using soft limits, we need not consider the loop

soft functions. (Again, they can be used to provide additional consistency checks.)

Consider now the coefficients of the two three-mass boxes displayed in fig. 6. As the leg

s becomes soft, it is precisely these two box functions that reduce to the hard two-mass box

function obtained by simply eliminating leg s. Matching the coefficient of this box function

in the soft limit (37) gives the constraint,

c3m(s1, {s, s2}, A, B) + c3m(s2, A, B, {s, s1}) ks→0−→ S(s1, s, s2)c
2mh(s1, s2, A, B) . (39)

On the other hand, an inspection of our solution of the three mass coefficients reveals that

c3m(s1, {s, s2}, A, B) + c3m(s2, A, B, {s, s1})
ks→0−→ S(s1, s, s2) ×

(
c3m(s1, {s2}, A, B) + c3m(s2, A, B, {s1})

)
. (40)

Comparing eqs. (39) and (40) then confirms eq. (27) for the hard two-mass box in terms of

three-mass coefficients.

The behavior of the NMHV amplitudes under multi-particle factorization has an intricate

structure which also is useful as a check. Here we do not perform a full analysis, but merely

indicate some salient properties. Let Kµ denote the cyclicly-adjacent sum of r momenta

given by Kµ = (ki+ki+1+· · ·+ki+r−1)
µ. The factorization properties for one-loop amplitudes

in the limit K2 → 0 are described by [43],

A1-loop
n;1

K2→0−→
∑
h=±

[
A1-loop

r+1;1 (ki, . . . , ki+r−1, K
h)

i

K2
Atree

n−r+1((−K)−h, ki+r, . . . , ki−1)
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+ Atree
r+1(ki, . . . , ki+r−1, K

h)
i

K2
A1-loop

n−r+1;1((−K)−h, ki+r, . . . , ki−1) (41)

+ Atree
r+1(ki, . . . , ki+r−1, K

h)
i

K2
Atree

n−r+1((−K)−h, ki+r, . . . , ki−1) ĉΓ Fn(K2; k1, . . . , kn)

]
,

where the one-loop factorization function Fn is independent of helicities. (The precise form

of Fn will not concern us here.) For supersymmetric NMHV amplitudes, if the number of

negative-helicity gluons in the set {i, i+1, . . . , i+ r−1} is either 0 or 3, then the right-hand

side of eq. (41) vanishes. This happens because one of the two amplitudes in each term then

has at most one negative-helicity gluon, and such amplitudes are zero in supersymmetric

theories. If the number of negative-helicity gluons on one side of the pole is 1 or 2, then

exactly one of the two values of the intermediate helicity h gives a nonvanishing contribution

to each term in eq. (41), of the form MHV × MHV. The box coefficients for the MHV one-

loop amplitudes are simply given by the tree amplitude (8) in the case that the box is an

easy two-mass, or one-mass box, and zero otherwise [17]. Hence we expect to find a limiting

behavior for the NMHV box coefficients of,

Atree
r+1(ki, . . . , ki+r−1, K

h)
1

K2
Atree

n−r+1((−K)−h, ki+r, . . . , ki−1) , (42)

in appropriate nonvanishing limits.

Before addressing which limits should be nonvanishing, we inspect the two possible

sources of multi-particle poles in the building blocks c3m given in eq. (15). The first source

is the manifest 1/K2
B factor, where B is the mass diagonally opposite the massless leg s.

The second source only arises when either mass A or C degenerates to a single massless leg.

Suppose A has a single element. Then we can simplify one of the spinorial denominator

factors in eq. (15) to

〈
s−

∣∣ /KC /KB

∣∣A−1
+
〉

=
〈
s−

∣∣ ( /KC + /ks)(/kA + /KB)
∣∣A+

〉
= −(KC + ks)

2 〈s A〉 , (43)

exposing the second type of multi-particle pole.

Next we examine the residues of these poles. First suppose all negative helicities are on

one side of the pole. In the case of the 1/K2
B pole, this means that either m1,2,3 ∈ B, for which

H vanishes according to eq. (17), or else no negative helicity belongs to B, for which eqs. (16),

(19) and (26) show that the would-be pole is killed by factors of K2
B in the numerator H4. In

the case of the 1/(KC + ks)
2 pole from eq. (43), when all negative helicities are on one side

the factor H vanishes identically, except for the case m1,2 ∈ B, m3 ∈ A in eq. (20), for which
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it is proportional to the vanishing denominator: 〈s−| /KC /KB |m3
+〉 = 〈s−| /KC /KB |A−1

+〉.
Thus we have verified the ‘trivial case’ where no multi-particle pole was expected.

If one or two negative helicities are on one side of the pole, for either the 1/K2
B pole or

the 1/(KC + ks)
2 pole, then we find that such a c3m coefficient always has the limit (42).

For example, if m1,2 ∈ B, m3 ∈ A, then in the limit K2
B → 0 we have,

H = 〈m1 m2〉
〈
s−

∣∣ /KC /KB

∣∣m3
+
〉 → 〈m1 m2〉

〈
s−

∣∣ /KC

∣∣B−〉 〈B m3〉 . (44)

Because 〈s−| /KA |B−〉 = −〈s−| /KC |B−〉 in this limit, the four spinor strings in the denom-

inator of eq. (15) cancel the factor of 〈s−| /KC |B−〉4 from the numerator. Thus c3m behaves

as,

c3m → 1

〈1 2〉 〈2 3〉 · · · 〈n 1〉 K2
B

〈m1 m2〉4 〈B m3〉4 〈A−1 B1〉 〈B−1 C1〉
〈B A−1〉 〈B B1〉 〈B B−1〉 〈B C1〉

= i
〈B m3〉4

〈1 2〉 · · · 〈A−1 B〉 〈B C1〉 · · · 〈n 1〉 ×
1

K2
B

× i
〈m1 m2〉4

〈(−B) B1〉 · · · 〈B−1 (−B)〉 , (45)

which is the desired form (42). The other partitionings of negative helicities work similarly,

for both the 1/K2
B and 1/(KC + ks)

2 poles.

No three-mass boxes appear in the residues of the multi-particle poles, because the K2
B →

0 limit forces the three-mass boxes containing that pole to become easy two-mass boxes in the

daughter amplitude. Indeed, this behavior directly reproduces the daughter easy two-mass

boxes where K = KB is a singlet leg. If instead K is buried in a massive leg of the daughter

easy two-mass box, then this type of term typically originates from the 1/K2
B pole in a c3m

contributing to an easy two-mass box coefficient (28) in the parent amplitude. Figure 4,

illustrating the double sum for c2me, exposes the poles: Locations of K counterclockwise

from s1 and clockwise from s2 generally come from the left sum in fig. 4 (in the parent

amplitude), where K can be identified with KB for some set B. The ones clockwise from

s1 and counterclockwise from s2 generally come from the right sum. However, if K is

counterclockwise from s1 and adjacent to it (or similarly located with respect to s2), then K

cannot be identified with a KB. There is no room for even a single-leg A or C argument. In

this case, the daughter term arises from a pole of the type 1/(KC +ks)
2, in a degenerate case

of c3m where A or C has a single element. (In the alternative representation of easy two-mass

box coefficients with reversed ‘handedness’, the sources of some poles get exchanged.)

Additional checks are possible from other methods of performing the calculation. Very

recently, Britto, Cachazo and Feng have found an elegant and effective means for obtaining

20



box coefficients from the quadruple cuts, even when legs of the box integrals are massless,

by utilizing a (− − ++) signature for space-time [36]. We have applied this technique to

some of our coefficients, and have found agreement with our direct calculation.

VI. NEW REPRESENTATIONS OF TREE AMPLITUDES

As we have discussed in section III, the infrared consistency equation (14) can be used

to compute some of the box coefficients. As we have seen in section IV, it yields a simple

and regular form for the resulting coefficients. As a by-product, it also yields a variety of

new representations of the n-point tree amplitudes. Because the fermions and scalars do not

contribute to n-gluon tree amplitudes, these representations are valid in all massless gauge

theories, including QCD. To instantiate one of these representations, we simply collect the

coefficients of all boxes with an infrared singularity in any given two-particle invariant. For

example, focusing on the ln(−s12)/ε singularity we obtain, for any helicity configuration,

the following form for the n-gluon tree amplitude,

2Atree
n = 2c1234 + 2c123n − 2c134n − c1345 − c13(n−1)n +

n−1∑
j=5

c123j −
n−1∑
j=6

c134j −
n−2∑
j=5

c13jn . (46)

(When an amplitude has more than three negative-helicity gluons, four-mass boxes will

appear in the one-loop amplitude, however because these boxes are infrared finite they do

not contribute to eq. (46).) Other representations may be obtained by cyclicly permuting the

labels in eq. (46). We may also shift terms around by using the n(n−5)/2 additional identities

obtained from the absence of infrared singularities in multi-particle channels ln(−si..j)/ε,

j > i + 1.

These new representations of n-point tree amplitudes have features reminiscent of am-

plitudes built from CSW diagrams [10]. In particular, for the NMHV case most terms have

only a single multi-particle pole, coming from the 1/K2
B in c3m in eq. (15). The CSW di-

agrams have the same property. The exception is if a c3m appearing in the expressions for

c2mh or c2me in eqs. (27) and (28) has ‘degenerate’ kinematics where one of the masses van-

ishes, then, as mentioned in section V, such terms can contain two different multi-particle

poles. The appearance of spurious denominators of the form 〈s−| /KC /KB |A−1
+〉 is again

reminiscent of the CSW approach. (These denominators are ‘spurious’ in the sense that the

S-matrix has no singularities corresponding to their vanishing.) However, in the CSW rep-

21



3

1 32

4

4
5

nn

1

1

2

j

1

3 j

3

j

3

2

2

2

2n−1

4

1

1

n

n 23 3

1

3

1

2

4

FIG. 7: The boxes whose coefficients combine to give one of the new representations of any one-loop

n-point tree amplitude. These boxes are the ones with infrared singularities of the form ln(−s12)/ε.

resentation of the tree amplitudes, the spurious denominators depend explicitly on a single

arbitrary reference momentum η; for example, strings like 〈C∗ B∗〉 ≡ 〈η+| /KC /KB |η−〉 can

appear (although this particular length string first appears in N2MHV tree amplitudes). In

the box-coefficient representation, only physical external momenta appear, and no single

external momentum can play the role of η in all terms. The variety of different represen-

tations for the tree amplitudes, each with its own set of spurious denominators, suggests

the existence of an even more general formalism for obtaining tree amplitudes than the one

found by CSW.

VII. TWISTOR-SPACE PROPERTIES

A. Overview

The target space for Witten’s candidate topological string theory is CP
3|4, otherwise

called projective (super-)twistor space. Points in twistor space correspond to null momenta

or equivalently to light cones in space-time. The correspondence is specified by a ‘half-

Fourier’ transform. More precisely, if we represent a null momentum by the tensor product

of a spinor λa and a conjugate spinor λ̃ȧ, then twistor quantities are obtained by Fourier-

transforming with respect to all the λ̃ȧ.

Amplitudes in twistor space, as it turns out, have rather simple properties. At tree level,
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they are non-vanishing only on certain curves. This implies that they contain factors of delta

functions (or derivatives thereof) whose arguments are the characteristic equations for the

curves. The coefficients of the delta functions, however, have been quite difficult to calculate

directly from the topological string.

As Witten pointed out in his original paper [1], however, we do not need the twistor-

space amplitudes in order to establish the structure of the delta functions they contain. In

momentum space, the Fourier transform turns the polynomials into differential operators

(polynomial in the λi, and derivatives with respect to the λ̃i), which will annihilate the

amplitude. One particularly useful building block for these differential operators is the line

annihilation operator, expressing the condition that three points in twistor space lie on a

common ‘line’ or CP
1. If the coordinates of the three points, labeled i, j, k, are ZI

i = (λa
i , µ

ȧ
i ),

etc., then the appropriate condition is

εIJKLZI
i Z

J
j ZK

k = 0 , (47)

for all choices of L. Choosing L = ȧ, and translating this equation back to momentum space

using the identification µȧ ↔ −i∂/∂λ̃ȧ, we obtain the operator,

Fijk = 〈i j〉 ∂

∂λ̃k

+ 〈j k〉 ∂

∂λ̃i

+ 〈k i〉 ∂

∂λ̃j

. (48)

Two important sufficient conditions for Fijk to annihilate an expression, i.e. for it to have

support only when i, j, k lie on a line in twistor space, are [1]

1. The expression is completely independent of λ̃i, λ̃j, and λ̃k, or

2. λ̃i, λ̃j, λ̃k appear only via a sum of momenta containing them, of the form

P aȧ = (· · ·+ ki + kj + kk + · · ·)aȧ = · · ·+ λa
i λ̃

ȧ
i + λa

j λ̃
ȧ
j + λa

kλ̃
ȧ
k + · · · (49)

The first condition is obvious from the definition (48); the second holds because of the

Schouten identity,

〈i j〉λk + 〈j k〉 λi + 〈k i〉 λj = 0 . (50)

The tree-level MHV amplitude (8), for example, is annihilated by Fijk, because it is

independent of the λ̃i. Any possible delta functions vanish for generic momenta, because

they take the form δ(〈i j〉). At one loop, Cachazo, Svrček, and Witten [29] pointed out
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that such delta functions, arising from the spinor analog of the fact that ∂z (1/z) �= 0, do

arise. They must be taken into account for a proper analysis of the twistor-space structure

of amplitudes.

We will not compute the relevant ‘holomorphic anomaly’ terms for the amplitudes in

this paper, and so we will not be able to fully exhibit their twistor-space structure. While

the ‘anomaly’ terms enter into the action of the differential operators on the box integrals,

their action on the coefficients is unaffected by it. The properties of the coefficient are also

important, so we focus on these.

In addition to the line operator Fijk, we will employ the planar operator [1],

Kijkl ≡ εIJKLZI
i ZJ

j ZK
k ZL

l = 〈i j〉 εȧḃ ∂

∂λ̃ȧ
k

∂

∂λ̃ḃ
l

± [5 permutations] , (51)

whose vanishing implies that four points lie in a plane (or CP
2) in twistor space.

B. Twistor properties of three-mass box coefficients

As discussed in section IV, the three-mass box coefficients c3m given in eq. (15) are the

basic building blocks for the NMHV amplitudes. All other box coefficients can be expressed

as sums of various c3m. Therefore we need only determine the twistor-space properties of

the three-mass box coefficients, in order to obtain the general twistor-space properties of all

the box coefficients.

The most general twistor-space property of the NMHV box coefficients is that all points

lie in a plane. That is, Kmnpq for every choice of m, n, p, q annihilates every one-term

coefficient, and hence, by linearity, it annihilates every box coefficient cijkl. We first observed

the planarity of a special class of three-mass box coefficients in ref. [23]. The complete co-

planarity for all coefficients was proven for general one-loop NMHV amplitudes [23, 33],

along the same lines used by Cachazo to demonstrate a certain degree of co-linearity [31].

Since we have computed all NMHV coefficients, it is straightforward to confirm directly

that the required planarity property holds. The co-planarity of s, A, and C can be demon-

strated relatively easily, however the co-planarity with B requires more work. In appendix A

we present an analytic demonstration of planarity of all three-mass box coefficients. This in

turn implies that all remaining coefficients are sums of planar functions since they are sums

of three-mass coefficients and their degenerate limits.
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FIG. 8: The twistor-space configuration for the three-mass-box coefficients c3m given in eq. (15) is

depicted on the right. The corresponding three-mass integral is shown on the left. All points lie

in a plane.

Another intriguing property of the non-vanishing coefficients is the universality of the

distribution of points on the three lines, independent of the identity of the three negative-

helicity legs. As illustrated in fig. 8, the location of the points is entirely dictated by the

three-mass box under consideration. The helicity independence may be understood simply

by considering the triple cuts of the three-mass box. As argued by Cachazo [31] for the

more standard double cut, the fact that the holomorphic anomaly freezes the phase-space

integral [29, 30] implies that the box integral coefficients are annihilated by the same collinear

operators Fijk that annihilate the trees on either side of the cut. A similar argument for the

triple cut shows that the coefficient of a three-mass box must be annihilated by the same

collinear operators that annihilate each of the three trees. For all non-vanishing three-mass

box coefficients the three tree amplitudes appearing in the triple cut are all MHV. Thus

for each of the three clusters A, B and C the points must be on a line, independent of the

location of the negative helicities, since this is a property of the MHV tree amplitudes. (The

presence of the point s at the intersection of the two lines containing A and C follows from

the existence of two distinct triple cuts: one cut where s is a point in the tree amplitude

containing the A and one where it is a point in the tree containing the C.) We find it

extremely appealing that the simplicity of the structure displayed in fig. 8 is reflected in the

NMHV one-loop amplitudes computed here.

It is worth noting that a similar property holds for the N2MHV (next-to-next-to-MHV) n-

point amplitudes. The quadruple cut shows that each cluster in a four-mass box coefficients
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FIG. 9: The twistor-space configuration for the four-mass-box coefficient of an N2MHV amplitude

is depicted on the right. The corresponding four-mass integral is shown on the left. The points

need not lie in a plane, but lie in the intersection of two planes.

must always lie on a straight line, since once again each of the four clusters in the quadruple

cut is an MHV tree amplitude if the coefficient does not vanish. Moreover, in the triple

cut either MHV trees or NMHV trees made up of nearest-neighbor clusters are found. The

NMHV trees formed by two nearest-neighbor clusters are supported on two intersecting

lines. Stepping through the four triple cuts then implies that nearest-neighbor clusters are

localized on intersecting lines. This picture agrees with the properties of the eight-point

coefficient of the four-mass box obtained by Britto, Cachazo and Feng [36]. For larger

numbers of negative-helicity legs, one can no longer conclude that the points in each cluster

lie on straight lines because the quadruple cuts are no longer products of MHV amplitudes.

We may expect the structure of fig. 9 to generalize, however, with each of the line segments

replaced by the twistor-space duals to higher-degree vertices [14, 44], that is appropriate

collections of intersecting line segments.

The twistor-space structure of the one- and two-mass box coefficients in the NMHV

amplitudes is of course completely determined by the structure of the three-mass coefficients,

using eqns. (27), (28), and (33). Each term in these sums will have its support in a plane

(that is, a CP
2) in twistor space, though not necessarily the same plane for all terms. Each

term has all points lying on three lines within a single plane; and one of the intersections of

the lines always contains one of the n points.
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VIII. CONCLUSIONS AND OUTLOOK

In this paper we computed all the next-to-MHV one-loop gluon amplitudes in N = 4

super-Yang–Mills theory. The coefficients of the box integral functions appearing in the

amplitudes can be written as simple terms built out of spinor strings, or sums of such terms,

where each term exhibits a simple twistor-space structure.

To obtain the four-, three- and hard two-mass box coefficients we used generalized

cuts [20–23] in the unitarity method [17–20]. The four-mass box coefficients all vanish

in the NMHV case, as easily determined from quadruple cuts. We also showed how to ob-

tain hard two-mass box coefficients from the three-mass box coefficients using the known

behavior of amplitudes as external momenta become soft. The easy two-mass and one-mass

coefficients were then obtained efficiently by solving the constraints that the infrared sin-

gularities of the amplitudes (as regulated by dimensional regularization) match the known

universal form [26]. We also confirmed some of these coefficients by direct computation

of ordinary cuts. For odd n, the infrared consistency equations suffice to obtain all these

coefficients. For even n, a lone infrared consistency equation is missing. We computed the

missing coefficient from the requirement that amplitudes have the correct collinear limits.

The solution to the infrared consistency equations yields a very regular form for the easy

two-mass and one-mass coefficients.

We may also apply the structure of the generalized cuts to determine some terms of the

corresponding amplitudes in QCD. Many types of integral functions beyond those appearing

in the N = 4 results contribute to the full QCD results — scalar triangle integrals, scalar

and tensor bubble integrals — and their coefficients are of course undetermined by the

calculations in this paper. However, many of the box coefficients are the same as those

given in section IV. As a particular example, the coefficient of any box integral where only

positive-helicity gluons form one of the massive legs is identical in QCD and the N = 4

theory (and of the pure-glue theory as well).

The infrared consistency equations also provide us with new representations of n-gluon

NMHV tree-level amplitudes. The form in which the amplitudes appear is similar to the one

obtained using MHV vertices [10]. There are, however, a number of differences. The variety

of different representations for the tree amplitudes, each with their own set of spurious

denominators, suggests a more general formalism for obtaining tree amplitudes exists than
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the one found by Cachazo, Svrček, and Witten.

We also performed a variety of checks, including verifying that amplitudes have the correct

behavior in various collinear, soft, and multi-particle factorization limits. As a final check,

we also used the observation of Britto, Cachazo, and Feng [36] last week, that generalized

quadruple cuts freeze the loop integrals, allowing for an elegant and simple algebraic solution

of box coefficients. The utilization of a non-conventional (−−++)-signature metric, allows

quadruple cuts to be applied even when some of the box function’s external legs are massless.

The planarity of the NMHV box coefficients is a very intriguing result. The complete

planarity was demonstrated for general one-loop NMHV amplitudes [23, 33], along the same

lines used by Cachazo to demonstrate a certain degree of co-linearity [31]. The explicit

calculation of the coefficients presented here confirms these arguments. In twistor space,

the points in the three-mass box coefficients fall into three lines lying in a plane, and two

of the lines always intersect at one of the n points, as depicted in fig. 8. In particular, the

split-up is independent of the particular NMHV helicity configuration, and only depends on

the kinematics of the particular three-mass box. As described in the paper, this structure

is easy to understand using the generalized cuts together with the twistor-space properties

of the tree amplitudes appearing in the cuts.

The simplicity of the amplitudes, found here and in refs. [17, 18, 23, 31, 32, 35–37],

suggests that the complete one-loop S-matrix of all four-dimensional cut-constructible gauge

theories will be obtained soon. Their simple twistor-space structure also suggests the search

for a string interpretation will be fruitful.
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APPENDIX A: EXPLICIT DEMONSTRATION OF PLANARITY OF COEFFI-

CIENTS

The planarity of any box coefficient in any one-loop NMHV amplitude has already been

proven on general grounds [23, 33]. Nevertheless, it is interesting to see how it works explic-

itly, now that the complete NMHV results are known. Because every NMHV box coefficient

is a sum of the three-mass box coefficients c3m given in eq. (15) (and the co-planarity op-

erator K is a linear operator), it suffices to show that this expression is completely planar,

that is has its support in a CP
2 subspace.

First we recall the two important sufficient conditions for Fijk to annihilate an expression

described below eq. (48). Using these, the only way dependence on anti-holomorphic spinors

λ̃i appear in eq. (15) is via /KA, /KB, and /KC . Furthermore, /KA and /KC always appear

next to 〈s−|, so that they may be re-written as /ks + /KA and /ks + /KC , respectively. Thus,

using eq. (49), we see that c3m in eq. (15) has support only when all points in each of the

following three sets are collinear: {s} ∪ A; B; and {s} ∪ C.

The co-linear constraints are shown in fig. 8. The point s belongs to two lines, A and C.

This fact implies that lines A and C lie in a plane. Hence our task is to show that line B

also lies in this plane. It suffices to show that

Ka1a2b1b2c
3m = 0 , (A1)

for any two points a1, a2 ∈ A and any two points b1, b2 ∈ B. We can use momentum

conservation to replace KA → −ks − KB − KC in eq. (15). Then the terms in Ka1a2b1b2

containing derivatives with respect to λ̃a1 and λ̃a2 vanish, and eq. (A1) reduces to

〈a1 a2〉 εα̇β̇ ∂

∂λ̃α̇
b1

∂

∂λ̃β̇
b2

c3m = 0 . (A2)

So we just need to show that the double derivative in eq. (A2) vanishes.

The first derivative is simple to evaluate, using

∂

∂λ̃α̇
bi

〈
s−

∣∣ /KC /KB

∣∣X+
〉

= 〈bi X〉 (〈s−| /KC)α̇ , (A3)

∂

∂λ̃α̇
bi

〈
s−

∣∣ /KA /KB

∣∣X+
〉

= −〈bi X〉 (〈s−| /KC)α̇ − 〈s X〉 (〈b−i | /KB)α̇ , (A4)

∂

∂λ̃α̇
bi

K2
B = (〈b−i | /KB)α̇ . (A5)
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The derivative depends on the helicity configuration, through H. Here we will present the

most complicated case, m1 ∈ A, m2 ∈ B, m3 ∈ C, for which H is given by eq. (21). The

other cases can be worked out analogously. We find that

∂

∂λ̃α̇
b1

c3m = Vα̇(b1) × c3m , (A6)

where

Vα̇(b1) =
4

H
[
(〈m3 m2〉 〈b1 m1〉 − 〈m1 m2〉 〈b1 m3〉)(〈s−| /KC)α̇ − 〈m1 m2〉 〈s m3〉 (〈b−1 | /KB)α̇

]

−(〈b−1 | /KB)α̇

K2
B

− 〈b1 A−1〉 (〈s−| /KC)α̇

〈s−| /KC /KB |A−1
+〉 − 〈b1 B1〉 (〈s−| /KC)α̇

〈s−| /KC /KB |B1
+〉

+
〈b1 B−1〉 (〈s−| /KC)α̇ + 〈s B−1〉 (〈b−1 | /KB)α̇

〈s−| /KA /KB |B−1
+〉

+
〈b1 C1〉 (〈s−| /KC)α̇ + 〈s C1〉 (〈b−1 | /KB)α̇

〈s−| /KA /KB |C1
+〉 . (A7)

The second derivative has two types of terms,

εα̇β̇ ∂

∂λ̃α̇
b1

∂

∂λ̃β̇
b2

c3m =

[
εα̇β̇ ∂

∂λ̃β̇
b2

Vα̇(b1) + εα̇β̇Vα̇(b1)Vβ̇(b2)

]
× c3m , (A8)

Note that

εα̇β̇(〈s−| /KC)α̇(〈s−| /KC)β̇ = − 〈
s−

∣∣ /KC /KC

∣∣s+
〉

= −K2
C 〈s s〉 = 0. (A9)

Using this fact, it is easy to see that in the first type of terms — those coming from the

derivative of Vα̇(b1) — the terms containing 〈s−| /KC /KB |X+〉 do not contribute. The term

containing K2
B gives

εα̇β̇ ∂

∂λ̃β̇
b2

[
−(〈b−1 | /KB)α̇

K2
B

]
= εα̇β̇

[
1

(K2
B)2

(〈b−1 | /KB)α̇(〈b−2 | /KB)β̇ − 1

K2
B

(−1) 〈b1 b2〉 εβ̇α̇

]

=
〈b1 b2〉
K2

B

. (A10)

A slightly more complicated term is

εα̇β̇ ∂

∂λ̃β̇
b2

〈b1 B−1〉 (〈s−| /KC)α̇ + 〈s B−1〉 (〈b−1 | /KB)α̇

〈s−| /KA /KB |B−1
+〉

= εα̇β̇

{
1

〈s−| /KA /KB |B−1
+〉2

[
〈b1 B−1〉 (〈s−| /KC)α̇ + 〈s B−1〉 (〈b−1 | /KB)α̇

]

×
[
〈b2 B−1〉 (〈s−| /KC)β̇ + 〈s B−1〉 (〈b−2 | /KB)β̇

]
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− εβ̇α̇ 〈b1 b2〉 〈s B−1〉
〈s−| /KA /KB |B−1

+〉
}

= − 〈s B−1〉
〈s−| /KA /KB |B−1

+〉2
[
〈b1 B−1〉

〈
s−

∣∣ /KC /KB

∣∣b2
+
〉 − 〈b2 B−1〉

〈
s−

∣∣ /KC /KB

∣∣b1
+
〉

+
〈
b1

−∣∣ /KB /KB

∣∣b2
+
〉 〈s B−1〉

]

−2
〈b1 b2〉 〈s B−1〉

〈s−| /KA /KB |B−1
+〉 . (A11)

In the quantity in brackets ([ ]) on the right-hand side of eq. (A11), we use the Schouten iden-

tity to combine the first two terms, and rewrite the third term as 〈b1 b2〉 〈s−| /KB /KB |B−1
+〉.

Then this quantity becomes

〈b1 b2〉
〈
s−

∣∣ ( /KC + /KB) /KB

∣∣B−1
+
〉

= −〈b1 b2〉
〈
s−

∣∣ /KA /KB

∣∣B−1
+
〉

. (A12)

Inserting this expression into eq. (A11), we obtain,

εα̇β̇ ∂

∂λ̃β̇
b2

〈b1 B−1〉 (〈s−| /KC)α̇ + 〈s B−1〉 (〈b−1 | /KB)α̇

〈s−| /KA /KB |B−1
+〉 = − 〈b1 b2〉 〈s B−1〉

〈s−| /KA /KB |B−1
+〉 . (A13)

The remaining two nontrivial terms in the derivative of Vα̇(b1) work very similarly. As-

sembling all four terms, we have

εα̇β̇ ∂

∂λ̃β̇
b2

Vα̇(b1) = 〈b1 b2〉
[
4

〈m1 m2〉 〈s m3〉
〈s−| /KA /KB |m3

+〉+
1

K2
B

− 〈s B−1〉
〈s−| /KA /KB |B−1

+〉−
〈s C1〉

〈s−| /KA /KB |C1
+〉

]
.

(A14)

Terms of the second type arise from the contraction εα̇β̇Vα̇(b1)Vβ̇(b2). There are 5×5 = 25

terms, although the terms containing two 〈s−| /KC /KB |X+〉 strings do not contribute. In

each of the nonvanishing terms, the Schouten identity can again be used to extract a factor

of 〈b1 b2〉, and the remainder becomes a sum of two (or sometimes just one) of the terms

in eq. (A14). For example, using algebra similar to that in eq. (A11), we get,

εα̇β̇

[〈b1 B−1〉 (〈s−| /KC)α̇ + 〈s B−1〉 (〈b−1 | /KB)α̇

〈s−| /KA /KB |B−1
+〉

〈b2 C1〉 (〈s−| /KC)β̇ + 〈s C1〉 (〈b−2 | /KB)β̇

〈s−| /KA /KB |C1
+〉

+(B−1 ↔ C1)

]

= 〈b1 b2〉
[ 〈s B−1〉
〈s−| /KA /KB |B−1

+〉 +
〈s C1〉

〈s−| /KA /KB |C1
+〉

]
. (A15)

Computing and assembling all the εα̇β̇Vα̇(b1)Vβ̇(b2) contributions, we get,

εα̇β̇Vα̇(b1)Vβ̇(b2) = 〈b1 b2〉
{ 〈m1 m2〉 〈s m3〉
〈s−| /KA /KB |m3

+〉 ×
[
16 − 4 − 4 − 4 − 4 − 4

]
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+
1

K2
B

×
[
4 − 1 − 1 − 1 − 1 − 1

]

+
〈s B−1〉

〈s−| /KA /KB |B−1
+〉 ×

[
−4 + 1 + 1 + 1 + 1 + 1

]

+
〈s C1〉

〈s−| /KA /KB |C1
+〉 ×

[
−4 + 1 + 1 + 1 + 1 + 1

]}
, (A16)

where the 6 numbers on each line correspond to the contribution from the cross term of the

term shown with each of the 6 terms in Vα̇ in eq. (A7). The sum of eqs. (A14) and (A16) is

zero, which demonstrates, via eq. (A8), the planarity of c3m.

APPENDIX B: BOX INTEGRALS

In this appendix we collect the dimensionally-regulated integral functions appearing in

the N = 4 amplitudes; the first of these integral functions was obtained from ref. [46] and

the remaining ones from ref. [24]. The reader is referred to these papers for further details.

Through O(ε0), in the Euclidean region the integral functions are

F 4m(s, t, K2
1 , K

2
2 , K

2
3 , K

2
4) =

1

2

{
−Li2

(
1

2
(1 − λ1 + λ2 + ρ)

)
+ Li2

(
1

2
(1 − λ1 + λ2 − ρ)

)

− Li2

(
− 1

2λ1
(1 − λ1 − λ2 − ρ)

)
+ Li2

(
− 1

2λ1
(1 − λ1 − λ2 + ρ)

)

− 1

2
ln

(
λ1

λ2
2

)
ln

(
1 + λ1 − λ2 + ρ

1 + λ1 − λ2 − ρ

)}
, (B1)

F 3m(s, t, K2
2 , K

2
3 , K

2
4) = − 1

2ε2

[
(−s)−ε + (−t)−ε − (−K2

2 )−ε − (−K2
4 )−ε

]

− 1

2
ln

(−K2
2

−t

)
ln

(−K2
3

−t

)
− 1

2
ln

(−K2
3

−s

)
ln

(−K2
4

−s

)

+ Li2

(
1 − K2

2

s

)
+ Li2

(
1 − K2

4

t

)
− Li2

(
1 − K2

2K
2
4

st

)

+
1

2
ln2

(−s

−t

)
, (B2)

F 2m h(s, t, K2
3 , K

2
4) = − 1

2ε2

[
(−s)−ε + 2(−t)−ε − (−K2

3 )−ε − (−K2
4 )−ε

]

− 1

2
ln

(−K2
3

−s

)
ln

(−K2
4

−s

)
+ Li2

(
1 − K2

3

t

)
+ Li2

(
1 − K2

4

t

)

+
1

2
ln2

(−s

−t

)
, (B3)

F 2m e(s, t, K2
2 , K

2
4) = − 1

ε2

[
(−s)−ε + (−t)−ε − (−K2

2 )−ε − (−K2
4 )−ε

]

+ Li2

(
1 − K2

2

s

)
+ Li2

(
1 − K2

2

t

)
+ Li2

(
1 − K2

4

s

)
+ Li2

(
1 − K2

4

t

)
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− Li2

(
1 − K2

2K
2
4

st

)
+

1

2
ln2

(−s

−t

)
, (B4)

F 1m(s, t, K2
4) = − 1

ε2

[
(−s)−ε + (−t)−ε − (−K2

4 )−ε
]

+ Li2

(
1 − K2

4

s

)
+ Li2

(
1 − K2

4

t

)
+

1

2
ln2

(−s

−t

)
+

π2

6
, (B5)

F 0m(s, t) = − 1

ε2

[
(−s)−ε + (−t)−ε

]
+

1

2
ln2

(−s

−t

)
+

π2

2
, (B6)

where the ki denote massless momenta and the Ki massive momenta. The external momen-

tum arguments K1, . . . , K4 are sums of external momenta ki from the n-point amplitude.

The kinematic variables appearing in the integrals are

s = (k1 + k2)
2 , t = (k2 + k3)

2 , (B7)

or with k relabeled as K for off-shell (massive) legs. The functions appearing in F 4m
4 are

ρ ≡
√

1 − 2λ1 − 2λ2 + λ2
1 − 2λ1λ2 + λ2

2 , (B8)

and

λ1 =
K2

1 K2
3

(K1 + K2)2 (K2 + K3)2
, λ2 =

K2
2 K2

4

(K1 + K2)2 (K2 + K3)2
. (B9)

We have rearranged the expressions for F 3m and F 2m h to make the poles in ε more trans-

parent. We have also corrected some signs in F 4m in ref. [17] and in the published version

of ref. [24].
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[10] F. Cachazo, P. Svrček and E. Witten, hep-th/0403047.

[11] G. Georgiou and V. V. Khoze, hep-th/0404072;

J. B. Wu and C. J. Zhu, JHEP 0409:063 (2004) [hep-th/0406146];

G. Georgiou, E. W. N. Glover and V. V. Khoze, JHEP 0407:048 (2004) [hep-th/0407027].

[12] D. A. Kosower, hep-th/0406175.

[13] C. J. Zhu, JHEP 0404:032 (2004) [hep-th/0403115];

J. B. Wu and C. J. Zhu, JHEP 0407:032 (2004) [hep-th/0406085];

Y. Abe, V. P. Nair and M. I. Park, hep-th/0408191.

[14] I. Bena, Z. Bern and D. A. Kosower, hep-th/0406133.

[15] L. J. Dixon, E. W. N. Glover and V. V. Khoze, hep-th/0411092.

[16] Z. Bern, D. Forde, D. A. Kosower and P. Mastrolia, hep-ph/0412167.

[17] Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, Nucl. Phys. B425:217 (1994) [hep-

ph/9403226].

[18] Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, Nucl. Phys. B435:59 (1995) [hep-

ph/9409265].

[19] Z. Bern and A. G. Morgan, Nucl. Phys. B467:479 (1996) [hep-ph/9511336];

Z. Bern, L. J. Dixon and D. A. Kosower, Ann. Rev. Nucl. Part. Sci. 46:109 (1996) [hep-

ph/9602280]; Nucl. Phys. Proc. Suppl. 51C:243 (1996) [hep-ph/9606378].

[20] Z. Bern, L. J. Dixon and D. A. Kosower, JHEP 0408:012 (2004) [hep-ph/0404293].

[21] Z. Bern, L. J. Dixon and D. A. Kosower, Nucl. Phys. B513:3 (1998) [hep-ph/9708239].

[22] Z. Bern, L. J. Dixon and D. A. Kosower, JHEP 0001:027 (2000) [hep-ph/0001001].

[23] Z. Bern, V. Del Duca, L. J. Dixon and D. A. Kosower, hep-th/0410224.

[24] Z. Bern, L. J. Dixon and D. A. Kosower, Nucl. Phys. B412:751 (1994) [hep-ph/9306240].

[25] Z. Bern, L. J. Dixon and D. A. Kosower, Phys. Lett. B302:299 (1993) [Erratum-ibid. B318:649

(1993)] [hep-ph/9212308].

[26] W. T. Giele and E. W. N. Glover, Phys. Rev. D46:1980 (1992);
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