Measurement of Branching Fraction and Dalitz Distribution for $B^{0} \rightarrow D^{(*) \pm} K^{0} \pi^{\mp}$ Decays

B. Aubert, ${ }^{1}$ R. Barate,,${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees,,${ }^{1}$ V. Poireau, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ E. Grauges-Pous, ${ }^{2}$ A. Palano, ${ }^{3}$ A. Pompili, ${ }^{3}$ J. C. Chen, ${ }^{4}$ N. D. Qi, ${ }^{4}$ G. Rong, ${ }^{4}$ P. Wang, ${ }^{4}$ Y. S. Zhu, ${ }^{4}$ G. Eigen, ${ }^{5}$ I. Ofte, ${ }^{5}$ B. Stugu, ${ }^{5}$ G. S. Abrams, ${ }^{6}$ A. W. Borgland, ${ }^{6}$ A. B. Breon, ${ }^{6}$ D. N. Brown, ${ }^{6}$ J. Button-Shafer, ${ }^{6}$ R. N. Cahn, ${ }^{6}$ E. Charles, ${ }^{6}$ C. T. Day, ${ }^{6}$ M. S. Gill, ${ }^{6}$ A. V. Gritsan, ${ }^{6}$ Y. Groysman, ${ }^{6}$ R. G. Jacobsen, ${ }^{6}$ R. W. Kadel, ${ }^{6}$
J. Kadyk, ${ }^{6}$ L. T. Kerth, ${ }^{6}$ Yu. G. Kolomensky, ${ }^{6}$ G. Kukartsev, ${ }^{6}$ G. Lynch, ${ }^{6}$ L. M. Mir, ${ }^{6}$ P. J. Oddone, ${ }^{6}$ T. J. Orimoto, ${ }^{6}$ M. Pripstein, ${ }^{6}$ N. A. Roe, ${ }^{6}$ M. T. Ronan, ${ }^{6}$ W. A. Wenzel, ${ }^{6}$ M. Barrett, ${ }^{7}$ K. E. Ford, ${ }^{7}$
T. J. Harrison, ${ }^{7}$ A. J. Hart, ${ }^{7}$ C. M. Hawkes, ${ }^{7}$ S. E. Morgan, ${ }^{7}$ A. T. Watson, ${ }^{7}$ M. Fritsch, ${ }^{8}$ K. Goetzen, ${ }^{8}$ T. Held,,8 H. Koch,,${ }^{8}$ B. Lewandowski, ${ }^{8}$ M. Pelizaeus, ${ }^{8}$ T. Schroeder, ${ }^{8}$ M. Steinke, ${ }^{8}$ J. T. Boyd, ${ }^{9}$ N. Chevalier, ${ }^{9}$ W. N. Cottingham, ${ }^{9}$ M. P. Kelly, ${ }^{9}$ T. E. Latham, ${ }^{9}$ F. F. Wilson, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{10}$ C. Hearty, ${ }^{10}$ N. S. Knecht, ${ }^{10}$ T. S. Mattison, ${ }^{10}$ J. A. McKenna, ${ }^{10}$ D. Thiessen, ${ }^{10}$ A. Khan, ${ }^{11}$ P. Kyberd, ${ }^{11}$ L. Teodorescu, ${ }^{11}$ A. E. Blinov, ${ }^{12}$ V. E. Blinov,,12 V. P. Druzhinin, ${ }^{12}$ V. B. Golubev, ${ }^{12}$ V. N. Ivanchenko, ${ }^{12}$ E. A. Kravchenko, ${ }^{12}$ A. P. Onuchin, ${ }^{12}$ S. I. Serednyakov, ${ }^{12}$ Yu. I. Skovpen, ${ }^{12}$ E. P. Solodov, ${ }^{12}$ A. N. Yushkov, ${ }^{12}$ D. Best, ${ }^{13}$ M. Bruinsma, ${ }^{13}$ M. Chao, ${ }^{13}$ I. Eschrich, ${ }^{13}$ D. Kirkby, ${ }^{13}$ A. J. Lankford, ${ }^{13}$ M. Mandelkern, ${ }^{13}$ R. K. Mommsen, ${ }^{13}$ W. Roethel, ${ }^{13}$ D. P. Stoker, ${ }^{13}$ C. Buchanan, ${ }^{14}$ B. L. Hartfiel, ${ }^{14}$ A. J. R. Weinstein, ${ }^{14}$ S. D. Foulkes, ${ }^{15}$ J. W. Gary, ${ }^{15}$ B. C. Shen, ${ }^{15}$ K. Wang,,15 D. del Re,,16 H. K. Hadavand, ${ }^{16}$ E. J. Hill, ${ }^{16}$ D. B. MacFarlane, ${ }^{16}$ H. P. Paar, ${ }^{16}$ Sh. Rahatlou, ${ }^{16}$ V. Sharma, ${ }^{16}$ J. W. Berryhill, ${ }^{17}$ C. Campagnari, ${ }^{17}$ A. Cunha, ${ }^{17}$ B. Dahmes, ${ }^{17}$ T. M. Hong, ${ }^{17}$ A. Lu, ${ }^{17}$ M. A. Mazur, ${ }^{17}$ J. D. Richman, ${ }^{17}$ W. Verkerke, ${ }^{17}$ T. W. Beck, ${ }^{18}$ A. M. Eisner, ${ }^{18}$ C. A. Heusch, ${ }^{18}$ J. Kroseberg, ${ }^{18}$ W. S. Lockman, ${ }^{18}$ G. Nesom,,${ }^{18}$ T. Schalk, ${ }^{18}$ B. A. Schumm, ${ }^{18}$ A. Seiden, ${ }^{18}$ P. Spradlin, ${ }^{18}$ D. C. Williams, ${ }^{18}$ M. G. Wilson, ${ }^{18}$ J. Albert, ${ }^{19}$ E. Chen, ${ }^{19}$ G. P. Dubois-Felsmann, ${ }^{19}$ A. Dvoretskii, ${ }^{19}$ D. G. Hitlin, ${ }^{19}$ I. Narsky, ${ }^{19}$ T. Piatenko, ${ }^{19}$ F. C. Porter, ${ }^{19}$ A. Ryd, ${ }^{19}$ A. Samuel, ${ }^{19}$ S. Yang, ${ }^{19}$ S. Jayatilleke, ${ }^{20}$ G. Mancinelli, ${ }^{20}$ B. T. Meadows, ${ }^{20}$ M. D. Sokoloff, ${ }^{20}$ F. Blanc,,${ }^{21}$ P. Bloom, ${ }^{21}$ S. Chen, ${ }^{21}$ W. T. Ford, ${ }^{21}$ U. Nauenberg, ${ }^{21}$ A. Olivas,,${ }^{21}$ P. Rankin, ${ }^{21}$ W. O. Ruddick, ${ }^{21}$ J. G. Smith, ${ }^{21}$ K. A. Ulmer, ${ }^{21}$ J. Zhang, ${ }^{21}$ L. Zhang, ${ }^{21}$ A. Chen, ${ }^{22}$ E. A. Eckhart, ${ }^{22}$ J. L. Harton, ${ }^{22}$ A. Soffer, ${ }^{22}$ W. H. Toki, ${ }^{22}$ R. J. Wilson, ${ }^{22}$ Q. Zeng, ${ }^{22}$ B. Spaan, ${ }^{23}$ D. Altenburg, ${ }^{24}$ T. Brandt, ${ }^{24}$ J. Brose, ${ }^{24}$ M. Dickopp, ${ }^{24}$ E. Feltresi, ${ }^{24}$ A. Hauke, ${ }^{24}$ H. M. Lacker, ${ }^{24}$ R. Nogowski, ${ }^{24}$ S. Otto, ${ }^{24}$ A. Petzold, ${ }^{24}$ J. Schubert, ${ }^{24}$ K. R. Schubert, ${ }^{24}$ R. Schwierz, ${ }^{24}$ J. E. Sundermann, ${ }^{24}$ D. Bernard, ${ }^{25}$ G. R. Bonneaud, ${ }^{25}$ P. Grenier, ${ }^{25}$ S. Schrenk, ${ }^{25}$ Ch. Thiebaux,,25 G. Vasileiadis, ${ }^{25}$ M. Verderi, ${ }^{25}$ D. J. Bard, ${ }^{26}$ P. J. Clark, ${ }^{26}$ F. Muheim, ${ }^{26}$ S. Playfer, ${ }^{26}$ Y. Xie, ${ }^{26}$ M. Andreotti,,${ }^{27}$ V. Azzolini, ${ }^{27}$ D. Bettoni, ${ }^{27}$ C. Bozzi, ${ }^{27}$ R. Calabrese, ${ }^{27}$ G. Cibinetto, ${ }^{27}$ E. Luppi, ${ }^{27}$ M. Negrini, ${ }^{27}$ L. Piemontese, ${ }^{27}$ A. Sarti, ${ }^{27}$ F. Anulli, ${ }^{28}$ R. Baldini-Ferroli, ${ }^{28}$ A. Calcaterra, ${ }^{28}$ R. de Sangro, ${ }^{28}$ G. Finocchiaro, ${ }^{28}$ P. Patteri, ${ }^{28}$ I. M. Peruzzi, ${ }^{28}$ M. Piccolo, ${ }^{28}$ A. Zallo, ${ }^{28}$ A. Buzzo, ${ }^{29}$ R. Capra, ${ }^{29}$ R. Contri, ${ }^{29}$ G. Crosetti, ${ }^{29}$ M. Lo Vetere, ${ }^{29}$ M. Macri, ${ }^{29}$ M. R. Monge, ${ }^{29}$ S. Passaggio, ${ }^{29}$ C. Patrignani, ${ }^{29}$ E. Robutti, ${ }^{29}$ A. Santroni, ${ }^{29}$ S. Tosi, ${ }^{29}$ S. Bailey, ${ }^{30}$ G. Brandenburg, ${ }^{30}$ K. S. Chaisanguanthum, ${ }^{30}$ M. Morii, ${ }^{30}$ E. Won, ${ }^{30}$ R. S. Dubitzky, ${ }^{31}$ U. Langenegger, ${ }^{31}$ J. Marks, ${ }^{31}$ U. Uwer, ${ }^{31}$ W. Bhimji, ${ }^{32}$ D. A. Bowerman, ${ }^{32}$ P. D. Dauncey, ${ }^{32}$ U. Egede, ${ }^{32}$ J. R. Gaillard, ${ }^{32}$ G. W. Morton, ${ }^{32}$ J. A. Nash, ${ }^{32}$ M. B. Nikolich, ${ }^{32}$ G. P. Taylor, ${ }^{32}$ M. J. Charles, ${ }^{33}$ G. J. Grenier, ${ }^{33}$ U. Mallik, ${ }^{33}$ J. Cochran, ${ }^{34}$ H. B. Crawley, ${ }^{34}$ J. Lamsa, ${ }^{34}$ W. T. Meyer, ${ }^{34}$ S. Prell, ${ }^{34}$ E. I. Rosenberg, ${ }^{34}$ A. E. Rubin,,34 J. Yi, ${ }^{34}$ N. Arnaud, ${ }^{35}$ M. Davier, ${ }^{35}$ X. Giroux, ${ }^{35}$ G. Grosdidier,,${ }^{35}$ A. Höcker, ${ }^{35}$ F. Le Diberder, ${ }^{35}$ V. Lepeltier, ${ }^{35}$ A. M. Lutz, ${ }^{35}$ T. C. Petersen, ${ }^{35}$ S. Plaszczynski, ${ }^{35}$ M. H. Schune, ${ }^{35}$ G. Wormser, ${ }^{35}$ C. H. Cheng, ${ }^{36}$ D. J. Lange, ${ }^{36}$ M. C. Simani, ${ }^{36}$ D. M. Wright, ${ }^{36}$ A. J. Bevan, ${ }^{37}$ C. A. Chavez, ${ }^{37}$ J. P. Coleman, ${ }^{37}$ I. J. Forster, ${ }^{37}$ J. R. Fry, ${ }^{37}$ E. Gabathuler, ${ }^{37}$ R. Gamet, ${ }^{37}$ D. E. Hutchcroft, ${ }^{37}$ R. J. Parry, ${ }^{37}$ D. J. Payne, ${ }^{37}$ C. Touramanis, ${ }^{37}$ C. M. Cormack, ${ }^{38}$ F. Di Lodovico, ${ }^{38}$ C. L. Brown, ${ }^{39}$ G. Cowan, ${ }^{39}$ R. L. Flack, ${ }^{39}$ H. U. Flaecher, ${ }^{39}$ M. G. Green, ${ }^{39}$ P. S. Jackson, ${ }^{39}$ T. R. McMahon, ${ }^{39}$ S. Ricciardi, ${ }^{39}$ F. Salvatore, ${ }^{39}$ M. A. Winter, ${ }^{39}$ D. Brown, ${ }^{40}$ C. L. Davis, ${ }^{40}$ J. Allison, ${ }^{41}$ N. R. Barlow, ${ }^{41}$ R. J. Barlow, ${ }^{41}$ M. C. Hodgkinson, ${ }^{41}$ G. D. Lafferty, ${ }^{41}$ J. C. Williams, ${ }^{41}$ C. Chen, ${ }^{42}$ A. Farbin,,42 W. D. Hulsbergen, ${ }^{42}$ A. Jawahery, ${ }^{42}$ D. Kovalskyi, ${ }^{42}$ C. K. Lae, ${ }^{42}$ V. Lillard, ${ }^{42}$ D. A. Roberts, ${ }^{42}$ G. Blaylock, ${ }^{43}$ C. Dallapiccola, ${ }^{43}$ S. S. Hertzbach, ${ }^{43}$ R. Kofler, ${ }^{43}$ V. B. Koptchev, ${ }^{43}$ T. B. Moore, ${ }^{43}$ S. Saremi, ${ }^{43}$ H. Staengle, ${ }^{43}$ S. Willocq, ${ }^{43}$ R. Cowan, ${ }^{44}$ K. Koeneke, ${ }^{44}$ G. Sciolla, ${ }^{44}$ S. J. Sekula, ${ }^{44}$ F. Taylor, ${ }^{44}$ R. K. Yamamoto, ${ }^{44}$ D. J. J. Mangeol, ${ }^{45}$ P. M. Patel, ${ }^{45}$ S. H. Robertson, ${ }^{45}$ A. Lazzaro, ${ }^{46}$ V. Lombardo, ${ }^{46}$ F. Palombo, ${ }^{46}$ J. M. Bauer, ${ }^{47}$
L. Cremaldi, ${ }^{47}$ V. Eschenburg, ${ }^{47}$ R. Godang, ${ }^{47}$ R. Kroeger, ${ }^{47}$ J. Reidy, ${ }^{47}$ D. A. Sanders, ${ }^{47}$ D. J. Summers, ${ }^{47}$ H. W. Zhao, ${ }^{47}$ S. Brunet, ${ }^{48}$ D. Côté, ${ }^{48}$ P. Taras, ${ }^{48}$ H. Nicholson, ${ }^{49}$ N. Cavallo, ${ }^{50, *}$ F. Fabozzi, ${ }^{50, *}$ C. Gatto, ${ }^{50}$ L. Lista, ${ }^{50}$ D. Monorchio, ${ }^{50}$ P. Paolucci, ${ }^{50}$ D. Piccolo, ${ }^{50}$ C. Sciacca, ${ }^{50}$ M. Baak, ${ }^{51}$ H. Bulten, ${ }^{51}$ G. Raven, ${ }^{51}$ H. L. Snoek, ${ }^{51}$ L. Wilden, ${ }^{51}$ C. P. Jessop, ${ }^{52}$ J. M. LoSecco, ${ }^{52}$ T. Allmendinger, ${ }^{53}$ K. K. Gan, ${ }^{53}$ K. Honscheid, ${ }^{53}$ D. Hufnagel, ${ }^{53}$ H. Kagan, ${ }^{53}$ R. Kass, ${ }^{53}$ T. Pulliam, ${ }^{53}$ A. M. Rahimi, ${ }^{53}$ R. Ter-Antonyan, ${ }^{53}$ Q. K. Wong, ${ }^{53}$ J. Brau, ${ }^{54}$ R. Frey, ${ }^{54}$ O. Igonkina, ${ }^{54}$ M. Lu, ${ }^{54}$ C. T. Potter, ${ }^{54}$ N. B. Sinev, ${ }^{54}$ D. Strom, ${ }^{54}$ E. Torrence, ${ }^{54}$ F. Colecchia, ${ }^{55}$ A. Dorigo, ${ }^{55}$ F. Galeazzi, ${ }^{55}$ M. Margoni, ${ }^{55}$ M. Morandin,,${ }^{55}$ M. Posocco, ${ }^{55}$ M. Rotondo,,${ }^{55}$ F. Simonetto, ${ }^{55}$ R. Stroili, ${ }^{55}$ C. Voci, ${ }^{55}$ M. Benayoun,,${ }^{56}$ H. Briand, ${ }^{56}$ J. Chauveau, ${ }^{56}$ P. David, ${ }^{56}$ Ch. de la Vaissière,,${ }^{56}$ L. Del Buono, ${ }^{56}$ O. Hamon, ${ }^{56}$ M. J. J. John, ${ }^{56}$ Ph. Leruste, ${ }^{56}$ J. Malcles, ${ }^{56}$ J. Ocariz, ${ }^{56}$ L. Roos, ${ }^{56}$ G. Therin, ${ }^{56}$ P. K. Behera, ${ }^{57}$ L. Gladney, ${ }^{57}$ Q. H. Guo, ${ }^{57}$ J. Panetta, ${ }^{57}$ M. Biasini, ${ }^{58}$ R. Covarelli, ${ }^{58}$ M. Pioppi, ${ }^{58}$ C. Angelini, ${ }^{59}$ G. Batignani, ${ }^{59}$ S. Bettarini, ${ }^{59}$ M. Bondioli, ${ }^{59}$ F. Bucci, ${ }^{59}$ G. Calderini, ${ }^{59}$ M. Carpinelli, ${ }^{59}$ F. Forti,,${ }^{59}$ M. A. Giorgi, ${ }^{59}$ A. Lusiani, ${ }^{59}$ G. Marchiori, ${ }^{59}$ M. Morganti, ${ }^{59}$ N. Neri, ${ }^{59}$ E. Paoloni, ${ }^{59}$ M. Rama, ${ }^{59}$ G. Rizzo,,${ }^{59}$ G. Simi, ${ }^{59}$ J. Walsh, ${ }^{59}$ M. Haire, ${ }^{60}$ D. Judd, ${ }^{60}$ K. Paick, ${ }^{60}$ D. E. Wagoner, ${ }^{60}$ N. Danielson, ${ }^{61}$ P. Elmer,,${ }^{61}$ Y. P. Lau, ${ }^{61}$ C. Lu, ${ }^{61}$ V. Miftakov, ${ }^{61}$ J. Olsen, ${ }^{61}$ A. J. S. Smith, ${ }^{61}$ A. V. Telnov, ${ }^{61}$ F. Bellini, ${ }^{62}$ G. Cavoto, ${ }^{61,62}$ R. Faccini, ${ }^{62}$ F. Ferrarotto, ${ }^{62}$ F. Ferroni,,${ }^{62}$ M. Gaspero, ${ }^{62}$ L. Li Gioi, ${ }^{62}$ M. A. Mazzoni, ${ }^{62}$ S. Morganti,,${ }^{62}$ M. Pierini, ${ }^{62}$ G. Piredda, ${ }^{62}$ F. Safai Tehrani, ${ }^{62}$ C. Voena, ${ }^{62}$ S. Christ, ${ }^{63}$ G. Wagner, ${ }^{63}$ R. Waldi, ${ }^{63}$ T. Adye, ${ }^{64}$ N. De Groot, ${ }^{64}$ B. Franek, ${ }^{64}$ N. I. Geddes, ${ }^{64}$ G. P. Gopal, ${ }^{64}$ E. O. Olaiya, ${ }^{64}$ R. Aleksan, ${ }^{65}$ S. Emery,,${ }^{65}$ A. Gaidot, ${ }^{65}$ S. F. Ganzhur, ${ }^{65}$ P.-F. Giraud, ${ }^{65}$ G. Hamel de Monchenault, ${ }^{65}$ W. Kozanecki, ${ }^{65}$ M. Legendre, ${ }^{65}$ G. W. London, ${ }^{65}$ B. Mayer, ${ }^{65}$ G. Schott, ${ }^{65}$ G. Vasseur, ${ }^{65}$ Ch. Yèche, ${ }^{65}$ M. Zito, ${ }^{65}$ M. V. Purohit, ${ }^{66}$ A. W. Weidemann, ${ }^{66}$ J. R. Wilson, ${ }^{66}$ F. X. Yumiceva, ${ }^{66}$ T. Abe, ${ }^{67}$ D. Aston,,${ }^{67}$ R. Bartoldus, ${ }^{67}$ N. Berger, ${ }^{67}$ A. M. Boyarski, ${ }^{67}$ O. L. Buchmueller, ${ }^{67}$ R. Claus, ${ }^{67}$ M. R. Convery, ${ }^{67}$ M. Cristinziani, ${ }^{67}$ G. De Nardo, ${ }^{67}$ J. C. Dingfelder, ${ }^{67}$ D. Dong, ${ }^{67}$ J. Dorfan, ${ }^{67}$ D. Dujmic,,67 W. Dunwoodie, ${ }^{67}$ S. Fan, ${ }^{67}$ R. C. Field, ${ }^{67}$ T. Glanzman, ${ }^{67}$ S. J. Gowdy, ${ }^{67}$ T. Hadig, ${ }^{67}$ V. Halyo, ${ }^{67}$ C. Hast,,${ }^{67}$ T. Hryn'ova, ${ }^{67}$ W. R. Innes, ${ }^{67}$ M. H. Kelsey, ${ }^{67}$ P. Kim, ${ }^{67}$ M. L. Kocian, ${ }^{67}$ D. W. G. S. Leith,,${ }^{67}$ J. Libby, ${ }^{67}$ S. Luitz, ${ }^{67}$ V. Luth,,${ }^{67}$ H. L. Lynch, ${ }^{67}$ H. Marsiske, ${ }^{67}$ R. Messner, ${ }^{67}$ D. R. Muller, ${ }^{67}$ C. P. O'Grady,,${ }^{67}$ V. E. Ozcan, ${ }^{67}$ A. Perazzo, ${ }^{67}$ M. Perl, ${ }^{67}$ B. N. Ratcliff, ${ }^{67}$ A. Roodman, ${ }^{67}$ A. A. Salnikov, ${ }^{67}$ R. H. Schindler, ${ }^{67}$ J. Schwiening, ${ }^{67}$ A. Snyder, ${ }^{67}$ A. Soha, ${ }^{67}$ J. Stelzer, ${ }^{67}$ J. Strube, ${ }^{54,67}$ D. Su, ${ }^{67}$ M. K. Sullivan, ${ }^{67}$ J. Va'vra, ${ }^{67}$ S. R. Wagner, ${ }^{67}$ M. Weaver, ${ }^{67}$ W. J. Wisniewski, ${ }^{67}$ M. Wittgen, ${ }^{67}$ D. H. Wright, ${ }^{67}$ A. K. Yarritu, ${ }^{67}$ C. C. Young, ${ }^{67}$ P. R. Burchat, ${ }^{68}$ A. J. Edwards, ${ }^{68}$ S. A. Majewski, ${ }^{68}$ B. A. Petersen, ${ }^{68}$ C. Roat,,${ }^{68}$ M. Ahmed, ${ }^{69}$ S. Ahmed, ${ }^{69}$ M. S. Alam, ${ }^{69}$ J. A. Ernst, ${ }^{69}$ M. A. Saeed, ${ }^{69}$ M. Saleem, ${ }^{69}$ F. R. Wappler, ${ }^{69}$ W. Bugg, ${ }^{70}$ M. Krishnamurthy, ${ }^{70}$ S. M. Spanier, ${ }^{70}$ R. Eckmann, ${ }^{71}$ H. Kim, ${ }^{71}$ J. L. Ritchie, ${ }^{71}$ A. Satpathy, ${ }^{71}$ R. F. Schwitters, ${ }^{71}$ J. M. Izen, ${ }^{72}$ I. Kitayama, ${ }^{72}$ X. C. Lou, ${ }^{72}$ S. Ye, ${ }^{72}$ F. Bianchi, ${ }^{73}$ M. Bona, ${ }^{73}$ F. Gallo, ${ }^{73}$ D. Gamba, ${ }^{73}$ L. Bosisio, ${ }^{74}$ C. Cartaro, ${ }^{74}$ F. Cossutti, ${ }^{74}$ G. Della Ricca, ${ }^{74}$ S. Dittongo, ${ }^{74}$ S. Grancagnolo, ${ }^{74}$ L. Lanceri, ${ }^{74}$ P. Poropat, ${ }^{74,}{ }^{\dagger}$ L. Vitale, ${ }^{74}$ G. Vuagnin, ${ }^{74}$ F. Martinez-Vidal, ${ }^{2,75}$ R. S. Panvini, ${ }^{76}$ Sw. Banerjee, ${ }^{77}$ B. Bhuyan, ${ }^{77}$ C. M. Brown, ${ }^{77}$ D. Fortin, ${ }^{77}$ P. D. Jackson, ${ }^{77}$ R. Kowalewski, ${ }^{77}$ J. M. Roney, ${ }^{77}$ R. J. Sobie, ${ }^{77}$ J. J. Back, ${ }^{78}$ P. F. Harrison, ${ }^{78}$ G. B. Mohanty, ${ }^{78}$ H. R. Band, ${ }^{79}$ X. Chen, ${ }^{79}$ B. Cheng, ${ }^{79}$ S. Dasu, ${ }^{79}$ M. Datta, ${ }^{79}$ A. M. Eichenbaum, ${ }^{79}$ K. T. Flood, ${ }^{79}$ M. Graham, ${ }^{79}$ J. J. Hollar, ${ }^{79}$ J. R. Johnson, ${ }^{79}$ P. E. Kutter, ${ }^{79}$ H. Li, ${ }^{79}$ R. Liu, ${ }^{79}$ A. Mihalyi, ${ }^{79}$ Y. Pan, ${ }^{79}$ R. Prepost, ${ }^{79}$ P. Tan, ${ }^{79}$ J. H. von Wimmersperg-Toeller, ${ }^{79}$ J. Wu, ${ }^{79}$ S. L. Wu, ${ }^{79}$ Z. Yu, ${ }^{79}$ M. G. Greene, ${ }^{80}$ and H. Neal ${ }^{80}$
(The BABAR Collaboration)
${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
${ }^{2}$ Universitad Autonoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
${ }^{3}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
${ }^{4}$ Institute of High Energy Physics, Beijing 100039, China
${ }^{5}$ University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
${ }^{6}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA
${ }^{7}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{8}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{9}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{10}$ University of British Columbia, Vancouver, BC, Canada V6T 1Z1
${ }^{11}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{12}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{13}$ University of California at Irvine, Irvine, CA 92697, USA
${ }^{14}$ University of California at Los Angeles, Los Angeles, CA 90024, USA
${ }^{15}$ University of California at Riverside, Riverside, CA 92521, USA
${ }^{16}$ University of California at San Diego, La Jolla, CA 92093, USA

${ }^{17}$ University of California at Santa Barbara, Santa Barbara, CA 93106, USA
${ }^{18}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, CA 95064, USA
${ }^{19}$ California Institute of Technology, Pasadena, CA 91125, USA
${ }^{20}$ University of Cincinnati, Cincinnati, OH 45221, USA
${ }^{21}$ University of Colorado, Boulder, CO 80309, USA
${ }^{22}$ Colorado State University, Fort Collins, CO 80523, USA
${ }^{23}$ Universität Dortmund, Institut fur Physik, D-44221 Dortmund, Germany
${ }^{24}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
${ }^{25}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France
${ }^{26}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{27}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
${ }^{28}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{29}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
${ }^{30}$ Harvard University, Cambridge, MA 02138, USA
${ }^{31}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{32}$ Imperial College London, London, SW7 2AZ, United Kingdom
${ }^{33}$ University of Iowa, Iowa City, IA 52242, USA
${ }^{34}$ Iowa State University, Ames, IA 50011-3160, USA
${ }^{35}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
${ }^{36}$ Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
${ }^{37}$ University of Liverpool, Liverpool L69 72E, United Kingdom
${ }^{38}$ Queen Mary, University of London, E1 4NS, United Kingdom
${ }^{39}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{40}$ University of Louisville, Louisville, $K Y$ 40292, USA
${ }^{41}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{42}$ University of Maryland, College Park, MD 20742, USA
${ }^{43}$ University of Massachusetts, Amherst, MA 01003, USA
${ }^{44}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA 02139, USA
${ }^{45}$ McGill University, Montréal, QC, Canada H3A 2T8
${ }^{46}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
${ }^{47}$ University of Mississippi, University, MS 38677, USA
${ }^{48}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, QC, Canada H3C 3J7
${ }^{49}$ Mount Holyoke College, South Hadley, MA 01075, USA
${ }^{50}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
${ }^{51}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{52}$ University of Notre Dame, Notre Dame, IN 46556, USA
${ }^{53}$ Ohio State University, Columbus, OH 43210, USA
${ }^{54}$ University of Oregon, Eugene, OR 97403, USA
${ }^{55}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
${ }^{56}$ Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
${ }^{57}$ University of Pennsylvania, Philadelphia, PA 19104, USA
${ }^{58}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
${ }^{59}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
${ }^{60}$ Prairie View A $\mathcal{G M}$ University, Prairie View, TX 77446, USA
${ }^{61}$ Princeton University, Princeton, NJ 08544, USA
${ }^{62}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
${ }^{63}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{64}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{65}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{66}$ University of South Carolina, Columbia, SC 29208, USA
${ }^{67}$ Stanford Linear Accelerator Center, Stanford, CA 94309, USA
${ }^{68}$ Stanford University, Stanford, CA 94305-4060, USA
${ }^{69}$ State University of New York, Albany, NY 12222, USA
${ }^{70}$ University of Tennessee, Knoxville, TN 37996, USA
${ }^{71}$ University of Texas at Austin, Austin, TX 78712, USA
${ }^{72}$ University of Texas at Dallas, Richardson, TX 75083, USA
${ }^{73}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
${ }^{74}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
${ }^{75}$ Universitad de Valencia, E-46100 Burjassot, Valencia, Spain
${ }^{76}$ Vanderbilt University, Nashville, TN 37235, USA
${ }^{77}$ University of Victoria, Victoria, BC, Canada V8W 3P6
${ }^{78}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{79}$ University of Wisconsin, Madison, WI 53706, USA
${ }^{80}$ Yale University, New Haven, CT 06511, USA

$$
\begin{aligned}
& \text { We present measurements of the branching fractions for the three-body decays } B^{0} \rightarrow D^{(*) \mp} K^{0} \pi^{ \pm} \\
& \text {and their resonant submodes } B^{0} \rightarrow D^{(*) \mp} K^{* \pm} \text { using a sample of approximately } 88 \text { million } B \bar{B} \text { pairs } \\
& \text { collected by the } B A B A R \text { detector at the PEP-II asymmetric energy storage ring. We measure: } \\
& \qquad \begin{array}{c}
\mathcal{B}\left(B^{0} \rightarrow D^{\mp} K^{0} \pi^{ \pm}\right)=\left(4.9 \pm 0.7_{\text {stat }} \pm 0.5_{\text {syst }}\right) \times 10^{-4}, \\
\mathcal{B}\left(B^{0} \rightarrow D^{* \mp} K^{0} \pi^{ \pm}\right)=\left(3.0 \pm 0.7_{\text {stat }} \pm 0.3_{\text {syst }}\right) \times 10^{-4}, \\
\mathcal{B}\left(B^{0} \rightarrow D^{\mp} K^{* \pm}\right)=\left(4.6 \pm 0.6_{\text {stat }} \pm 0.5_{\text {syst }}\right) \times 10^{-4}, \\
\mathcal{B}\left(B^{0} \rightarrow D^{* \mp} K^{* \pm}\right)=\left(3.2 \pm 0.6_{\text {stat }} \pm 0.3_{\text {syst }}\right) \times 10^{-4} .
\end{array} \\
& \text { From these measurements we determine the fractions of resonant events to be } f\left(B^{0} \rightarrow D^{\mp} K^{* \pm}\right)= \\
& 0.63 \pm 0.08_{\text {stat }} \pm 0.04_{\text {syst }} \text { and } f\left(B^{0} \rightarrow D^{* \mp} K^{* \pm}\right)=0.72 \pm 0.14_{\text {stat }} \pm 0.05_{\text {syst }} .
\end{aligned}
$$

Submitted to Physical Review Letters
PACS numbers: $13.25 . \mathrm{Hw}, 14.40 . \mathrm{Nd}$

Several independent measurements are needed to test the Standard Model description of $C P$ violation. The angle γ can be determined using decays of the type $B \rightarrow D^{(*)} K^{(*)}$ [1]. The experimental challenges are color suppression of the $b \rightarrow u$ transition, reconstruction of $D^{0} C P$ eigenstates, and interfering doubly-Cabibbosuppressed decays (DCSD) [2]. Also, two-body mode analyses are complicated because there are eight degenerate solutions for γ in the interval $[0,2 \pi]$.

In recent papers [3, 4] three-body decays have been suggested for measuring γ, since these do not suffer from the color suppression penalty. Furthermore, the channels $B^{0} \rightarrow D^{(*) \mp} K^{0} \pi^{ \pm}$do not have the above problems with $C P$ states and DCSD interference, and can resolve most of the ambiguities [3]. The angle γ can be extracted from a time-dependent Dalitz analysis of these decay modes.

The analysis presented here is based on $81.8 \mathrm{fb}^{-1}$ of data taken at the $\Upsilon(4 S)$ resonance, corresponding to approximately 88 million $B \bar{B}$ pairs, with the $B A B A R$ detector [5] at the PEP-II storage ring. We measure the branching fractions of the $B^{0} \rightarrow D^{(*) \mp} K^{0} \pi^{ \pm}$decays and consider their distribution in the Dalitz plot.

We reconstruct D^{+}mesons in the decay mode $K^{-} \pi^{+} \pi^{+}$and D^{*+} mesons in the mode $D^{0} \pi^{+}$, with the D^{0} decaying to $K^{-} \pi^{+}, K^{-} \pi^{+} \pi^{0}$, and $K^{-} \pi^{+} \pi^{-} \pi^{+}$. Here and throughout the paper charge conjugate states are implied. Tracks from the D decay are required to originate from a common vertex. Positive kaon identification is enforced on kaons from D meson decays, except for the $D^{0} \rightarrow K^{-} \pi^{+}$mode.

The D^{+}candidates are required to have a mass within $12 \mathrm{MeV} / c^{2}(2 \sigma)$ of the D^{+}mass, while the mass of D^{0} candidates decaying to charged daughters only is required to lie within $15 \mathrm{MeV} / c^{2} \quad(2.5 \sigma)$ of the D^{0} mass, where σ is the experimental resolution. The $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ candidates are required to have a mass within $30 \mathrm{MeV} / c^{2}$ (2.5σ) of the D^{0} mass and to be located at a point in the D^{0} Dalitz plot, where the density of events is larger than 1.4% of the maximum density.

The D^{*+} candidates are accepted if the mass differ-
ence $m_{D^{*+}}-m_{D^{0}}$ is within $2 \mathrm{MeV} / c^{2}(3 \sigma)$ of the nominal value, except for the $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ candidates where we use $1.5 \mathrm{MeV} / c^{2}$ to reduce this mode's larger combinatoric background.

We combine oppositely-charged tracks from a common vertex into K_{S}^{0} candidates. The K_{S}^{0} candidates are required to have a mass within $7 \mathrm{MeV} / c^{2}(3 \sigma)$ of the K_{S}^{0} mass and a transverse flight length that is significantly (4σ) greater than zero.

To form B^{0} candidates, the $D^{(*)+}$ candidates are combined with a K_{S}^{0} candidate and a π^{-}, for which the particle identification (PID) is inconsistent with being a kaon or an electron. They are required to originate from a common vertex. Using the beam energy, two almost-independent kinematic variables are constructed: the beam-energy substituted mass $m_{\mathrm{ES}} \equiv$ $\sqrt{(\sqrt{s} / 2)^{2}-{p_{B}^{*}}^{2}}$, and the difference between the B^{0} candidate's measured energy and the beam energy, $\Delta E \equiv$ $E_{B}^{*}-\sqrt{s} / 2$. The asterisk denotes evaluation in the $\Upsilon(4 S)$ CM frame. B^{0} candidates are required to have ΔE in the range $[-0.1,0.1] \mathrm{GeV}$, and m_{ES} in the range $[5.24,5.29]$ $([5.20,5.288]) \mathrm{GeV} / c^{2}$ for $D^{\mp} K^{0} \pi^{ \pm}\left(D^{* \mp} K^{0} \pi^{ \pm}\right)$.

To suppress the dominant continuum background events, which have a more jet-like shape than $B \bar{B}$ events, we use a linear combination, \mathcal{F}, of four variables: $L_{0}=$ $\sum_{i} p_{i}, L_{2}=\sum_{i} p_{i}\left|\cos \theta_{i}\right|^{2}$, and the absolute values of the cosine of the polar angles of the B momentum and of the B thrust direction [7]. Here, p_{i} is the momentum and θ_{i} is the angle with respect to the thrust axis of the signal B candidate of the tracks and clusters not used to reconstruct the B. All of these variables are calculated in the CM frame. The coefficients are chosen to maximize the separation between signal Monte Carlo and $9.6 \mathrm{fb}^{-1}$ of continuum events from data taken 40 MeV below the $\Upsilon(4 S)$ resonance (off-resonance data). \mathcal{F} has negligible correlations with m_{ES} and ΔE.

After the event selection, approximately 5% of the events have more than one B^{0} candidate. We choose the one with m_{D} closest to the expected value. In sim-
ulated signal events, the final selection is 19.3% efficient for $B^{0} \rightarrow D^{\mp} K^{0} \pi^{ \pm}$and $15.5 \%, 3.9 \%$ and 8.2% efficient for $B^{0} \rightarrow D^{* \mp} K^{0} \pi^{ \pm}$in the three D^{0} decay modes $K^{-} \pi^{+}$, $K^{-} \pi^{+} \pi^{0}$ and $K^{-} \pi^{+} \pi^{-} \pi^{+}$, respectively.

We perform an unbinned extended maximum likelihood fit with the variables $m_{\mathrm{ES}}, \Delta E$, and \mathcal{F} on the selected candidates, using the logarithm of the likelihood:

$$
\begin{equation*}
\ln \mathcal{L}=\sum_{i=\text { events }} \ln \left(\sum_{j} N_{j} P_{i j}\left(m_{\mathrm{ES}}, \Delta E, \mathcal{F}\right)\right)-\sum_{j} N_{j} \tag{1}
\end{equation*}
$$

where $P_{i j}$ is the product of probability density functions (PDFs) for event i of $m_{\mathrm{ES}}, \Delta E$, and \mathcal{F}, and N_{j} is the number of events of each sample component j : signal, continuum, combinatoric $B \bar{B}$ decays, and $B \bar{B}$ events that peak in m_{ES} but not in ΔE signal region (denoted peaking $B \bar{B}$ background).

The signal is described by a Gaussian distribution in m_{ES}, two Gaussian distributions with common mean in ΔE, and a Gaussian distribution with different widths on each side of the mean ("bifurcated Gaussian distribution") in \mathcal{F}. Their shape is obtained from the highstatistics data control samples $B^{0} \rightarrow D^{(*) \mp} a_{1}^{ \pm}$(similar topology of the final state as the signal) for m_{ES} and ΔE, and $B^{0} \rightarrow D^{* \mp} \pi^{ \pm}$for \mathcal{F}, and fixed in the fit.

The continuum and combinatoric $B \bar{B}$ backgrounds are described by empirical endpoint functions [8] in m_{ES}, linear functions in ΔE, and bifurcated Gaussian distributions in \mathcal{F}. The \mathcal{F} distribution of continuum is obtained from off-resonance data, while the \mathcal{F} distribution of the $B \bar{B}$ backgrounds is obtained from Monte Carlo simulation, and compared with data in high-statistics samples to ensure that there is no significant difference.

The peaking $B \bar{B}$ background is parametrized by a Gaussian distribution in m_{ES}, an exponential distribution in ΔE, and shares the PDF in \mathcal{F} with the nonpeaking $B \bar{B}$ background. The mean and width in m_{ES} of the peaking $B \bar{B}$ background are fixed to values obtained from Monte Carlo simulation, which are consistent with values measured in data.

The likelihood function is determined by 27 parameters, of which four yields and five background shape parameters are fitted. Subsequent to the fit, possible residual backgrounds from combinatoric D and K_{S}^{0} candidates are estimated using the sidebands of m_{D} and $m_{K_{S}^{0}}$, and subtracted.

The three-body and quasi-two-body (that is $B^{0} \rightarrow$ $\left.D^{(*) \mp} K^{* \pm}\right)$ branching fractions are obtained by fitting first without regards to event positions in the Dalitz plot, and then with the requirement that the $K_{S}^{0} \pi^{+}$invariant mass lies within $100 \mathrm{MeV} / c^{2}$ of the $K^{*+}(892)$ mass. Due to the relatively small number of background events in the second fit, all $B \bar{B}$ shape parameters are kept fixed.

The results are shown in Fig. 1, while yields and purities (defined as $N_{\text {sig }} / \sigma^{2}\left(N_{\text {sig }}\right)$) are listed in Table I, with the K^{*+} resonant part included in the three-body state.

FIG. 1: m_{ES} distributions in data for the four decay modes. Events appropriately weighted by $W_{\text {sig }}$ (see text) to exhibit the signal distribution [9] are shown as dotted points over which the fitted signal PDF is superimposed. For comparison, the m_{ES} distribution obtained with $|\Delta E|<25 \mathrm{MeV}(2 \sigma)$ is included (solid points).

To determine the three-body branching ratios optimally, a mapping of the efficiency across the Dalitz plot is needed. This is obtained from simulated signal events. Incorporating the efficiency variations ($\sim \pm 30 \%$) across the Dalitz plot requires a measure of the (a-priori unknown) event distribution in the Dalitz plot. We obtain

TABLE I: Signal yields and purities.

Decay mode	Signal yield Purity	
$B^{0} \rightarrow D^{\mp} K^{0} \pi^{ \pm}$	230 ± 24	40%
$B^{0} \rightarrow D^{\mp} K^{* \pm}$	143 ± 14	73%
$B^{0} \rightarrow D^{* \mp} K^{0} \pi^{ \pm}$	134 ± 17	46%
$B^{0} \rightarrow D^{* \mp} K^{* \pm}$	78 ± 10	78%

FIG. 2: Signal Dalitz distributions with events weighted by $W_{\text {sig }}$ and corrected for efficiency variations. Each bin is colored according to its contribution to the branching ratio. The bins in white also include the contributions which are negative but still statistically compatible with zero.
the number of signal events from the likelihood fit using weights defined as:

$$
\begin{equation*}
W_{\mathrm{sig}}^{i} \equiv \frac{\sum_{j} \mathbf{V}_{\mathrm{si}, j} P_{i j}\left(m_{\mathrm{ES}}, \Delta E, \mathcal{F}\right)}{\sum_{j} N_{j} P_{i j}\left(m_{\mathrm{ES}}, \Delta E, \mathcal{F}\right)} \tag{2}
\end{equation*}
$$

where N_{j} and $P_{i j}$ are defined as in Eq. (1), and $\mathbf{V}_{\text {sig }, j}$ is the signal row of the covariance matrix of the component yields obtained from the likelihood fit. These weights $W_{\text {sig }}^{i}$, which in the absence of correlations are signal probabilities $P_{\text {sig }} / P_{\text {total }}$, contain the true signal distribution and its uncertainty for any quantity uncorrelated with the variables in the likelihood fit [9].

The efficiency-corrected Dalitz distributions, weighted by $W_{\text {sig }}$, are shown in Fig. 2. The $K^{*}(892)^{+}$resonance is dominant in both the $B^{0} \rightarrow D^{\mp} K^{0} \pi^{ \pm}$and

FIG. 3: Distribution of $\cos \theta$ for data for the $B^{0} \rightarrow D^{\mp} K^{0} \pi^{ \pm}$ decay mode in the $K^{* \pm}$ region using the signal weights $W_{\text {sig }}$ and correcting for efficiency variations. The solid curve is a fit to the spin- 1 distribution $d N / d \cos \theta \propto \cos ^{2} \theta$.
$B^{0} \rightarrow D^{* \mp} K^{0} \pi^{ \pm}$modes, while no other resonant structures are significant. In the $B^{0} \rightarrow D^{\mp} K^{0} \pi^{ \pm}$channel, the spin-1 $K^{* \pm}$ meson has the helicity distribution $d N / d \cos \theta \propto \cos ^{2} \theta$, where θ is the angle between the $K^{* \pm}$ and the K^{0} in the $K^{* \pm}$ center of mass frame. This can be seen in Fig. 3.

The systematic errors are summarized in Table II. Most systematic errors are due to possible differences between data and Monte Carlo. The efficiency correction as a function of the position in the Dalitz plot comes with systematic uncertainties due to resolution effects and binning, which are mostly of statistical origin. $\mathrm{A} \pm 1 \sigma$ variation of all fixed variables in the fit, including relevant correlations, is used to obtain the systematic from the uncertainty in the PDFs.

TABLE II: Sources and sizes of systematic errors. The combined errors take correlations into account. All numbers are in percent.

Systematic	$D K \pi$	$D K^{*}$	$D^{*} K \pi$	$D^{*} K^{*}$
Tracking efficiency	5.9	5.9	6.1	6.3
PID efficiency	2.2	2.0	2.0	2.0
$\mathcal{B}\left(D^{*+}\right)$	-	-	0.7	0.7
$\mathcal{B}\left(D^{+/ 0}\right)$	6.5	6.5	3.4	3.8
$D^{(*)}$ reconstruction	0.7	0.7	1.2	1.2
K^{*+} selection	-	3.7	-	5.1
$\mathcal{B}\left(K_{S}^{0}\right)$	0.2	0.2	0.2	0.2
K_{S}^{0} reconstruction	1.8	1.9	1.9	1.9
π^{0} reconstruction	-	-	0.8	1.2
PDF parametrization	4.5	2.9	7.1	3.7
Efficiency variation	3.5	4.9	6.3	5.6
$B \bar{B}$ counting	1.1	1.1	1.1	1.1
Combined error	11.0	11.6	12.6	12.2

Our final branching ratio results, weighting the three D^{0} modes according to their combined statistical and
uncorrelated systematic error, are:

$$
\begin{aligned}
\mathcal{B}\left(B^{0} \rightarrow D^{\mp} K^{0} \pi^{ \pm}\right) & =\left(4.9 \pm 0.7_{\text {stat }} \pm 0.5_{\text {syst }}\right) \times 10^{-4} \\
\mathcal{B}\left(B^{0} \rightarrow D^{* \mp} K^{0} \pi^{ \pm}\right) & =\left(3.0 \pm 0.7_{\text {stat }} \pm 0.3_{\text {syst }}\right) \times 10^{-4} \\
\mathcal{B}\left(B^{0} \rightarrow D^{\mp} K^{* \pm}\right) & =\left(4.6 \pm 0.6_{\text {stat }} \pm 0.5_{\text {syst }}\right) \times 10^{-4} \\
\mathcal{B}\left(B^{0} \rightarrow D^{* \mp} K^{* \pm}\right) & =\left(3.2 \pm 0.6_{\text {stat }} \pm 0.3_{\text {syst }}\right) \times 10^{-4}
\end{aligned}
$$

To summarize, a clear signal is seen in both the $B^{0} \rightarrow D^{\mp} K^{0} \pi^{ \pm}$and $B^{0} \rightarrow D^{* \mp} K^{0} \pi^{ \pm}$channels, and in both modes the $K^{*}(892)^{+}$resonance is dominant. Defining the K^{*} resonant fractions, f, as $\mathcal{B}\left(B^{0} \rightarrow\right.$ $\left.D^{(*) \mp} K^{* \pm}\right) \mathcal{B}\left(K^{*+} \rightarrow K^{0} \pi^{+}\right) / \mathcal{B}\left(B^{0} \rightarrow D^{(*) \mp} K^{0} \pi^{ \pm}\right)$, we obtain the fractions $f\left(B^{0} \rightarrow D^{\mp} K^{* \pm}\right)=0.63 \pm 0.08_{\text {stat }} \pm$ $0.04_{\text {syst }}$ and $f\left(B^{0} \rightarrow D^{* \mp} K^{* \pm}\right)=0.72 \pm 0.14_{\text {stat }} \pm$ $0.05_{\text {syst }}$, respectively.
Both the method of this analysis and the resulting threebody branching fraction measurements are the first of their kind, while the resonant decay modes have been measured before [10]. To determine the sensitivity to γ of these modes, a time-dependent Dalitz fit is required, for which the data sample is inadequate. However, the branching fractions and Dalitz distributions suggest that these modes will be useful for measuring γ at the B factories.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and

NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

* Also with Università della Basilicata, Potenza, Italy
${ }^{\dagger}$ Deceased
[1] M. Gronau and D. Wyler, Phys. Lett. B 265, 172 (1991). M. Gronau and D. London., Phys. Lett. B 253 (1991) 483.
[2] D. Atwood, I. Dunietz and A. Soni, Phys. Rev. Lett. 78, 3257 (1997)
[3] R. Aleksan, T. C. Petersen and A. Soffer, Phys. Rev. D 67, 096002 (2003).
[4] R. Aleksan and T. C. Petersen, in Proceedings of the CKM03 Workshop, Durham, 2003, eConf C0304052 (2003), WG414.
[5] BABAR Collaboration, B. Aubert et al., Nucl. Instr. and Methods A479, 1 (2002).
[6] Particle Data Group, Eidelman, S. et al., Phys. Lett., B592 1, 2004.
[7] E. Farhi, Phys. Rev. Lett. 39, 1587 (1977).
[8] ARGUS Collaboration, H. Albrecht et al., Phys. Lett. B 185, 218 (1987); ibid. 241, 278 (1990).
[9] M. Pivk and F. R. Le Diberder, arXiv:physics/0402083.
[10] R. Mahapatra et al. [CLEO Collaboration], Phys. Rev. Lett. 88, 101803 (2002).

