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Abstract

Experimental results obtained at BESSY-II are described and explained by the beam-ion instability.

Simplified simulations and revised theory of the instability extended to nonlinear regime are used

for interpretation of the results.
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INTRODUCTION AND MEASUREMENTS

The beam stability at BESSY-II has been investigated experimentally using the longitu-

dinal bunch-by-bunch feedback system as a diagnostic tool [1]. The main relevant BESSY-II

parameters, both nominal and the values used for calculations in this paper, are given in

Table I.

TABLE I: BESSY-II parameters for transverse instability measurements.

Parameter Nominal Calculations

Energy, GeV 1.70 1.72

Beam current, mA 250 50

Bunch population 3.5 × 109 0.7 × 109

Circumference 2πR, m 240 240

Harmonic number h 400 400

Vertical tune, Qy 6.73 6.73

σx/y, µm 230/23 230/23

Beam pipe radius, b, cm 1.1-3.75 1.5

In this paper, we describe the grow/damp experiments at BESSY-II and suggest an

explanation of the results. In the experiments the vertical instability of the beam has been

observed. Dipole oscillations of each bunch in the ring were recorded during approximately

16 ms between the moments when the transverse feedback (FB) has been turned off and

on again. A typical result is shown in Fig. 1 where the red and blue colors correspond to

the largest and smallest amplitudes, respectively. The measurements were performed below

the longitudinal dipole coupled-bunch instability threshold thus the beam was longitudinally

stable at all times. The high-frequency amplitude modulation with approximately 16 bucket

periodicity is due to the filling unevenness of the individual buckets.

One of intriguing feature of Fig. 1 is suppression of oscillations. The last may be seen as

the tilted blue bands in the figure which correspond to the minimum amplitude of bunch

oscillations shifting towards the following bunches almost linearly in time.
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FIG. 1: Variation of the amplitudes of all bunches with time in the grow/damp experiment

at BESSY-II. The transverse feedback system is turned off at t = 0 and then turned on 16

ms later. The ring was fully populated with 400 bunches.

Recording of the displacements of each bunch in time allows analysis of the data in terms

of the (full ring) coupled bunch (CB) modes and their time dependence. Results of such an

analysis illustrated in Fig. 2 show, first of all, that only few low order CB modes are excited.

Due to filling pattern modulation at the 16 bucket periodicity there are sidebands in the

modal spectrum separated by 400/16 = 25 revolution harmonics. The sidebands are more

prominent in the 400 bunch fill due to higher bunch filling unevenness.

Time dependence of the five largest CB modes is shown in Fig. 3. This figure clearly

shows that the amplitudes of these modes grow exponentially only for a small initial period

of time. This period is smaller for the ring fully filled and larger for the fill with a gap in the

bunch train. The character of the time variation depends significantly on the length of the
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gap. Useful information can be extracted by fitting a polynomial to the logarithm of modal

amplitudes ln x(t) in each case. From the polynomial fit one can numerically compute the

effective growth rate vs. amplitude. In this approach the modal amplitude is represented in

the following analytical form:

Cm(t) = Amep(t)t

where Am is the initial modal amplitude and p(t) is a polynomial defining growth rate

variation with time. Such fits are presented in Fig. 4. Note the dramatic difference between

a gradual drop in the growth rate with increasing oscillation amplitude for the case of 320

bunches and the fast fall-off in the case without a gap. It is interesting to point out that

while amplitude of oscillation of mode 399 in Fig. 3 grows nearly exponentially, there is no

significant frequency shift with amplitude of oscillations.

Comparing Figs. 3a and 3b another qualitative difference is evident between the system

behavior with and without the gap. Note that without the gap the initial (steady-state)

oscillation amplitudes of modes 395–398 are significantly above the noise floor. It is possible

to explain such behavior if we assume that instability growth rates have strong dependence

on dipole oscillation amplitude. Then, as the feedback system damps the motion, the growth

rates of the relevant modes increase up to the point where they equal the damping provided

by the transverse feedback system. Such balance determines the steady-state oscillation

amplitudes of the CB modes in question. This hypothesis is further supported by Fig 4d

showing a significant increase in instability growth rate at lower oscillation amplitudes.

First we will try to model the observed bunch oscillation amplitude variations as the

beating of unstable coherent modes. Such modeling provides further insight into the mecha-

nisms driving the instabilities and allows one to home in on the actual sources of the observed

dynamic behavior.
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FIG. 2: Average modal amplitudes vs. mode number for the growth transient parts of two

grow/damp experiments at BESSY-II. a) 320 bunches in the ring with an 80 bucket (20%)

gap; b) Plot a) zoomed in; c) 400 bunches, no ion clearing gap; d) Plot c) zoomed in.

SIMPLE MODEL FOR BUNCH AMPLITUDE VARIATION

The simplest model explaining the observed variation in bunch oscillation amplitudes can

be obtained considering just two coherent coupled-bunch modes with the mode numbers µ1

and µ2, coherent frequencies Ω1,2 and the growth rates Γ1,2. For simplicity, let us take equal

initial amplitudes a for both modes. Then, the vertical displacement of the N-th bunch in

the train of h equidistant bunches is

yN(t) = a{eΓ1t cos[(ωy +Ω1)t−2π(N −1)µ1/h]+eΓ2t cos[(ωy +Ω2)t−2π(N −1)µ2/h]}, (1)

where ωy = Qyω0 is the betatron frequency. The amplitude of the bunch varies in time as
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FIG. 3: Variation of the amplitude of several CB modes vs. time for two grow/damp

experiments at BESSY-II. a) 320 bunches in the ring, 20% gap; b) 400 bunches, no ion

clearing gap.

AN(t) = a2{e2Γ1t + e2Γ2t + e(Γ1+Γ2)t cos[(Ω1 − Ω2)t − 2πN(µ1 − µ2)/h]}. (2)

The beating is due to the cosine term. First, we notice that this term is independent of

the tune Qy and depends on the coherent shift Ω. The minimum amplitude corresponds to

the phase equal to multiple of π/2. Such minima are separated by

∆N =
h

2
(µ1 − µ2). (3)

The beating requires comparable growth rates of two modes eΓ1t ' eΓ2t. For an instability

with a distinguished strongest mode, both interfering modes has to be close, µ1 − µ2 = ±1.

In this case, two bunches having minimum amplitudes simultaneously would be separated

by h/2 = 200 bunches. For modes with substantial difference in the growth rates, the

last term in Eq. 2 becomes negligible with time and the time dependence of the beating

may disappear. Still, the amplitude variation along the train may remain provided initial

amplitudes of bunches were different. In this case, the depression bands in Fig. 1 would go

vertically without slope. Eq. 2 shows that the slope of the depression bands is given by the

difference in the coherent frequencies of the modes ∆Ω = |Ω1 − Ω2|. The oscillations would

be suppressed for a bunch with the bunch number N(t) which varies in time with the rate
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FIG. 4: Polynomial fits to the logarithm of the amplitude of the dominant CB modes and

extracted growth rate dependence on the oscillation amplitude. a) 320 bunches, third order

polynomial fit to the equidistant mode 399; b) 320 bunches; growth rate of equidistant mode

399 vs. amplitude almost constant; c) 400 bunches, seventh order polynomial fit to mode

398; d) 400 bunches, fast variation of the growth rate of mode 398 with amplitude

dN

dt
=

h∆Ω

2π∆µ
. (4)

Observation of the slope may provide a useful information on the parameters of the

coherent modes.

The transient excitation of the beam oscillations [2], [3] is another model which would

have some features similar to that observed at BESSY in the case of a train with large gap.

Suppose that the first bunch in the train has a small amplitude of betatron oscillations a. If

there is coupling, each bunche would drive oscillations of the following bunches. If betatron
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frequencies of all bunches are the same, the amplitude of the second bunch would grow

linearly in time until saturation. In the simple daisy-chain model, where a bunch is coupled

only to the following bunch,

d2xn

dt2
+ 2γd

dxn

dt
+ ω2

bxn = λxn−1, (5)

the amplitude of the n-th bunch varies as

a(n, t) ∝ 1

n!
(

λt

2ωb

)ne−γdt. (6)

Maximum amplitude at the moment t has the bunch with the bunch number nmax(t) = Γt,

where Γ = λ/(2ω). The amplitude of the bunch with the fastest growth grows exponentially,

a(nmax)(t) ∝ e(Γ−γd)t. The factor Γ gives also the growth rate of coupled-mode instability

for the ring without the gap. The position of the bunch with the largest amplitude is shifted

along the train with the rate dnmax/dt = Γ equal to the growth rate of the instability Γ. The

growth of the amplitude at BESSY is more complicated with beating and several bands. It

is not clear whether BESSY results can be explained as transients in the more elaborated

modes where the betatron frequency variation along the train and in time is included.

RESISTIVE WALL AND HEAD-TAIL INSTABILITIES

The beam instability causing the beating has to have the growth rate fast enough to be

observed on the time scale of 16 ms.

The estimate for the strong and chromatic head-tail instabilities for BESSY-II show that

the first is suppressed and the second has too low growth rate to affect the results in the

experiment.

Therefore, only the transverse resistive wall (RW) coherent instability and the beam-ion

instability can be relevant to the observations.

The RW instability is well known and substantially depends on the beam pipe aperture.

For this reason, it is difficult to get an accurate estimate of the growth rate of instability

for BESSY-II where aperture has large variations along the ring. Assuming the average 1.5
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cm radius of the aluminum beam pipe, the maximum growth time for 400 uniformly spaced

bunches is about 16 ms, equal to the total time of recording in the experiment. However,

the aperture in the undulators is 1cm, and the growth time may be reduced by a factor of

three and become noticeable in the measurements.

Calculations give the maximum ∆Ω ' 100 Hz for b = 1.5 cm. Hence, for ∆µ = 1, the

depression minimum shifts by ∆N ' 70 in 10 ms.

The result of calculations where all RW modes are taken into account are shown in Fig. 5.

The eigen-modes were calculated assuming that 360 buckets out of available 400 are filled

leaving 10% gap. Initial amplitudes for all modes were taken equal. Although some bunch-

to-bunch modulation is visible, the overall variation does not look similar to the experiment.

Several other factors argue as well against the observed instabilities being caused by the

resistive wall. As described in Sec. the growth rate of this instability depends strongly

on the presence or absence of the gap. Instabilities driven by the resistive wall impedance

should be relatively insensitive to the length of the ion-clearing gap. Secondly, the strong

tune shift versus oscillation amplitude observed in a 320 bunch pattern is inconsistent with

the resistive wall constant impedance model.

For these reasons, we consider below only beam-ion instability.

BEAM-ION INSTABILITY

The beam-ion instability has been studied analytically by many authors [4], [5] and nu-

merically [6]. The instability is due to ions which keep memory of the offset of the generating

bunch and transfer this information to the following bunches. For large rings, where the

revolution frequency is small compared to the ion frequency, the instability becomes the fast

ions instability described recently [7]. Let us recall the basic results of the linear theory.

Ions are produced in collisions with the residual gas with the rate

S0 = σ+
i ngas

Nb

τb

. (7)

9



0 50 100 150 200 250 300 350
bunch number

0

50

100

150

200

250
s
a
m
p
l
e

FIG. 5: Amplitude growth due to RW instability. All 360 modes are taken into account.

Here σ+
i is ionization cross-section, σ+

i ' 2 Mbarn, and ngas is residual gas density,

ngas = 3.2 107 p

nTorr
cm−3 (8)

at normal temperature. S0 ' 108 (cm s)−1 for BESSY-II parameters at 5 nTorr.

Ions with atomic weight Ai and initial amplitudes small compared to σx, σy, oscillate

within the beam with the ion frequency

Ω2
0 =

2Nb rp c2
0

Aiσxσysb

. (9)

Here rp is classical proton radius and c0 is velocity of light. For BESSY-II parameters,
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Ω0/ω0 = 4.2 and 15.6 for CO and H2, respectively. The coasting beam approximation is

valid if Ω0sb/c0 << 1. Otherwise, ions are unstable due to over-kicks from the bunches and

can not be trapped.

For the full ring, ions are accumulated until the space charge of ions becomes comparable

with the average density of the beam. The ion density at saturation

nsat =
2Nb

πsbb2
ln(

b

σx

) (10)

for BESSY-II parameters and 5 nTorr pressure, nsat ' 1.0 107 cm−3 and may be reached

after, approximately, 35 turns.

The gap in the train makes most of ions unstable provided the gap length Lg is large

enough, Ω0Lg/c0 > 1. For BESSY-II and CO, that means Lg/sb > 15. An ion shifts

transversely during the first gap by Ω0(Lg/c)σy. The following passes of the gap drive

ions toward the wall in a random walk filling the beam pipe uniformly. The estimate of

the equilibrium density ngap can be obtained equalizing diffusive losses at the wall and the

production rate. That gives

ngap =
2S0

ω0σxσy(Ω0Lg/c)2
. (11)

With the 20% gap and the same 5 nTorr pressure, ngap ' 103 cm−3, much smaller than the

space-charge limit. This overestimate the cleaning effect of the gap not taking into account

that some ions in the ring remain stable even with the long gaps although the number of

such ions decreases with Lg.

Therefore, for the long gap, the ion density is mostly defined by ions generated in one

turn ions with the ion density ni = S0T0/(2πσxσy), of the order of 3. 105 cm3 at the pressure

5 nTorr. That sets the lowest limit on the ion density for the last bunch in the bunch train.

The beam-ion instability is usually analyzed in the linearized approximation. Details

can be found in Appendix . Oscillation of a bunch at the distance z from the head of

the bunch train yc(t, z) in the linear theory is described by the superposition of the CB

modes ym(t, z) = a sin(µt − qmz), where qm = 2π(m − 1)/h and the coherent frequency
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µ = ωy + ∆ωm. The growth rate Γm = Im∆ωm is not zero at the resonance frequency Ω(A)

defined by condition ωy + Ωi(A) = mω0. After averaging over the distribution of ions over

amplitudes A, the linear growth rate of the mode q, Γ is proportional

Γ =
πrec

2
0

γωyσy

√

σ2
x + Σ2

x

Ω0

∆Ω
(
dNi

ds
). (12)

Here, γ is the relativistic factor of the beam, Σx is the RMS size of the ion distribution,

∆Ω/Ω0 is the frequency spread of ions. It is large, about 1/6.0 due to strong nonlinearity

of the beam-ion potential.

In this limit, the growth time for such a machine as BESSY-II can be as fast as 0.35 µs

for the last bunch even assuming the relatively low one-turn ion density.

Eq. (12) shows that the growth rate depends on the ion density. Therefore, the growth

rate is higher in the fully filled ring. As a result, the exponential growth lasts longer in the

train with a large gap as it was mentioned in the Introduction.

NON-LINEAR REGIME OF BEAM-ION INSTABILITY

The basic equations of the beam-ion instability are reproduced in Appendix 8.1. In

the case of equidistant bunches, motion of the bunch centroid can be described as the

superposition of the modes

yN(τ) =
∑

n

[ane
−iQyτ+iqnzN + c.c.], (13)

where qn = 2πn/h, n = 0, 1, .., nb − 1. (In the case where each m-s bucket is filled, the

harmonic number h should be replaced by h/m).

yN(τ,s)(τ) =
∑

n

[ane
−iνnτ−2πins/(hsb) + c.c.], (14)

where νn = Qy − n.

That suggests the form of the distance ζi(τ, s) = Yi(τ, s)−yN(τ,s)(τ) between the displace-

ment Yi of an ion at the location s and the offset yN of the bunch N(τ, s) which happens to

be at the location s at the moment τ ,
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ζi(τ, s) =
∑

n

[Ai,ne−iνnτ−2πins/(hsb) + c.c.]. (15)

The system of equations for the amplitudes an and Ai,n is derived in Appendix 8.1:

dAi,n

dτ
+

i

2νn

[ΛΦ(|Ai,n|2, r) − ν2
n]Ai,n =

iνn

2
an. (16)

dan(τ)

dτ
=

iλ

2Qy

1

Nion

Nion
∑

i=1

Ai,n(τ)Φ[
∑

m

|Ai,m|2, r]. (17)

In the linear approximation, these equations give well known results, in particular, the

growth rate Eq. (12). However, the growth rate defined in the linear regime is high and,

usually, the linear regime can not be observed in experiment.

In the nonlinear regime the system of equations Eq. (16)-Eq. (17) can be solved numeri-

cally. We used approximation of Eq. 24 for Φ and 12 modes An, an, n =, 1, .., 12 with initial

conditions an(0) = 0.1 and An(0) = 0. Result of calculations shown in Fig. 6 are in good

agreement with tracking results. More details are given in Appendix 8.3.

SIMULATIONS

The linear regime, therefore, is too fast to be observed and the nonlinear theory is needed

to describe experiments. Some estimates are given in Appendix .

We developed a simple code and used it for simulations. In the code, each bunch is

described as a single macro-particle interacting with ions localized in a single slice in the

ring. Each bunch passing through the slice generates a macro-particle with the vertical offset

equal to the position of a bunch and the rate equal to the production rate of ions in the

ring. A bunch gives to and receives kicks from ions existing in the slice. Between bunches,

ions are free but get additional kick from the rest of ions to simulate the space-charge effect.

Ions are killed when they reach certain cut-off distance simulating loss at the beam pipe

wall. Additional to the interaction with ions, macro-particle performed betatron oscillations

described as a linear map. Resistive wall effect may be added as an additional transform.

To do that, the displacement of a bunch is expanded in a sum of the CB modes which are
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FIG. 6: Variation of the amplitudes of individual bunches for the beam-ion instability in

the simple model of the nonlinear regime. P = 10, J0 = 10, 2 × 104 turns.

transformed with the known growth rate and then the new coordinate is calculated for the

bunch.

Results of simulations are shown in Figs. 7-11. Tracking was carried out for pressure 5

nTorr.

Fig. 7 and Fig. 8 depict time variation of individual bunches for the train of 320 bunches

and for the full ring (400 bunches), respectively. The amplitude value is indicated by color in

the same way as in Fig. 1. Although the detail pattern differs from that in experiment, the
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qualitative outlook is similar. The suppression bands are clear visible and their separation

is similar to that in Fig. 1. We discuss the difference in the results below.
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FIG. 7: Time dependence of the amplitudes of all bunches for a train of 320 bunches in

tracking. The horizontal axes gives the bunch number, vertical axes is time sample. Total

time of tracking is 2× 104 turns or 16 ms. Amplitude value is shown in colors; blue and red

corresponding to minimum and maximum amplitudes.

Variation in time of the amplitudes of three bunches (in the head, middle, and the tail

of the train) is shown in Fig. 9.

Oscillations of individual bunches yn(t), n = 1, 2, .., nb can be analyzed in terms of the
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FIG. 8: The same as in Fig. 7 for 400 bunches (full ring fill).

CB modes of the full ring Cm(t), m = 1, 2, .., h,

yn(t) =
∑

Cm(t)e2πi(n−1)(m−1)/h, (18)

Calculated amplitudes of the CB modes are shown in Fig. 5 and similar to that in Fig. 2.

Fig. 11 and Fig. 12 show the time variation of few strongest modes. The time variation

and the time dependence of the amplitudes of individual bunches are not exponential. That

shows again that the exponential regime of the linear theory is quickly replaced by much

slower growth of the nonlinear regime[8], see discussion in Appendix . These result is in
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FIG. 9: Amplitude of three bunches vs time. Blue, yellow, and red lines correspond to the

bunches in the in the head, middle, and the tail of the train of 320 bunches.

agreement with simulations [6].

Discussion of simulations

Experiment and tracking results are quite different for the ring with the large gap (train

of 320 bunches) and for the full ring filled (400 bunches). Such difference can be related to

strong dependence of the ion density on the amplitude of beam oscillations. Fig. 13 depicts

the time variation of the ion density for the case of 320 bunches in simulations. The beam is

artificially maintained stable for the first 1000 turns by turning off the kick from ions to the

beam. The ions are produced by each bunch and the ion density growth in few tens of turns

to saturation defined by the space-charge force of accumulated bunches. Quantitatively, the

last agrees with the estimate in Eq. 10. After 1000 turns, the kicks to the beam is turned

on and the amplitude of the beam oscillations start to grow.

That provides additional mechanism for ion loss, first, producing ions at larger distances

from the beam axes and, secondly, driving ions to the wall due to the beam-ion interaction.
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FIG. 10: Amplitude of CB modes |Cm| vs mode number taken at the end of tracking (t = 16

ms) for the train nb = 320 (blue) and nb = 400 (red) bunches.
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FIG. 11: Time variation of the strongest modes. 320 bunches in the ring.

As the result, the density of the ions drops with time although beam amplitude continue to
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FIG. 12: The same as in Fig. 11 for the train of 400 bunches.

grow.

Strong dependence of the growth rate on amplitude of oscillations mentioned in the

introduction is the result of the dependence of the growth rate on the ion density which goes

down while the amplitude increases. On top of that, the ion distribution becomes wider and

flatter. The number of resonance unstable modes generating a complex interference pattern

recorded in experiment.

It should be also true that, in the experiments, the fluctuations of the cloud may be

stronger in the case of 400 bunches than in the case of the long ion gaps due to larger

density of the ion cloud. Therefore, initial amplitude of the beam oscillations when the the

feedback is turned off can be larger and the instability starts already in the nonlinear regime.

That may explain results shown in Fig. 5.

Comparing experiment with the results of tracking, it is worth noting that the tracking

results are quite sensitive to the choice of parameters such as vacuum pressure, transverse

RMS σx,y of the beam and the cut-off distance. Some of these parameters are unknown

(such as pressure) or may in reality vary in time (such as σx,y). The choice of other pa-
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FIG. 13: Variation of the ion density with time for the train of 320 bunches. The density

grows and saturates while the beam is kept stable for the first 1000 turns and then drops

with the growth of the beam amplitude.

rameters (such as the cut-off amplitude, number of ion slices per ring, and variation of the

ion frequency around the ring due to variation of the betatron functions) affects the time of

simulations and may be prohibiting even in the simplified model we use in simulations. It is

also worthwhile to mention that to simulate the grow/damp conditions, we keep beam stable

suppressing kicks to the bunches for some number of turns while building the ion density

to saturation. Such simulations do not quite reproduce experimental conditions where the

turned on transverse feedback does not necessarily mean the zero initial amplitude of the

beam oscillations.

Nevertheless, the simulations display the main features of the experimental results. We

can conclude that the experiment can be explained by the beam-ion instability. Results

confirm that the experimentally observable instability corresponds to the nonlinear regime

where the density of ions has to be defined in a self-consistent way rather than taken as a

constant from separate simulations with a stable beam. The amplitude depression in the
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train and the split of the amplitude spectrum of CB modes are related to the coherent tune

shift and the variation of the ion density with time. More sophisticated simulations may

give quantitative prediction in this respect although comparison with experiment requires

more diagnostics on the vacuum pressure in the ring and time variation of the beam rms

dimensions.

As it was mentioned in the first section, the exponential growth takes place only for the

limited period of time. The period is smaller in the fully filled ring than in the case of

a bunch train with a gap. We also noted that the amplitude of oscillations is significantly

above the noise floor level if the beam has no gap. Both effects can be explained qualitatively

by the interaction with ions. The gap substantially reduces initial density of ions and,

before the feedback is turned off, ions have relatively weak impact on the beam. The linear

exponential regime takes place starting with small initial beam amplitudes and continues

until the amplitude of the beam oscillations and the ion density are build up. In the case of

fully filled ring, initial density of ions and noise on the beam are large. After the feedback

is turned off, the growth starts with larger amplitudes and the linear regime is restricted in

time.

Interaction with ions can also explain why the strongest mode number is higher without

the gap. The strongest mode in the beam-ion instability is the mode shifted up from the

betatron frequency by the ion frequency. The latter defined by the ion amplitude where the

ion distribution is maximum. With the large gap, ions are unstable and most of them are

one-turn ions with small amplitudes corresponding to higher ion frequency. For the full ring,

most of ions have large amplitudes, lower frequency, and the strongest mode in the beam

spectrum closer to the betatron line than in the case of large gap.

CONCLUSIONS

The experimental results obtained in the grow/damp experiment at BESSY-II show in-

triguing interference pattern and non-exponential dependence of the amplitudes on time.

Understanding of these results could provide a new method of diagnostic of the beam pa-
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rameters. We analyze coherent instabilities looking for a possible explanation of the ex-

perimental results. We found that only resistive wall and beam-ion instabilities may be

responsible for the results. Further analysis show that the resistive wall instability is too

week and can be ignored leaving the beam-ion instability as the only plausible candidate.

We carried out simplified simulations of the instability which qualitatively similar to the

experimental results. In the analysis of results, we reproduce the known results of the linear

theory of the instability and developed approach which allows us to analyze the nonlinear

regime of the instability.

Simulations are sensitive to the not very well known parameters such as the shape of the

distribution of ions and pressure of the residual gas. Although we were unable to reproduce

the interference pattern exactly, this is not surprising given such a sensitivity to unknown

parameters. We believe that results of the paper confirm the beam-ion instability as the

source of the interference pattern. Analysis presented in the paper show however, that for

quantitative comparison more detail simulations and additional experimental information

on the pressure and beam RMS are needed.

: APPENDIX

Basic equations

Let us consider a train of bunches with the transverse RMS dimensions σx, σy, σx >> σy,

the number of particles Nb per bunch, and bunch spacing sb = cτb. The n-th bunch is at

distances zN = (N − 1)sb, N = 1, 2.., nb from the head of the train. Position of the N -th

bunch in the ring is sN(t) = (ct− zN)mod(2πR). Ions at the location s around the ring are

described by the coordinates X,Y and have linear density dNi/ds. We use the dimensionless

time τ = ω0t, vertical y(τ), Y (τ, s) and horizontal coordinates x(τ), X(τ, s) of the bunches

and ions, respectively, measured in units of the bunch RMS σy and σx.

The beam-ion interaction is just electrostatic Coulomb force. At the moment t, ions

interact with the bunch with the bunch number N(τ, s) = 1 + (cτ/ω0 − s)/sb. To simplify

consideration, we assume that ions have independent of time Gaussian distribution in X
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with the average < X >= 0 and the RMS Σx reducing the problem to 1D case. We also

assume a Gaussian distribution for the beam in the vertical plane with the bunch centroid

at yN(t).

Equation of motion for the bunch centroid yN of the N-th bunch is obtained by averaging

the force over the ion distribution in X and the bunch distribution,

d2yN(τ)

dτ 2
+ Q2

y yN = −λ
∫

dY ρi(Y, τ, sN(τ)) (yN(τ) − Y ) Φ[
yN(t) − Y√

2
, r]. (19)

Here ρi(Y, τ, s) is normalized to one distribution function of ions at the location s in the

ring,
∫

dyρi(y, τ, s) = 1, sN(τ) = cτ/ω0 − zN ,

r =
σy

√

σ2
x + Σ2

x

, λ =
2rec

2
0

γω2
0σy(σx + σy)

(
dNi

ds
), (20)

and

Φ(∆2, r) =
1 + r

2

∫

∞

0

dξ

(1 + ξ)3/2
√

r2 + ξ
e−( ξ

1+ξ
)∆2

,

=

√

π

4∆2
(
1 + r

1 − r
) e

r2∆2

1−r2 {Erf [

√

∆2

1 − r2
] − Erf [

√

∆2r2

1 − r2
]}. (21)

Equation of motion for an ion with atomic number A is defined by the Coulomb interaction

with passing bunches. In 1D model, the interaction is

d2Yi(τ, s)

dτ 2
= −Λ0

∑

k

δ[τ − ω0sb

c0

k] ζi(τ, s) Φ[
ζ2
i (τ, s)

2
, r], (22)

where ζi(τ, s) = Yi(τ, s) − yN(τ,s)(τ). Parameter

Λ0 =
2Nbrpc0

Aω0σxσy

Σx

(1 + r)Σx,t

, (23)

where Σx,t =
√

σ2
x + Σ2

x.

The sum over δ-functions can be expanded over the time harmonics. For small bunch

spacing, only zero harmonics can be retained. Eq. 22 written in terms of ζ(τ, s) takes the

form

d2ζi(τ, s)

dτ 2
+ Λζi(τ, s) Φ[

ζ2
i (τ, s)

2
, r] = − d2

dτ 2
yN(τ,s)(τ). (24)
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Here

Λ =
c0

ω0sb

Λ0 = (
Ω0

ω0

)2(
2Σx

(1 + r)Σx,t

). (25)

A good approximation for Φ(∆2, r) can be written as

Φ(∆2, r) =
1

1 + κ∆2
, (26)

where κ = (1/3)(1 + 2r)/(1 + r).

In the extreme case of large r∆ >> 1, Φ '= (1 + r)/(2r∆2).

In the case of equidistant bunches, motion of the bunch centroid can be described as the

superposition of the modes

yN(τ) =
∑

n

[ane
−iQyτ+iqnzN + c.c.], (27)

where qn = 2πn/h, n = 0, 1, .., nb − 1. (In the case where each m-s bucket is filled, the

harmonic number h should be replaced by h/m). Then, the right-hand-side in Eq. 24 is

proportional to

yN(τ,s)(τ) =
∑

n

[ane
−iνnτ−2πins/(hsb) + c.c.], (28)

where νn = Qy − n.

That suggests the form of ζi(τ, s),

ζi(τ, s) =
∑

n

[Ai,ne−iνnτ−2πins/(hsb) + c.c.]. (29)

Let us replace ζi(τ, s)
2 in the argument of Φ[ ζ2(τ,s)

2
, r] by the average value

ζ2
i (τ, s) '< ζ2(τ, s) >= 2

∑

n

|Ai,n|2. (30)

With the additional condition A′

i,n e−iνnτ+2πns/(hsb) + c.c. = 0, Eq. (24) for ions is trans-

formed to

dAi,n

dτ
+

i

2νn

[ΛΦ(|Ai,n|2, r) − ν2
n]Ai,n =

iνn

2
an. (31)
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Let us rewrite Eq. (19) as the sum over all Ni ions at the location s:

d2yN(τ)

dτ 2
+ Q2

y yN =
λ

Ni

Ni
∑

i=1

ηi,N(τ) Φ[
η2

i,N(τ)

2
, r], (32)

where ηi,N(τ) = Yi(τ, sN(τ))− yN(τ). Using identity N(τ, s)|s=sN (τ) = N , and the definition

of ζi(τ, s), it is easy to see that ηi,N(τ) = ζi(τ, sN((τ)). Then, Eq. (29) gives

ηi,N(τ) =
∑

n

[Ai,ne−iQyτ+iqnzN + c.c.]. (33)

Using additional condition a′

n e−iQyτ+iqnzN + c.c. = 0, we get from Eq. (32) equation for

the bunch amplitudes,

dan(τ)

dτ
=

iλ

2Qy

1

Nion

Nion
∑

i=1

Ai,n(τ)Φ[
∑

m

|Ai,m|2, r]. (34)

The factor Jn = |An|2 is proportional to the action variable of the n-th mode. We can

write the argument of Φ in Eq. (34) as the sum over the coherent modes Am and replace the

sum over incoherent ions by the integral with the distribution function f(J),
∫

dJf(J) = 1,

dan(τ)

dτ
=

iλ

2Qy

∫

dJf(J)An(J)Φ[J +
∑

m

|Am|2, r]. (35)

Eq. (31) and Eq. (35) is the basis for further study below.

Linear approximation

In the linear approximation, κ|An|2 << 1, we can neglect the contribution of the coherent

modes, assuming Ai,n = An(Ji) e−iµτ and the same time dependence for an. Eq. (31) relates

amplitudes of ions and the beam:

An(J) = −νn

2

an

µ − 1
2νn

(ΛΦ(J, r) − ν2
n)

. (36)

Substituting that in Eqs. (35) we get the dispersion relation for the coherent shift µ.

Using approximation Eq. (26), we get

µn =
λν2

n

2Qy

∫ dJf(J)

(ν2
n + 2µνn)(1 + κJ) − Λ

. (37)
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Here µ has to be understood as having positive imaginary part, µ → µ + iε, ε > 0. The

contribution of the pole then defines the growth rate Γ = Im(µ). For ν >> µ,

Γn = − πλ

2κQy

f [Jr
n] Sign[ν], (38)

where the resonance amplitude

Jr
n =

Λ − ν2
n

κν2
n

. (39)

Resonances are possible only for J r
n > 0, or Ω2

0 > (ωy − nω0)
2. The growth rate is

positive and a mode is unstable if νn < 0. Hence, unstable modes are within the range

ωy < nω0 < ωy + Ω0. For the ion distribution function f(J) which rolls off with J , the

maximum growth rate is obtained for modes with the minimal J r
n > 0, that is for the mode

ν2
n ' Λ or

nω0 ' ωy + Ω0. (40)

The growth rate is reduced with n. Therefore, the strongest mode is the mode with

nω0 = ωy + Ω0. The latter conclusion may be sensitive to the shape of the ion distribution.

The principal value of the integral in Eqs. 37 defines the coherent shift of a mode.

For BESSY-II parameters, there are several unstable modes. Fig. 14 shows the growth

rate and the coherent tune shift of these modes. In calculations, we assumed Gaussian

distribution f(J) = 1
J0

e−J/J0 with J0 = (Σy,i/σy)
2 = 10, and pressure 10 nTorr. Other

parameters are defined in Table.

Nonlinear regime

Eq. 35 shows what can be expected in the nonlinear regime. If the coherent amplitudes

vary slowly, then Eq. 36 would retain its form with Φ(J) being replaced by Φ(J + |An|2).

Respectively, the factor (1 + κJ) in Eq. 37 would be replaced by (1 + κJ + |An|2). The

growing coherent modes |An|2 shifts the position of the resonance J r
n, Eq. 39, to
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FIG. 14: Dimensionless coherent frequency µ/ω0 of the beam-ion instability in the linear

approximation.

Jr
n =

Λ − ν2
n

κν2
n

− |An|2. (41)
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At the same time, the instability increases the beam RMS dimensions reducing Ω0 re-

ducing Λ. Both factors reduce the right-hand-side in Eq. 37 and, when it is negative, the

resonance is impossible and the mode is stabilized.

For ions oscillating in the potential well of the beam, each coherent mode is equivalent

to periodic perturbation with the coherent frequency Ω = Re(µn). Such a perturbation

generates a separatrix where ions may be trapped. For large enough coherent amplitudes

coherent modes can not be considered independently due to overlapping of the separatrices.

The ion motion becomes random and ions give random kicks to the beam. The exponential

linear regime of the instability then is replaced by the diffusive linear growth of the beam

amplitude with time [8].

In the extreme case of large coherent amplitudes, where |An|2 is large compared to the

incoherent spread of amplitudes, Eq. 35 can be again simplified. Neglecting incoherent J in

the argument of Φ and using the norm
∫

dJf(J) = 1, we can reduce Eqs. 31 and 35 to the

system of equations for the interacting coherent modes,

dan(τ)

dτ
=

iλ

2Qy

AnΦ[
∑

m

|Am|2, r]. (42)

dAn

dτ
+

i

2νn

[ΛΦ(|An|2, r) − ν2
n]An =

iνn

2
an. (43)

The system can be solved numerically. We used approximation of Eq. 24 for Φ and 12

modes An, an, n =, 1, .., 12 with initial conditions an(0) = 0.1 and An(0) = 0. Result of

calculations shown in Fig. 6 are in good agreement with tracking results.
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