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Abstract

In these lectures, I survey a number of applications of light-front methods to hadron
and nuclear physics phenomenology and dynamics, including light-front statistical
physics. Light-front Fock-state wavefunctions provide a frame-independent represen-
tation of hadrons in terms of their fundamental quark and gluon degrees of freedom.
Nonperturbative methods for computing LFWFs in QCD are discussed, including
string/gauge duality which predicts the power-law fall-off at high momentum trans-
fer of light-front Fock-state hadronic wavefunctions with an arbitrary number of con-
stituents and orbital angular momentum. The AdS/CFT correspondence has im-
portant implications for hadron phenomenology in the conformal limit, including an
all-orders derivation of counting rules for exclusive processes. One can also compute
the hadronic spectrum of near-conformal QCD assuming a truncated AdS/CFT space.
Given the LFWFs, one can compute form factors, heavy hadron decay amplitudes,
hadron distribution amplitudes, and the generalized parton distributions underly-
ing deeply virtual Compton scattering. The quantum fluctuations represented by the
light-front Fock expansion leads to novel QCD phenomena such as color transparency,
intrinsic heavy quark distributions, diffractive dissociation, and hidden-color compo-
nents of nuclear wavefunctions. A new test of hidden color in deuteron photodisin-
tegration is proposed. The origin of leading-twist phenomena such as the diffractive
component of deep inelastic scattering, single-spin asymmetries, nuclear shadowing
and antishadowing is also discussed; these phenomena cannot be described by light-
front wavefunctions of the target computed in isolation. Part of the anomalous NuTeV
results for the weak mixing angle θW could be due to the non-universality of nuclear
antishadowing for charged and neutral currents.
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1 Introduction

In principle, quantum chromodynamics provides a fundamental description of hadronic
and nuclear structure and dynamics in terms of their elementary quark and gluon
degrees of freedom. The theory has extraordinary properties such as color confine-
ment [1], asymptotic freedom [2, 3], a complex vacuum structure, and it predicts an
array of new forms of hadronic matter such as gluonium and hybrid states [4]. The
phase structure of QCD [5] implies the formation of a quark-gluon plasma in high en-
ergy heavy-ion collisions [6] as well insight into the evolution of the early universe [7].
Its non-Abelian Yang Mills gauge theory structure provides the foundation for the
electroweak interactions and the eventual unification of the electrodynamic, weak,
and hadronic forces at very short distances.

The asymptotic freedom property of QCD explains why the strong interactions be-
come weak at short distances, thus allowing hard processes to be interpreted directly
in terms of the perturbative interactions of quark and gluon quanta. This in turn
leads to factorization theorems [8, 9] for both inclusive and exclusive processes [10]
which separate the hard scattering subprocesses which control the reaction from the
nonperturbative physics of the interacting hadrons.

QCD becomes scale free and conformally symmetric in the analytic limit of zero
quark mass and zero β function. Conversely, one can start with the conformal pre-
diction and systematically incorporate the non-zero β function contributions into the
scale of the running coupling. This “conformal correspondence principle” determines
the form of the expansion polynomials for distribution amplitudes and the behavior
of nonperturbative wavefunctions which control hard exclusive processes at leading
twist. The conformal template also can be used to derive commensurate scale rela-
tions which connect observables in QCD without scale or scheme ambiguity.

Recently, a remarkable duality has been established between supergravity string
theory in 10 dimensions and conformal supersymmetric extensions of QCD [11, 12, 13,
14]. The AdS/CFT correspondence is now leading to a new understanding of QCD
at strong coupling and the implications of its near-conformal structure. As I will
discuss here, the AdS/CFT correspondence of large NC supergravity theory in higher-
dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-
time has important implications for hadron phenomenology in the conformal limit,
including the nonperturbative derivation of counting rules for exclusive processes and
the behavior of structure functions at large xbj. String/gauge duality also predicts the
QCD power-law fall-off of light-front Fock-state hadronic wavefunctions with arbitrary
orbital angular momentum at high momentum transfer.

The Lagrangian density of QCD [15] has a deceptively simple form:

L = ψ(iγµD
µ −m)ψ − 1

4
G2

µν (1)

where the covariant derivative is iDµ = i∂µ−gAµ and where the gluon field strength is
Gµν = i

g
[Dµ, Dν ]. The structure of the QCD Lagrangian is dictated by two principles:

3



(i) local SU(NC) color gauge invariance – the theory is invariant when a quark field
is rotated in color space and transformed in phase by an arbitrary unitary matrix
ψ(x) → U(x)ψ(x) locally at any point xµ in space and time; and (ii) renormalizability,
which requires the appearance of dimension-four interactions. In principle, the only
parameters of QCD are the quark masses and the QCD coupling determined from a
single observable at a single scale.

Solving QCD from first principles is extremely challenging because of the non-
Abelian three-point and four-point gluonic couplings contained in its Lagrangian.
The analytic problem of describing QCD bound states is compounded not only by
the physics of confinement, but also by the fact that the wavefunction of a composite
of relativistic constituents has to describe systems of an arbitrary number of quanta
with arbitrary momenta and helicities. The conventional Fock state expansion based
on equal-time quantization quickly becomes intractable because of the complexity
of the vacuum in a relativistic quantum field theory. Furthermore, boosting such a
wavefunction from the hadron’s rest frame to a moving frame is as complex a problem
as solving the bound state problem itself. The Bethe-Salpeter bound state formalism,
although manifestly covariant, requires an infinite number of irreducible kernels to
compute the matrix element of the electromagnetic current even in the limit where
one constituent is heavy.

The description of relativistic composite systems using light-front quantization is
in contrast remarkably simple. The Heisenberg problem for QCD can be written in
the form

HLC |H〉 = M2
H |H〉 , (2)

where HLC = P+P− − P 2
⊥ is the mass operator. The operator P− = P 0 − P 3 is the

generator of translations in the light-front time x+ = x0 + x3. Its form is predicted
from the QCD Lagrangian. The quantities P+ = P 0 + P 3 and P⊥ play the role of
the conserved three-momentum. The simplicity of the light-front Fock representation
relative to that in equal-time quantization arises from the fact that the physical
vacuum state has a much simpler structure on the light cone. Indeed, kinematical
arguments suggest that the light-front Fock vacuum is the physical vacuum state.
This means that all constituents in a physical eigenstate are directly related to that
state, and not disconnected vacuum fluctuations. In the light-front formalism the
parton model is literally true.

Formally, the light-front expansion is constructed by quantizing QCD at fixed
light-front time [16] τ = t + z/c and forming the invariant light-front Hamiltonian:

HQCD
LF = P+P−− ~P 2

⊥ where P± = P 0±P z [17]. The momentum generators P+ and ~P⊥
are kinematical; i.e., they are independent of the interactions. The generator P− =
i d
dτ

generates light-front time translations, and the eigen-spectrum of the Lorentz

scalar HQCD
LF gives the mass spectrum of the color-singlet hadron states in QCD

together with their respective light-front wavefunctions.
Each hadronic eigenstate |H〉 of the QCD light-front Hamiltonian can be expanded

on the complete set of eigenstates {|n〉} of the free Hamiltonian which have the same
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global quantum numbers: |H〉 =
∑

ψH
n (xi, k⊥, λi)|n〉. For example, the proton state

satisfies: HQCD
LF |ψp〉 = M2

p |ψp〉. This equation can be written as a Heisenberg
matrix eigenvalue problem by introducing a complete set of free Fock states. The
Fock expansion begins with the color singlet state |uud〉 of free quarks, and continues
with |uudg〉 and the other quark and gluon states that span the degrees of freedom of
the proton in QCD. The Fock states {|n〉} are built on the free vacuum by applying
the free light-front creation operators. The summation is over all momenta (xi, k⊥i)
and helicities λi satisfying momentum conservation

∑n
i xi = 1 and

∑n
i k⊥i = 0 and

conservation of the projection J3 of angular momentum.
The light-front wavefunctions ψn/H(xi, ~k⊥i, λi) of hadrons are the central elements

of QCD phenomenology, encoding the bound state properties of hadrons in terms of
their fundamental quark and gluon degrees of freedom at the amplitude level. It is
the probability amplitude that a proton of momentum P+ = P 0 + P 3 and transverse
momentum P⊥ consists of n quarks and gluons with helicities λi and physical momenta
p+

i = xiP
+ and p⊥i = xiP⊥+ k⊥i. The wavefunctions {ψp

n(xi, k⊥i, λi)}, n = 3, . . . thus
describe the proton in an arbitrary moving frame. The variables (xi, k⊥i) are internal
relative momentum coordinates. The fractions xi = p+

i /P+ = (p0
i + p3

i )/(P
0 + P 3),

0 < xi < 1, are the boost-invariant light-front momentum fractions; yi = log xi

is the difference between the rapidity of the constituent i and the rapidity of the
parent hadron. The appearance of relative coordinates is connected to the simplicity
of performing Lorentz boosts in the light-front framework. This is another major
advantage of the light-front representation.

For example, the eigensolution |ψp〉 of the QCD light-front Hamiltonian for the
proton expanded on the color-singlet B = 1, Q = 1 eigenstates { |n〉} of the free
Hamiltonian HQCD

LF (g = 0). This defines the light-front Fock expansion:

∣∣∣ ψp(P
+, ~P⊥)

〉
=

∑
n

n∏

i=1

dxi d
2~k⊥i√

xi 16π3
16π3 δ

(
1−

n∑

i=1

xi

)
δ(2)

(
n∑

i=1

~k⊥i

)
(3)

× ψn/H(xi, ~k⊥i, λi)
∣∣∣ n; xiP

+, xi
~P⊥ + ~k⊥i, λi

〉
.

The light-front momentum fractions xi = k+
i /P+ and ~k⊥i represent the relative mo-

mentum coordinates of the QCD constituents. The physical transverse momenta are
~p⊥i = xi

~P⊥ + ~k⊥i. The λi label the light-front spin projections Sz of the quarks and
gluons along the quantization direction z. Each Fock component has the invariant
mass squared

M2
n = (

n∑

i=1

kµ
i )2 =

n∑

i=1

k2
⊥i + m2

i

xi

. (4)

The physical gluon polarization vectors εµ(k, λ = ±1) are specified in light-cone gauge
by the conditions k · ε = 0, η · ε = ε+ = 0. The gluonic quanta which appear in the
Fock states thus have physical polarization λ = ±1 and positive metric. Since each

Fock particle is on its mass shell in a Hamiltonian framework, k− = k0−kz =
k2
⊥+m2

k+ .
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The dominant configurations in the wavefunction are generally those with minimum
values of M2. Note that, except for the case where mi = 0 and k⊥i = 0, the limit
xi → 0 is an ultraviolet limit, i.e., it corresponds to particles moving with infinite
momentum in the negative z direction: kz

i → −k0
i → −∞.

LFWFs have the remarkable property of being independent of the hadron’s four-
momentum. In contrast, in equal-time quantization, a Lorentz boost mixes dynam-
ically with the interactions, so that computing a wavefunction in a new frame at
fixed t requires solving a nonperturbative problem as complicated as the Hamiltonian
eigenvalue problem itself. The LFWFs are properties of the hadron itself; they are
thus universal and process independent.

The central tool which will be used in these lectures are the light-front Fock
state wavefunctions which encode the bound-state properties of hadrons in terms of
their quark and gluon degrees of freedom at the amplitude level. Given these frame-
independent wavefunctions, one can compute a large array of hadronic processes rang-
ing from the generalized parton distributions measured in deep inelastic scatterings,
hard exclusive reactions, and the weak decays of hadrons. As I will review below, the
quantum fluctuations contained in the LFWFs lead to the prediction of novel QCD
phenomena such as color transparency, intrinsic charm, sea quark asymmetries, and
hidden color in nuclear wavefunctions.

Given the light-front wavefunctions {ψn(xi, k⊥i
, λi)} one can compute the electro-

magnetic and weak form factors from a simple overlap of light-front wavefunctions,
summed over all Fock states [18, 19]. Form factors are generally constructed from
hadronic matrix elements of the current 〈p|jµ(0)|p + q〉, where in the interaction pic-
ture we can identify the fully interacting Heisenberg current Jµ with the free current
jµ at the spacetime point xµ = 0. In the case of matrix elements of the current
j+ = j0 + j3, in a frame with q+ = 0, only diagonal matrix elements in particle num-
ber n′ = n are needed. In contrast, in the equal-time theory one must also consider
off-diagonal matrix elements and fluctuations due to particle creation and annihila-
tion in the vacuum. In the nonrelativistic limit one can make contact with the usual
formulae for form factors in Schrödinger many-body theory.

One of the important aspects of fundamental hadron structure is the presence of
non-zero orbital angular momentum in the bound-state wave functions. The evidence
for a “spin crisis” in the Ellis-Jaffe sum rule signals a significant orbital contribution in
the proton wave function [20, 21]. The Pauli form factor of nucleons is computed from
the overlap of LFWFs differing by one unit of orbital angular momentum ∆Lz = ±1.
Thus the fact that the anomalous moment of the proton is non-zero requires nonzero
orbital angular momentum in the proton wavefunction [19]. In the light-front method,
orbital angular momentum is treated explicitly; it includes the orbital contributions
induced by relativistic effects, such as the spin-orbit effects normally associated with
the conventional Dirac spinors. Angular momentum conservation for each Fock state

6



implies

Jz =
n∑

i

Sz
i +

n−1∑

i

Lz
i (5)

where Lz
i is one of the n− 1 relative orbital angular momenta.

The quark and gluon probability distributions of a hadron are constructed from
integrals over the absolute squares |ψn|2, summed over n. In the far off-shell domain
of large parton virtuality, one can use perturbative QCD or conformal arguments to
derive the asymptotic fall-off of the Fock amplitudes, which then in turn leads to the
QCD evolution equations for distribution amplitudes and structure functions. More
generally, one can prove factorization theorems for exclusive and inclusive reactions
which separate the hard and soft momentum transfer regimes, thus obtaining rigorous
predictions for the leading power behavior contributions to large momentum transfer
cross sections. One can also compute the far off-shell amplitudes within the light-
front wavefunctions where heavy quark pairs appear in the Fock states. Such states
persist over a time τ ' P+/M2 until they are materialized in the hadron collisions.
As I shall discuss, this leads to a number of novel effects in the hadroproduction of
heavy quark hadronic states.

2 Light-Front Statistical Physics

As shown by Raufeisen and myself [22], one can construct a “light-front density ma-
trix” from the complete set of light-front wavefunctions which is a Lorentz scalar. This
form can be used at finite temperature to give a boost invariant formulation of ther-
modynamics. At zero temperature the light-front density matrix is directly connected
to the Green’s function for quark propagation in the hadron as well as deeply virtual
Compton scattering. One can also define a light-front partition function ZLF as an
outer product of light-front wavefunctions. The deeply virtual Compton amplitude
and generalized parton distributions can then be computed as the trace Tr[ZLFO],
where O is the appropriate local operator [22]. This partition function formalism
can be extended to multi-hadronic systems and systems in statistical equilibrium to
provide a Lorentz-invariant description of relativistic thermodynamics [22].

3 AdS/CFT and Hadron Phenomenology

Maldacena [11] has shown that there is a remarkable correspondence between large
NC supergravity theory in a higher dimensional anti-de Sitter space and supersym-
metric QCD in 4-dimensional space-time. String/gauge duality provides a framework
for predicting QCD phenomena based on the conformal properties of the AdS/CFT
correspondence. For example, Polchinski and Strassler [12] have shown that the
power-law fall-off of hard exclusive hadron-hadron scattering amplitudes at large mo-
mentum transfer can be derived without the use of perturbation theory by using
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the scaling properties of the hadronic interpolating fields in the large-r region of
AdS space. Thus one can use the Maldacena correspondence to compute the lead-
ing power-law falloff of exclusive processes such as high-energy fixed-angle scattering
of gluonium-gluonium scattering in supersymmetric QCD. The resulting predictions
for hadron physics effectively coincide [12, 13, 14] with QCD dimensional counting
rules [23, 24, 25, 26]. Polchinski and Strassler [12] have also derived counting rules
for deep inelastic structure functions at x → 1 in agreement with perturbative QCD
predictions [27] as well as Bloom-Gilman exclusive-inclusive duality. An interesting
point is that the hard scattering amplitudes which are normally or order αp

s in PQCD
appear as order αp/2

s in the supergravity predictions. This can be understood as an
all-orders resummation of the effective potential [11, 28]. The near-conformal scaling
properties of light-front wavefunctions thus lead to a number of important predictions
for QCD which are normally discussed in the context of perturbation theory.

De Teramond and I [29] have shown how one can use the scaling properties of
the hadronic interpolating operator in the extended AdS/CFT space-time theory to
determine the form of QCD wavefunctions at large transverse momentum k2

⊥ → ∞
and at x → 1 [29]. The angular momentum dependence of the light-front wavefunc-
tions also follow from the conformal properties of the AdS/CFT correspondence. The
scaling and conformal properties of the correspondence leads to a hard component of
the light-front Fock state wavefunctions of the form:

ψn/h(xi, ~k⊥i, λi, lzi) ∼ (gs NC)
1
2
(n−1)

√
NC

n−1∏

i=1

(k±i⊥)|lzi| (6)

×



Λo

M2 −∑
i

~k2
⊥i

+m2
i

xi
+ Λ2

o




n+
∑

i
|lzi|−1

,

where gs is the string scale and Λo represents the basic QCD mass scale. The scaling
predictions agree with the perturbative QCD analysis given in the references [30],
but the AdS/CFT analysis is performed at strong coupling without the use of per-
turbation theory. The form of these near-conformal wavefunctions can be used as an
initial ansatz for a variational treatment of the light-front QCD Hamiltonian. The
same ansatz leads to predictions for the hadron spectrum,which I will discuss in the
conclusions.

4 Light-Front Wavefunctions and Hadron Phenomenol-

ogy

Even though QCD was motivated by the successes of the parton model, QCD predicts
many new features which go well beyond the simple three-quark description of the
proton. Since the number of Fock components cannot be limited in relativity and
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quantum mechanics, the nonperturbative wavefunction of a proton contains gluons
and sea quarks, including heavy quarks at any resolution scale. Thus there is no
scale Q0 in deep inelastic lepton-proton scattering where the proton can be approxi-
mated by its valence quarks. The nonperturbative Fock state wavefunctions contain
intrinsic gluons, strange quarks, charm quarks, etc., at any scale. The internal QCD
interactions lead to asymmetries such as s(x) 6= s(x), u(x) 6= d(x) and intrinsic charm
and bottom distributions at large x since this minimizes the invariant mass and off-
shellness of the higher Fock state. As discussed above, the Fock state expansion for
nuclei contains hidden color states which cannot be classified in terms of nucleonic
degrees of freedom. However, some leading-twist phenomena such as the diffractive
component of deep inelastic scattering, single-spin asymmetries, nuclear shadowing
and antishadowing cannot be computed from the LFWFs of hadrons in isolation.

4.1 The Strange Quark Asymmetry

In the simplest treatment of deep inelastic scattering, nonvalence quarks are produced
via gluon splitting and DGLAP evolution. However, in the full theory, heavy quarks
are multiply connected to the valence quarks [31]. Although the strange and antis-
trange distributions in the nucleon are identical when they derive from gluon-splitting
g → ss, this is not the case when the strange quarks are part of the intrinsic structure
of the nucleon – the multiple interactions of the sea quarks produce an asymmetry of
the strange and anti-strange distributions in the nucleon due to their different inter-
actions with the other quark constituents. A QED analogy is the distribution of τ+

and τ− in a higher Fock state of muonium µ+e−. The τ− is attracted to the higher
momentum µ+ thus asymmetrically distorting its momentum distribution. Similar
effects will happen in QCD. If we use the diquark model | p〉 ∼

∣∣∣ u3c(ud)3C

〉
, then the

Q3C
in the

∣∣∣ u(ud)QQ
〉

Fock state will be attracted to the heavy diquark and thus

have higher rapidity than the Q. An alternative model is the |KΛ〉 fluctuation model
for the |uudss〉 Fock state of the proton [32]. The s quark tends to have higher x.

Empirical evidence also continues to accumulate that the strange-antistrange
quark distributions are not symmetric in the proton [32, 33, 34]. The experimen-
tally observed asymmetry appears to be small but positive:

∫
dxx[s(x) − s(x)] > 0.

The results of a recent CTEQ global data analysis [35] of neutrino-induced dimuon
data are shown in Fig. 1. The fit is constrained so that the number of s and s quarks
in the nucleon are equal. The shape of the strangeness asymmetry is consistent with
the ΛK fluctuation model [32]. Kretzner [33] has noted that a significant part of the
NuTeV anomaly could be due to this asymmetry, The s(x) − s(x) asymmetry can
be studied in detail in pp collisions by searching for antisymmetric forward-backward
strange quark distributions in the p− p CM frame.
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Figure 1: Representative results of the CTEQ strangeness asymmetry analysis.

4.2 Intrinsic Heavy Quarks

The probability for Fock states of a light hadron such as the proton to have an
extra heavy quark pair decreases as 1/m2

Q in non-Abelian gauge theory [36, 37]. The
relevant matrix element is the cube of the QCD field strength G3

µν . This is in contrast
to abelian gauge theory where the relevant operator is F 4

µν and the probability of
intrinsic heavy leptons in QED bound state is suppressed as 1/m4

` . The intrinsic
Fock state probability is maximized at minimal off-shellness. It is useful to define

the transverse mass m⊥i =
√

k2
⊥i + m2

i . The maximum probability then occurs at

xi = mi
⊥/

∑n
j=1 mj

⊥; i.e., when the constituents have minimal invariant mass and
equal rapidity. Thus the heaviest constituents have the highest momentum fractions
and the highest xi. Intrinsic charm thus predicts that the charm structure function
has support at large xbj in excess of DGLAP extrapolations [31]; this is in agreement
with the EMC measurements [38].

Intrinsic charm can also explain the J/ψ → ρπ puzzle [39]. It also affects the
extraction of suppressed CKM matrix elements in B decays [40].

4.3 Diffractive Dissociation and Intrinsic Heavy Quark Pro-
duction

Diffractive dissociation is particularly relevant to the production of leading heavy
quark states. The projectile proton can be decomposed as a sum over all of its Fock
state components. The diffractive dissociation of the intrinsic charm |uudcc > Fock
state of the proton on a nucleus can produce a leading heavy quarkonium state at high
xF = xc+xc in pA → J/ψXA′ since the c and c can readily coalesce into the charmo-
nium state. Since the constituents of a given intrinsic heavy-quark Fock state tend to
have the same rapidity, coalescence of multiple partons from the projectile Fock state
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into charmed hadrons and mesons is also favored. For example, as illustrated in Fig.
2, one can produce leading Λc at high xF and low pT from the coalescence of the udc
constituents of the projectile IC Fock state. A similar coalescence mechanism was
used in atomic physics to produce relativistic antihydrogen in pA collisions [41]. This
phenomena is important not only for understanding heavy-hadron phenomenology,
but also for understanding the sources of neutrinos in astrophysics experiments [42].

A

u
d
c

u
c–p

A'

Λc

10-2004
8707A1

Figure 2: Production of forward heavy baryons by diffractive dissociation.

The charmonium state will be produced at small transverse momentum and high
xF with a characteristic A2/3 nuclear dependence. This forward contribution is in
addition to the A1 contribution derived from the usual perturbative QCD fusion
contribution at small xF . Because of these two components, the cross section violates
perturbative QCD factorization for hard inclusive reactions [43]. This is consistent
with the observed two-component cross section for charmonium production observed
by the NA3 collaboration at CERN [44].

The diffractive dissociation of the intrinsic charm Fock state leads to leading
charm hadron production and fast charmonium production in agreement with mea-
surements [45]. Intrinsic charm can also explain the J/ψ → ρπ puzzle [39], and it
affects the extraction of suppressed CKM matrix elements in B decays [40]. Intrin-
sic charm can also enhance the production probability of Higgs bosons at hadron
colliders from processes such as gc → Hc. It is thus critical for new experiments
(HERMES, HERA, COMPASS) to definitively establish the phenomenology of the
charm structure function at large xbj.

The production cross section for the double-charm Ξ+
cc baryon [46] and the pro-

duction of J/ψ pairs appears to be consistent with the diffractive dissociation and
coalescence of double IC Fock states [47, 48]. It is unlikely that the appearance of
two heavy quarks at high xF could be explained by the “color drag model” used in
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PYTHIA simulations [49] in which the heavy quarks are accelerated from low to high
x by the fast valence quarks. These observations provide compelling evidence for the
diffractive dissociation of complex off-shell Fock states of the projectile and contradict
the traditional view that sea quarks and gluons are always produced perturbatively
via DGLAP evolution. It is also conceivable that the observations [50] of Λb at high
xF at the ISR in high energy pp collisions could be due to the diffractive dissociation
and coalescence of the “intrinsic bottom” |uudbb > Fock states of the proton.

4.4 Color transparency

The small transverse size fluctuations of a hadron wavefunction with a small color
dipole moment will have minimal interactions in a nucleus [51, 52].

This has been verified in the case of diffractive dissociation of a high energy
pion into dijets πA → qqA′ in which the nucleus is left in its ground state [53].
As discussed in the next subsection, when the hadronic jets have balancing but high
transverse momentum, one studies the small size fluctuation of the incident pion. The
diffractive dissociation cross section is found to be proportional to A2 in agreement
with the color transparency prediction.

Color transparency has also been observed in diffractive electroproduction of ρ
mesons [54] and in quasi-elastic pA → pp(A − 1) scattering [55] where only the
small size fluctuations of the hadron wavefunction enters the hard exclusive scattering
amplitude. In the latter case an anomaly occurs at

√
s ' 5 GeV, most likely signaling

a resonance effect at the charm threshold [56].

4.5 Diffraction Dissociation as a Tool to Resolve Hadron
Substructure

Diffractive multi-jet production in heavy nuclei provides a novel way to measure the
shape of light-front Fock state wave functions and test color transparency [52]. For
example, consider the reaction [51, 57] πA → Jet1+Jet2+A′ at high energy where the
nucleus A′ is left intact in its ground state. The transverse momenta of the jets balance
so that ~k⊥i + ~k⊥2 = ~q⊥ < R−1

A . The light-front longitudinal momentum fractions
also need to add to x1+x2 ∼ 1. Diffractive dissociation on a nucleus also requires that
the energy of the beam has to be sufficiently large such that the momentum transfer
to the nucleus ∆pL = ∆M2

2Elab
is smaller than the inverse nuclear size RA. The process

can then occur coherently in the nucleus.
Because of color transparency, the valence wave function of the pion with small

impact separation will penetrate the nucleus with minimal interactions, diffracting
into jet pairs [51]. The x1 = x, x2 = 1 − x dependence of the di-jet distributions
will thus reflect the shape of the pion valence light-front wave function in x; simi-
larly, the ~k⊥1 − ~k⊥2 relative transverse momenta of the jets gives key information on
the second transverse momentum derivative of the underlying shape of the valence
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pion wavefunction [57, 58]. The diffractive nuclear amplitude extrapolated to t = 0
should be linear in nuclear number A if color transparency is correct. The integrated
diffractive rate will then scale as A2/R2

A ∼ A4/3. This is in fact what has been ob-
served by the E791 collaboration at FermiLab for 500 GeV incident pions on nuclear
targets [59]. The measured momentum fraction distribution of the jets is found to
be approximately consistent with the shape of the pion asymptotic distribution am-
plitude, φasympt

π (x) =
√

3fπx(1 − x) [60]. Data from CLEO [61] for the γγ∗ → π0

transition form factor also favor a form for the pion distribution amplitude close to
the asymptotic solution to its perturbative QCD evolution equation [62, 63, 64].

Color transparency, as evidenced by the Fermilab measurements of diffractive
dijet production, implies that a pion can interact coherently throughout a nucleus
with minimal absorption, in dramatic contrast to traditional Glauber theory based
on a fixed σπn cross section. Color transparency gives direct validation of the gauge
interactions of QCD.

4.6 Diffractive Dissociation and Hidden Color in Nuclear
Wavefunctions

The concept of high energy diffractive dissociation can be generalized to provide a
tool to materialize the individual Fock states of a hadron, nucleus or photon. For
example, the diffractive dissociation of a high energy proton on a nucleus pA → XA′

where the diffractive system is three jets X = qqq can be used to determine the
valence light-front wavefunction of the proton.

In the case of a deuteron projectile, one can study diffractive processes such as
dA → pnA′ or dA → π−pp to measure the mesonic Fock state of a nuclear wavefunc-
tion. At small hadron transverse momentum, diffractive dissociation of the deuteron
should be controlled by conventional nuclear interactions; however at large relative
kT , the diffractive system should be sensitive to the hidden color components of the
deuteron wavefunction. The theory of hidden color is reviewed below.

5 DLCQ Solutions

The entire spectrum of hadrons and nuclei and their scattering states is given by
the set of eigenstates of the light-front Hamiltonian HLC for QCD. In principle it
is possible to compute the light-front wavefunctions by diagonalizing the QCD light-
front Hamiltonian on the free Hamiltonian basis. In the case of QCD in one space and
one time dimensions, the application of discretized light-front quantization (DLCQ)
[65] provides complete solutions of the theory, including the entire spectrum of mesons,
baryons, and nuclei, and their wavefunctions. In the DLCQ method, one uses periodic
boundary conditions in x− and b⊥ to discretize the light-front momentum space.
One then diagonalizes the light-front Hamiltonian for QCD on a discretized Fock
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state basis. The DLCQ solutions can be obtained for arbitrary parameters including
the number of flavors and colors and quark masses. Exact solutions are known for
QCD(1 + 1) at NC → ∞ by ’t Hooft [66]. The one-space one-time theory can be
solved numerically to any precision at finite NC for any coupling strength and number
of quark flavors using discretized light-front quantization (DLCQ) [65, 67, 68, 17].
One can use DLCQ to calculate the entire spectrum of virtually any 1+1 theory, its
discrete bound states as well as the scattering continuum. The main emphasis of
the DLCQ method applied to QCD is the determination of the wavefunctions of the
hadrons from first principles.

A large number of studies have been performed of model field theories in the LF
framework. This approach has been remarkably successful in a range of toy models
in 1+1 dimensions: Yukawa theory [69], the Schwinger model (for both massless
and massive fermions) [70, 71, 72], φ4 theory [73, 74], QCD with various types of
matter [75, 67, 76, 77], and the sine-Gordon model [78]. It has also been applied
with promising results to theories in 3+1 dimensions, in particular QED [79, 80] and
Yukawa theory [81] in a truncated basis. In all cases agreement was found between the
LC calculations and results obtained by more conventional approaches, for example,
lattice gauge theory.

The extension of this program to physical theories in 3+1 dimensions is a formidable
computational task because of the much larger number of degrees of freedom; how-
ever, progress is being made. Analyses of the spectrum and light-front wavefunctions
of positronium in QED3+1 are given in Ref. [79].

5.1 A DLCQ example: QCD1+1 with Fundamental Matter

This theory was originally considered by ’t Hooft in the limit of large Nc [66]. Later
Burkardt [75], and Hornbostel, et al. [67], gave essentially complete numerical so-
lutions of the theory for finite Nc, obtaining the spectra of baryons, mesons, and
nucleons and their wavefunctions. The DLCQ results are consistent with the few
other calculations available for comparison, and are generally much more efficiently
obtained. In particular, the mass of the lowest meson agrees to within numerical
accuracy with lattice Hamiltonian results [82]. For Nc = 4 this mass is close to that
obtained by ’t Hooft in the Nc →∞ limit [66]. Finally, the ratio of baryon to meson
mass as a function of Nc agrees with the strong-coupling results of Ref. [83].

In addition to the spectrum, one obtains the wavefunctions. These allow direct
computation of, e.g., structure functions. As an example, Fig. 3 shows the valence
contribution to the structure function for an SU(3) baryon, for two values of the
dimensionless coupling m/g. As expected, for weak coupling the distribution is peaked
near x = 1/3, reflecting that the baryon momentum is shared essentially equally
among its constituents. For comparison, the contributions from Fock states with
one and two additional qq pairs are shown in Fig. 4. Note that the amplitudes for
these higher Fock components are quite small relative to the valence configuration.
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Figure 3: Valence contribution to the baryon structure function in QCD1+1, as a
function of the light-front longitudinal momentum fraction. The gauge group is SU(3),
m is the quark mass, and g is the gauge coupling. (From Ref. [[67]].)

The lightest hadrons are nearly always dominated by the valence Fock state in these
super-renormalizable models; higher Fock wavefunctions are typically suppressed by
factors of 100 or more. Thus the light-front quarks are much more like constituent
quarks in these theories than equal-time quarks would be. As discussed above, in an
equal-time formulation even the vacuum state would be an infinite superposition of
Fock states. Identifying constituents in this case, three of which could account for
most of the structure of a baryon, would be quite difficult.

6 Light-Front Wavefunctions and Hadron Observ-

ables

Light-front Fock state wavefunctions ψn/H(xi, ~k⊥i, λi) play an essential role in QCD

phenomenology, generalizing Schrödinger wavefunctions ψH(~k) of atomic physics to

relativistic quantum field theory. Given the ψ
(Λ)
n/H , one can construct any spacelike

electromagnetic, electroweak, or gravitational form factor or local operator product
matrix element of a composite or elementary system from the diagonal overlap of the
LFWFs [19]. Exclusive semi-leptonic B-decay amplitudes involving timelike currents
such as B → A`ν can also be evaluated exactly in the light-front formalism [84].
In this case, the timelike decay matrix elements require the computation of both
the diagonal matrix element n → n where parton number is conserved and the off-
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Figure 4: Contributions to the baryon structure function from higher Fock compo-
nents: (a) valence plus one additional qq pair; (b) valence plus two additional qq
pairs. (From Ref. [[67]].)

diagonal n + 1 → n− 1 convolution such that the current operator annihilates a qq′

pair in the initial B wavefunction. This term is a consequence of the fact that the
time-like decay q2 = (p` + pν)

2 > 0 requires a positive light-front momentum fraction
q+ > 0. Conversely for space-like currents, one can choose q+ = 0, as in the Drell-Yan-
West representation of the space-like electromagnetic form factors. The light-front
Fock representation thus provides an exact formulation of current matrix elements
of local operators. In contrast, in equal-time Hamiltonian theory, one must evaluate
connected time-ordered diagrams where the gauge particle or graviton couples to
particles associated with vacuum fluctuations. Thus even if one knows the equal-
time wavefunction for the initial and final hadron, one cannot determine the current
matrix elements. In the case of the covariant Bethe-Salpeter formalism, the evaluation
of the matrix element of the current requires the calculation of an infinite number of
irreducible diagram contributions.

One can also prove directly from the LFWF overlap representation that the
anomalous gravitomagnetic moment B(0) vanishes for any composite system [85].
This property follows directly from the Lorentz boost properties of the light-front
Fock representation and holds separately for each Fock state component.

Given the light-front wave functions, one can define positive-definite probabil-
ity distributions, such as the quark and gluon distributions q(x,Q), g(x,Q) which
enter deep inelastic scattering and other hard inclusive reactions. This include all
spin-dependent distributions such as quark transversity. The resulting distributions
obey DGLAP evolution; the moments defined as the matrix elements of the opera-
tor product expansion have the correct anomalous dimensions. In addition one can
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compute the unintegrated distributions in x and k⊥ which underlie the generalized
parton distributions for nonzero skewness. example, the polarized quark distributions
at resolution Λ correspond to

qλq/Λp(x, Λ) =
∑
n,qa

∫ n∏

j=1

dxjd
2k⊥j

∑

λi

|ψ(Λ)
n/H(xi, ~k⊥i, λi)|2 (7)

× δ

(
1−

n∑

i

xi

)
δ(2)

(
n∑

i

~k⊥i

)
δ(x− xq)

× δλa,λqΘ(Λ2 −M2
n) ,

where the sum is over all quarks qa which match the quantum numbers, light-front
momentum fraction x, and helicity of the struck quark.

Diehl, Hwang, and I [86] have shown how to represent virtual Compton scatter-
ing γ∗p → γp at large initial photon virtuality Q2 and small momentum transfer
squared t in handbag approximation in terms of the light-front wavefunctions of the
target proton. Thus the generalized parton distributions which enter virtual Comp-
ton scattering and the two-photon exchange contribution to lepton-proton scattering
are given by overlaps of the LFWFS with n = n′ and n − n′ = ±2. One can verify
that the skewed parton distributions H(x, ζ, t) and E(x, ζ, t) which appear in deeply
virtual Compton scattering are the integrands of the Dirac and Pauli form factors
F1(t) and F2(t) and the gravitational form factors Aq(t) and Bq(t) for each quark and
anti-quark constituent. We have given an explicit illustration of the general formalism
for the case of deeply virtual Compton scattering on the quantum fluctuations of a
fermion in quantum electrodynamics at one loop. The absolute square of the LFWFS
define the unintegrated parton distributions. The integrals of the unintegrated par-
ton distributions over transverse momentum at zero skewness provide the helicity and
transversity distributions measurable in polarized deep inelastic experiments [64].

The relationship of QCD processes to the hadron LFWFs is illustrated in Figs. 5
and 6. Other applications include two-photon exclusive reactions, and diffractive
dissociation into jets. The universal light-front wave functions and distribution am-
plitudes control hard exclusive processes such as form factors, deeply virtual Compton
scattering, high momentum transfer photoproduction, and two-photon processes.

Hadronization phenomena such as the coalescence mechanism for leading heavy
hadron production can also be computed from LFWF overlaps. Diffractive jet pro-
duction provides another phenomenological window into the structure of LFWFs.
However, as shown recently [87] and discussed below, some leading-twist phenomena
such as the diffractive component of deep inelastic scattering, single spin asymme-
tries, nuclear shadowing and antishadowing cannot be computed from the LFWFs of
hadrons in isolation.

Given the LFWFs, one can also compute the hadronic distribution amplitudes
φH(xi, Q) which control hard exclusive processes as an integral over the transverse
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Figure 5: Representation of QCD hadronic processes in the light-front Fock expan-
sion. (a) The valence uud and higher Fock uudg contributions to the light-front Fock
expansion for the proton. (b) The distribution amplitude φ(x,Q) of a meson expressed
as an integral over its valence light-front wavefunction restricted to qq invariant mass
less than Q. (c) Representation of deep inelastic scattering and the quark distribu-
tions q(x,Q) as probabilistic measures of the light-front Fock wavefunctions. The
sum is over the Fock states with invariant mass less than Q. (d) Exact representation
of spacelike form factors of the proton in the light-front Fock basis. The sum is over
all Fock components. At large momentum transfer the leading-twist contribution fac-
torizes as the product of the hard scattering amplitude TH for the scattering of the
valence quarks collinear with the initial to final direction convoluted with the proton
distribution amplitude. (e) Leading-twist factorization of the Compton amplitude at
large momentum transfer.
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Figure 6: (f) Representation of deeply virtual Compton scattering in the light-front
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contributions are required. (g) Diffractive vector meson production at large photon
virtuality Q2 and longitudinal polarization. The high energy behavior involves two
gluons in the t channel coupling to the compact color dipole structure of the upper
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momenta of the valence Fock state LFWFs [64]. The hadron distribution amplitudes
are obtained by integrating the n−parton valence light-front wavefunctions:

φ(xi, Q) =
∫ Q

Πn−1
i=1 d2k⊥i ψval(xi, k⊥). (8)

The distribution amplitudes are gauge-invariant vacuum to hadron matrix elements
and they obey evolution equation as dictated by the OPE. Leading-twist PQCD
predictions for hard exclusive amplitudes [64] are written in a factorized form as the
product of hadron distribution amplitudes φI(xi, Q) for each hadron I convoluted with
the hard scattering amplitude TH obtained by replacing each hadron with collinear
on-shell quarks with light-front momentum fractions xi = k+

i /P+. The logarithmic
evolution equations for the distribution amplitudes require that the valence light-
front wavefunctions fall-off asymptotically as the nominal power [ 1

k2
⊥
]n−1, where n is

the number of elementary fields in the minimal Fock state.
The light-front Fock representation thus provides an exact formulation of current

matrix elements of local and bi-local operators. In contrast, in equal-time Hamiltonian
theory, one must evaluate connected time-ordered diagrams where the gauge particle
or graviton couples to particles associated with vacuum fluctuations. Thus even if
one knows the equal-time wavefunction for the initial and final hadron, one cannot
determine the current matrix elements. In the case of the covariant Bethe-Salpeter
formalism, the evaluation of the matrix element of the current requires the calculation
of an infinite number of irreducible diagram contributions.

7 General Structure of Light-Front Wavefunctions

Even without explicit solutions, much is known about the explicit form and structure
of LFWFs. They can be matched to nonrelativistic Schrodinger wavefunctions at
soft scales. At high momenta, the LFWFs at large k⊥ and xi → 1 are constrained
by arguments based on conformal symmetry, the operator product expansion, or
perturbative QCD. The pattern of higher Fock states with extra gluons is given by
ladder relations [88].

The structure of Fock states with nonzero orbital angular momentum is also con-
strained by the Karmanov-Smirnov operator [89]. One can define the light-front
Fock expansion using a covariant generalization of light-front time: τ = x·ω. The
four-vector ω, with ω2 = 0, determines the orientation of the light-front plane; the
freedom to choose ω provides an explicitly covariant formulation of light-front quan-
tization [90]: all observables such as matrix elements of local current operators, form
factors, and cross sections are light-front invariants – they must be independent of
ωµ. In recent work, Dae Sung Hwang, John Hiller, Volodya Karmonov and I [91] have
studied the analytic structure of LFWFs using the explicitly Lorentz-invariant formu-
lation of the front form. Eigensolutions of the Bethe-Salpeter equation have specific
angular momentum as specified by the Pauli-Lubanski vector. The corresponding
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LFWF for an n-particle Fock state evaluated at equal light-front time τ = ω · x
can be obtained by integrating the Bethe-Salpeter solutions over the corresponding
relative light-front energies. The resulting LFWFs ψI

n(xi, k⊥i) are functions of the
light-front momentum fractions xi = ki · ω/p · ω and the invariant mass of the con-
stituents Mn, each multiplying spin-vector and polarization tensor invariants which
can involve ωµ. They are eigenstates of the Karmanov–Smirnov kinematic angular
momentum operator [89, 90].

~J = −i[~k × ∂/∂~k ]− i[~n× ∂/∂~n] +
1

2
~σ, (9)

where ~n is the spatial component of ω in the constituent rest frame ( ~P = ~0). Although
this form is written specifically in the constituent rest frame, it can be generalized to
an arbitrary frame by a Lorentz boost.

Normally the generators of angular rotations in the LF formalism contain inter-
actions, as in the Pauli–Lubanski formulation; however, the LF angular momentum
operator can also be represented in the kinematical form (9) without interactions.
The key term is the generator of rotations of the LF plane −i[~n × ∂/∂~n] which re-
places the interaction term; it appears only in the explicitly covariant formulation,
where the dependence on ~n is present. Thus LFWFs satisfy all Lorentz symmetries of
the front form, including boost invariance, and they are proper eigenstates of angular
momentum.

In principle, one can solve for the LFWFs directly from the fundamental theory
using methods such as discretized light-front quantization (DLCQ) [69], the trans-
verse lattice [92, 93, 94], lattice gauge theory moments [95], Dyson-Schwinger tech-
niques [96], and Bethe–Salpeter techniques [91]. DLCQ has been remarkably success-
ful in determining the entire spectrum and corresponding LFWFs in one space-one
time field theories [97], including QCD(1+1) [67] and SQCD(1+1) [98]. There are
also DLCQ solutions for low sectors of Yukawa theory in physical space-time dimen-
sions [81]. The DLCQ boundary conditions allow a truncation of the Fock space
to finite dimensions while retaining the kinematic boost and Lorentz invariance of
light-front quantization.

One can also project known solutions of the Bethe–Salpeter equation to equal
light-front time, thus producing hadronic light-front Fock wave functions [91]. Bakker
and van Iersel have developed new methods to find solutions to bound-state light-
front equations in ladder approximation [99]. Pauli has shown how one can construct
an effective light-front Hamiltonian which acts within the valence Fock state sec-
tor alone [100]. Another possible method is to construct the qq Green’s function
using light-front Hamiltonian theory, DLCQ boundary conditions and Lippmann-
Schwinger resummation. The zeros of the resulting resolvent projected on states
of specific angular momentum Jz can then generate the meson spectrum and their
light-front Fock wavefunctions. As emphasized by Weinstein and Vary, new effective
operator methods [101, 102] which have been developed for Hamiltonian theories in
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condensed matter and nuclear physics, could also be applied advantageously to light-
front Hamiltonian. Reviews of nonperturbative light-front methods may be found in
references [17, 90, 103, 104].

Other important nonperturbative QCD methods are Dyson-Schwinger techniques [96]
and the transverse lattice [93]. The transverse lattice method combines DLCQ for
one-space and the light-front time dimensions with lattice theory in transverse space.
It has recently provided the first computation of the generalized parton distributions
of the pion [93].

Currently the most important computational tool for making predictions in strong-
coupling QCD(3+1) is lattice gauge theory [105] which has made enormous progress
in recent years, particularly in computing mass spectra and decay constants. Lattice
gauge theory can only provide limited dynamical information because of the difficulty
of continuing predictions from Euclidean to Minkowski space. At present, results are
limited to large quark and pion masses such that the ρ meson is stable [106]. In con-
trast to lattice gauge theory path integral methods, Light-front Hamiltonian methods
are frame-independent, formulated in Minkowski space, only two physical polariza-
tion gluonic degrees of freedom appear as quanta, and there is no complications from
fermions. The known DLCQ solutions for 1+1 quantum field theories could provide
a powerful test of lattice methods.

The Hamiltonian approach is in fact the method of choice in virtually every area
of physics and quantum chemistry. It has the desirable feature that the output of such
a calculation is immediately useful: the spectrum of states and wavefunctions. Fur-
thermore, it allows the use of intuition developed in the study of simple quantum sys-
tems, and also the application of, e.g., powerful variational techniques. The one area
of physics where it is not widely employed is relativistic quantum field theory. The
basic reason for this is that in a relativistic field theory quantized at equal time (“the
Instant Form”) one has particle creation/annihilation in the vacuum. Thus the true
ground state is in general extremely complicated, involving a superposition of states
with arbitrary numbers of bare quanta, and one must understand the complicated
structure of this state before excitations can be considered. Furthermore, one must
have a nonperturbative way of separating out disconnected contributions to physical
quantities, which are physically irrelevant. Finally, the truncations that are required
inevitably violate Lorentz covariance and, for gauge theories, gauge invariance. These
difficulties (along with the development of covariant Lagrangian techniques) eventu-
ally led to the almost complete abandonment of fixed-time Hamiltonian methods in
relativistic field theories.

Light-front quantization provides an alternative to the usual formulation of field
theories in which these problems appear to be tractable. This raises the prospect of
developing a practical Hamiltonian approach to solving field theories nonperturba-
tively based on diagonalizing LC Hamiltonians.
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8 Consequences of Near-Conformal Field Theory

One of the most exciting recent developments is the AdS/CFT correspondence [11,
12, 13, 14] between superstring theory in 10 dimensions and supersymmetric Yang
Mills theory in 3+1 dimensions. As I will discuss below, one can use this connection
to establish the form of QCD wavefunctions at large transverse momentum k2

⊥ →∞
and at x → 1 [29]. The AdS/CFT correspondence has important implications for
hadron phenomenology in the conformal limit, including an all-orders demonstration
of counting rules [23, 24, 25] for hard exclusive processes [12], as well as determining
essential aspects of hadronic light-front wavefunctions [29].

8.1 The Conformal Correspondence Principle

The classical Lagrangian of QCD for massless quarks is conformally symmetric. Since
it has no intrinsic mass scale, the classical theory is invariant under the SO(4, 2)
translations, boosts, and rotations of the Poincare group, plus the dilatations and
other transformations of the conformal group. Scale invariance and therefore confor-
mal symmetry is destroyed in the quantum theory by the renormalization procedure
which introduces a renormalization scale as well as by quark masses. Conformal
symmetry is thus broken in physical QCD; nevertheless, we can still recover the un-
derlying features of the conformally invariant theory by evaluating any expression in
QCD in the analytic limit of zero quark mass and zero β function [107]:

lim
mq→0,β→0

OQCD = Oconformal QCD . (10)

This conformal correspondence limit is analogous to Bohr’s correspondence principle
where one recovers predictions of classical theory from quantum theory in the limit of
zero Planck constant. The contributions to an expression in QCD from its nonzero β-
function can be systematically identified [108, 109, 110] order-by-order in perturbation
theory using the Banks-Zaks procedure [111].

The “conformal correspondence principle” provides a new tool, the conformal
template [112, 113] , which is very useful for theory analyses, such as the expansion
polynomials for distribution amplitudes [114, 115, 116, 117], the non-perturbative
wavefunctions which control exclusive processes at leading twist [62, 118].

8.2 Commensurate Scale Relations

The near-conformal behavior of QCD is the basis for commensurate scale relations [119]
which relate observables to each other without renormalization scale or scheme am-
biguities [108, 109]. One can derive the commensurate scale relation between the
effective charges of any two observables by first computing their relation in confor-
mal gauge theory; the effects of the nonzero QCD β− function are then taken into
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account using the BLM method [120] to set the scales of the respective couplings. An
important example is the generalized Crewther relation [121]:

[
1 +

αR(s∗)
π

] [
1− αg1(Q

2)

π

]
= 1 (11)

where the underlying form at zero β function is dictated by conformal symmetry [122].
Here αR(s)/π and −αg1(Q

2)/π represent the entire radiative corrections to Re+e−(s)
and the Bjorken sum rule for the g1(x,Q2) structure function measured in spin-
dependent deep inelastic scattering, respectively. The relation between s∗ and Q2

can be computed order by order in perturbation theory using the BLM method [120].
The ratio of physical scales guarantees that the effect of new quark thresholds is com-
mensurate. Commensurate scale relations are renormalization-scheme independent
and satisfy the group properties of the renormalization group. Each observable can
be computed in any convenient renormalization scheme such as dimensional regu-
larization. The MS coupling can then be eliminated; it becomes only an interme-
diary [119]. In such a procedure there are no further renormalization scale (µ) or
scheme ambiguities.

The effective charge [123] defined from the ratio of elastic pion and photon-to-pion
transition form factors αexclusive

s (Q2) = Fπ(Q2)/4πQ2F 2
γπ0(Q2) can also be connected

to other effective charges and observables by commensurate scale relations. Its mag-
nitude, αexclusive

s (Q2) ∼ 0.8 at small Q2, is sufficiently large as to explain the observed
magnitude of exclusive amplitudes such as the pion form factor using the asymptotic
distribution amplitude. An analytic effective charge such as the pinch scheme [124]
provides a method to unify the electroweak and strong couplings and forces.

8.3 Fixed Point Behavior

Although the QCD coupling decreases logarithmically at high virtuality due to asymp-
totic freedom, theoretical [125, 126, 127, 128, 129, 130, 131, 132] and phenomenolog-
ical [133, 134, 135] evidence is now accumulating that the QCD coupling becomes
constant at small virtuality; i.e., αs(Q

2) develops an infrared fixed point in contra-
diction to the usual assumption of singular growth in the infrared. If QCD running
couplings are bounded, the integration over the running coupling is finite and renor-
malon resummations are not required. If the QCD coupling becomes scale-invariant
in the infrared, then elements of conformal theory [117] become relevant even at
relatively small momentum transfers.

Menke, Merino, and Rathsman and I have presented a definition of a physical
coupling for QCD which has a direct relation to high precision measurements of
the hadronic decay channels of the τ− → ντH

− [134] . Let Rτ be the ratio of the

hadronic decay rate to the leptonic one. Then Rτ ≡ R0
τ

[
1 + ατ

π

]
, where R0

τ is the
zeroth order QCD prediction, defines the effective charge ατ . The data for τ decays
is well-understood channel by channel, thus allowing the calculation of the hadronic
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decay rate and the effective charge as a function of the τ mass below the physical
mass. The vector and axial-vector decay modes can be studied separately. Using an
analysis of the τ data from the OPAL collaboration [132], we have found that the
experimental value of the coupling ατ (s) = 0.621 ± 0.008 at s = m2

τ corresponds to
a value of αMS(M

2
Z) = (0.117-0.122) ± 0.002, where the range corresponds to three

different perturbative methods used in analyzing the data. This result is in good
agreement with the world average αMS(M

2
Z) = 0.117± 0.002. However, one also finds

that the effective charge only reaches ατ (s) ∼ 0.9 ± 0.1 at s = 1 GeV2, and it even
stays within the same range down to s ∼ 0.5 GeV2. The effective coupling is close to
constant at low scales, suggesting that physical QCD couplings become constant or
“frozen” at low scales.

Figure 7 shows a comparison of the experimentally determined effective charge
ατ (s) with solutions to the evolution equation for ατ at two-, three-, and four-loop
order normalized at mτ . At three loops the behavior of the perturbative solution
drastically changes, and instead of diverging, it freezes to a value ατ ' 2 in the
infrared. The infrared behavior is not perturbatively stable since the evolution of
the coupling is governed by the highest order term. This is illustrated by the widely
different results obtained for three different values of the unknown four loop term βτ,3

which are also shown. The values of βτ,3 used are obtained from the estimate of the

four loop term in the perturbative series of Rτ , KMS
4 = 25± 50 [136]. It is interesting

to note that the central four-loop solution is in good agreement with the data all the
way down to s ' 1 GeV2.

The results for ατ resemble the behavior of the one-loop “time-like” effective
coupling [137, 138, 139]

αeff(s) =
4π

β0

{
1

2
− 1

π
arctan

[
1

π
ln

s

Λ2

]}
(12)

which is finite in the infrared and freezes to the value αeff(s) = 4π/β0 as s → 0. It is
instructive to expand the “time-like” effective coupling for large s,

αeff(s) =
4π

β0 ln (s/Λ2)

{
1− 1

3

π2

ln2 (s/Λ2)
+

1

5

π4

ln4 (s/Λ2)
+ . . .

}

= αs(s)



1− π2β2

0

3

(
αs(s)

4π

)2

+
π4β4

0

5

(
αs(s)

4π

)4

+ . . .



 . (13)

This shows that the “time-like” effective coupling is a resummation of (π2β2
0α

2
s )

n-
corrections to the usual running couplings. The finite coupling αeff given in Eq. (12)
obeys standard PQCD evolution at LO. Thus one can have a solution for the pertur-
bative running of the QCD coupling which obeys asymptotic freedom but does not
have a Landau singularity.

The near constancy of the effective QCD coupling at small scales helps explain
the empirical success of dimensional counting rules for the power law fall-off of form
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Figure 7: The effective charge ατ for non-strange hadronic decays of a hypothetical
τ lepton with m2

τ ′ = s compared to solutions of the fixed order evolution equation
for ατ at two-, three-, and four-loop order. The error bands include statistical and
systematic errors.

factors and fixed angle scaling. As shown in the references [123, 140], one can calculate
the hard scattering amplitude TH for such processes [64] without scale ambiguity in
terms of the effective charge ατ or αR using commensurate scale relations. The
effective coupling is evaluated in the regime where the coupling is approximately
constant, in contrast to the rapidly varying behavior from powers of αs predicted
by perturbation theory (the universal two-loop coupling). For example, the nucleon
form factors are proportional at leading order to two powers of αs evaluated at low
scales in addition to two powers of 1/q2; The pion photoproduction amplitude at fixed
angles is proportional at leading order to three powers of the QCD coupling. The
essential variation from leading-twist counting-rule behavior then only arises from the
anomalous dimensions of the hadron distribution amplitudes.

26



8.4 The Abelian Correspondence Principle

Another important guide to QCD predictions is consistency in a limit where the theory
becomes Abelian. One can consider QCD predictions as functions of analytic variables
of the number of colors NC and flavors NF . At NC →∞ at fixed NCαs, calculations
in QCD greatly simplify since only planar diagrams enter. However, the NC → 0
limit is also very interesting. Remarkably, one can show at all orders of perturbation
theory [141] that PQCD predictions reduce to those of an Abelian theory similar to

QED at NC → 0 with CF αs and NF

TF CF
held fixed, where CF =

N2
C−1

2NC
and TF = 1/2.

The resulting theory corresponds to the group 1/U(1) which means that light-by-
light diagrams acquire a particular topological factor. The NC → 0 limit provides an
important check on QCD analyses; QCD formulae and phenomena must match their
Abelian analog. The renormalization scale is effectively fixed by this requirement.
Commensurate scale relations obey the Abelian Correspondence principle, giving the
correct Abelian relations between observables in the limit NC → 0.

9 Perturbative QCD and Exclusive Processes

Exclusive processes constitute provide an important window on QCD processes and
the structure of hadrons. There has been considerable progress analyzing exclusive
and diffractive reactions at large momentum transfer from first principles in QCD.
Rigorous statements can be made on the basis of asymptotic freedom and factor-
ization theorems which separate the underlying hard quark and gluon subprocess
amplitude from the nonperturbative physics of the hadronic wavefunctions. The
leading-power contribution to exclusive hadronic amplitudes such as quarkonium de-
cay, heavy hadron decay, and scattering amplitudes where hadrons are scattered with
large momentum transfer can often be factorized as a convolution of distribution
amplitudes φH(xi, Λ) and hard-scattering quark/gluon scattering amplitudes TH in-
tegrated over the light-front momentum fractions of the valence quarks [64]:

MHadron =
∫ ∏

φ
(Λ)
H (xi, λi) T

(Λ)
H dxi . (14)

Here T
(Λ)
H is the underlying quark-gluon subprocess scattering amplitude in which

each incident and final hadron is replaced by valence quarks with collinear momenta
k+

i = xip
+
H , ~k⊥i = xi~p⊥H . The invariant mass of all intermediate states in TH is

evaluated above the separation scale M2
n > Λ2. The essential part of the hadronic

wavefunction is the distribution amplitude [64], defined as the integral over transverse
momenta of the valence (lowest particle number) Fock wavefunction; e.g. for the pion

φπ(xi, Q) ≡
∫

d2k⊥ ψ
(Q)
qq/π(xi, ~k⊥i, λ) (15)

where the separation scale Λ can be taken to be order of the characteristic momentum
transfer Q in the process. It should be emphasized that the hard scattering amplitude
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TH is evaluated in the QCD perturbative domain where the propagator virtualities
are above the separation scale.

The leading power fall-off of the hard scattering amplitude as given by dimensional
counting rules follows from the nominal scaling of the hard-scattering amplitude:
TH ∼ 1/Qn−4, where n is the total number of fields (quarks, leptons, or gauge fields)
participating in the hard scattering [25, 24]. Thus the reaction is dominated by
subprocesses and Fock states involving the minimum number of interacting fields. In
the case of 2 → 2 scattering processes, this implies

dσ

dt
(AB → CD) = FAB→CD(t/s)/sn−2 (16)

where n = NA + NB + NC + ND and nH is the minimum number of constituents of
H.

In the case of form factors, the dominant helicity conserving amplitude has the
nominal power-law falloff FH(t) ∼ (1/t)nH−1, The complete predictions from PQCD
modify the nominal scaling by logarithms from the running coupling and the evolution
of the distribution amplitudes. In some cases, such as large angle pp → pp scatter-
ing, there can be “pinch” contributions [142] when the scattering can occur from a
sequence of independent near-on shell quark-quark scattering amplitudes at the same
CM angle. After inclusion of Sudakov suppression form factors, these contributions
also have a scaling behavior close to that predicted by constituent counting.

The constituent counting rules were originally derived in 1973 [25, 24] before the
development of QCD in anticipation that the underlying theory of hadron physics
would be renormalizable and close to a conformal theory. The factorized structure of
hard exclusive amplitudes in terms of a convolution of valence hadron wavefunctions
times a hard-scattering quark scattering amplitude was also proposed [25]. Upon the
discovery of the asymptotic freedom in QCD, there was a systematical development
of the theory of hard exclusive reactions, including factorization theorems, counting
rules, and evolution equations for the hadronic distribution amplitudes [143, 144, 62,
145].

The distribution amplitudes which control leading-twist exclusive amplitudes at
high momentum transfer can be related to the gauge-invariant Bethe-Salpeter wave-
function at equal light-front time τ = x+. The logarithmic evolution of the hadron
distribution amplitudes φH(xi, Q) with respect to the resolution scale Q can be derived
from the perturbatively-computable tail of the valence light-front wavefunction in the
high transverse momentum regime. The DGLAP evolution of quark and gluon dis-
tributions can also be derived in an analogous way by computing the variation of the
Fock expansion with respect to the separation scale. Other key features of the pertur-
bative QCD analyses are: (a) evolution equations for distribution amplitudes which
incorporate the operator product expansion, renormalization group invariance, and
conformal symmetry [64, 114, 146, 147, 148]; (b) hadron helicity conservation which
follows from the underlying chiral structure of QCD [149]; (c) color transparency,
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which eliminates corrections to hard exclusive amplitudes from initial and final state
interactions at leading power and reflects the underlying gauge theoretic basis for the
strong interactions [52] and (d) hidden color degrees of freedom in nuclear wavefunc-
tions, which reflect the color structure of hadron and nuclear wavefunctions [150].
There have also been recent advances eliminating renormalization scale ambiguities
in hard-scattering amplitudes via commensurate scale relations [119] which connect
the couplings entering exclusive amplitudes to the αV coupling which controls the
QCD heavy quark potential.

Exclusive processes such as pp → pp, pp → K+K− and pp → γγ provide a
unique window for viewing QCD processes and hadron dynamics at the amplitude
level [151, 118]. New tests of theory and comprehensive measurements of hard exclu-
sive amplitudes can also be carried out for electroproduction at Jefferson Laboratory
and in two-photon collisions at CLEO, Belle, and BaBar [152]. Hadronic exclusive
processes are closely related to exclusive hadronic B decays, processes which are essen-
tial for determining the CKM phases and the physics of CP violation. The universal
light-front wavefunctions which control hard exclusive processes such as form factors,
deeply virtual Compton scattering, high momentum transfer photoproduction, and
two-photon processes, are also required for computing exclusive heavy hadron de-
cays [153, 154, 155, 156], such as B → Kπ, B → `νπ, and B → Kpp [157]. The same
physics issues, including color transparency, hadron helicity rules, and the question
of dominance of leading-twist perturbative QCD mechanisms enter in both realms of
physics.

The data for virtually all measured hard scattering processes appear to be con-
sistent with the conformal predictions of QCD. For example, one also sees the onset
of the predicted perturbative QCD scaling behavior for exclusive nuclear amplitudes
such as deuteron photodisintegration (Here n = 1+6+3+3 = 13.) s11 dσ

dt
(γd → pn) ∼

constant at fixed CM angle. The measured deuteron form factor and the deuteron
photodisintegration cross section appear to follow the leading-twist QCD predictions
at large momentum transfers in the few GeV region [158, 159, 160]. A comparison of
the data with the QCD predictions is shown in Fig. 8.

Another application to exclusive nuclear processes is the approach to scaling of

the deuteron form factor [Q2]5
√

A(Q2) → const observed at SLAC and Jefferson lab-

oratory at high Q2. These scaling laws reflects the underlying scaling of the nucleon-
nucleon interaction and the nuclear force at short distances. The phenomenological
successes provide further evidence for the dominance of leading-twist quark-gluon
subprocesses and the near conformal behavior of the QCD coupling. As discussed
above, the evidence that the running coupling has constant fixed-point behavior,
which together with BLM scale fixing, could help explain the near conformal scal-
ing behavior of the fixed-CM angle cross sections. The angular distribution of hard
exclusive processes is generally consistent with quark interchange, as predicted from
large NC considerations.
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Figure 8: Fits of the cross sections dσ/dt to s−11 for PT ≥ P th
T and proton an-

gles between 30◦ and 150◦ (solid lines). Data are from CLAS (full/red circles),
Mainz(open/black squares), SLAC (full-down/green triangles), JLab Hall A (full/blue
squares) and Hall C (full-up/black triangles). Also shown in each panel is the χ2

ν value
of the fit. From Ref. [160].

10 The Evolution of the Deuteron Distribution Am-

plitude and Hidden Color

In this section I will review an analysis by Chueng Ji, Peter Lepage, and myself which
shows how the asymptotic behavior of the deuteron form factor at large momentum
transfer and the evolution of the deuteron six-quark distribution amplitude at short
distances can be computed systematically as an expansion in αs(Q

2) [150]. The results
agree with the operator product expansion as well as the conformal scaling implied by
the AdS/CFT correspondence. As we shall see, the QCD predictions appear to be in
remarkable agreement with experiment for Q2 >∼ 1 GeV2 particularly when expressed
in terms of the deuteron reduced form factor. This provides a good check on the six-
quark description of the deuteron at short distances as well as the scale invariance of
the elastic quark-quark scattering amplitude. I will also discuss how the dominance
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of the hidden color amplitudes at short distances also provides an explanation for the
repulsive behavior of the nucleon-nucleon potential at small inter-nucleon separation.

Hadronic form factors in QCD at large momentum transfer Q2 = ~q 2 − q2
0 can

be written in a factorized form where all nonperturbative effects are incorporated
into process-independent distribution amplitudes φH(xi, Q), computed from the equal
τ = t+z, six-quark valence wave function at small relative quark transverse separation
bi
⊥ ∼ O(1/Q). The xi = (k0+k3)i/(p

0+p3) are the light-front longitudinal momentum
fractions with

∑n
i=1 xi = 1. In the case of the deuteron, only the six-quark Fock state

needs to be considered for the purpose of computing a hard scattering amplitude since
in a physical gauge any additional quark or gluon forced to absorb large momentum
transfer yields a power law suppressed contribution to the form factor. The deuteron
form factor can then be written as a convolution

Fd(Q
2) =

∫ 1

0
[dx][dy]φ†d(y, Q) T

6q+γ∗→6q

H (x, y, Q)φd(x,Q) , (17)

where the hard scattering amplitude

T
6q+γ∗→6q

H =

[
αs(Q

2)

Q2

]5

t(x, y)
[
1 + O(αs(Q

2))
]

(18)

gives the probability amplitude for scattering six quarks collinear with the initial to
the final deuteron momentum and

φd(xi, Q) ∝
∫ k⊥ i<Q [

d 2k⊥
]

ψqqq qqq(xi, ~k⊥ i) (19)

gives the probability amplitude for finding the quarks with longitudinal momentum
fractions xi in the deuteron wavefunction collinear up to the scale Q. Because the
coupling of the gauge gluon is helicity-conserving and the fact that φd(xi, Q) is the
Lz = 0 projection of the deuteron wavefunction, hadron helicity is conserved: The
dominant form factor corresponds to

√
A(Q2); i.e., h = h′ = 0.

The distribution amplitude φd(xi, Q) is the basic deuteron wave function which
controls high momentum transfer exclusive reactions in QCD. The logarithmic Q2

dependence Of φd is determined by an evolution equation computed from perturbative
quark-quark scattering kernels at large momentum transfer, or equivalently, by the
operator product expansion at short distances and the renormalization group [64,
161, 149].

The QCD prediction for the leading helicity-zero deuteron form factor then has
the form [162, 163]

Fd(q
2) =

[
αs(Q

2)

Q2

]5 ∑
m,n

dmn

(
`n

Q2

Λ2

)−γd
n−γd

m
[
1 + O

(
αs(Q

2),
m

Q

)]
, (20)

where the main dependence [αs(Q
2)/Q2]5 comes from the hard-gluon exchange ampli-

tude TH . The anomalous dimensions γd
n are calculated from the evolution equations

for ψd(xi, Q).
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The evolution equation for six quark systems in which the constituents have the
light-front longitudinal momentum fractions xi (i = 1, 2, . . . , 6) can be obtained from
a generalization of the proton (three quark) case [64, 161, 149]. A nontrivial extension
is the calculation of the color factor, Cd, of six quark systems. Since in leading order
only pair-wise interactions, with transverse momentum Q, occur between quarks, the
evolution equation for the six-quark system becomes {[dy] = δ(1−∑6

i=1 yi)
∏6

i=1 dyi,
CF = (n2

c − 1)/2nc = (4/3), β = 11 − (2/3)nf , and nf is the effective number of
flavors)

6∏

k=1

xk

[
∂

∂ξ
+

3CF

β

]
Φ̃(xi, Q) = −Cd

β

∫ 1

0
[dy] V (xi, yi)Φ̃(yi, Q) , (21)

where the factor 3 in the square bracket comes from the renormalization of the six
quark field. In Eq. (21) we have defined Φ(xi, Q) =

∏6
k=1 xkΦ̃(xi, Q). The evolution

is in the variable

ξ(Q2) =
β

4π

∫ Q2

Q2
0

dk2

k2
αs(k

2) ∼ `n


`nQ2

Λ2

`n
Q2

0

Λ2


 . (22)

By summing over interactions between quark pairs {i, j} due to exchange of a single
gluon, V (xi, yi) = V (yi, xi) is given by

V (xi, yi) = 2
6∏

k=1

xk

6∑

i6=j

θ(yi − xi)
6∏

` 6=i,j

δ(x` − y`)
yj

xj

(
δhihj

xi + xj

+
∆

yi − xi

)
, (23)

where δhihj
= 1(0) when the constituents’ {i, j} helicities are antiparallel (parallel).

The infrared singularity at xi = yi is cancelled by the factor ∆Φ̃(yi, Q) = Φ̃(yi, Q)−
Φ̃(xi, Q) since the deuteron is a color singlet.

The six-quark bound states have five independent color singlet components (3 ×
3 × 3 × 3 × 3 × 3 ⊃ 1 + 1 + 1 + 1 + 1). It can be shown in general that the color
factor Cd is given by

Cd =
1

5
Sijk`mn

α
(

1

2
λa

)

i′
i
(

1

2
λa

)

j′
jSi′j′k`mn

α , (24)

where λa(a = 1, 2, . . . , 8) are Gell-Mann matrices in SU(3)c group and
sα

ijk`mn(α = 1, 2, . . . , 5) are the five independent color singlet representations. We
shall focus on results for the leading contribution to the distribution amplitude and
form factor at large Q. Since the leading eigensolution to the evolution Eq. (21) turns
out to be completely symmetric in its orbital dependence, the dominant asymptotic
deuteron wavefunction is fixed by overall anti-symmetry to have spin-isospin symme-
try {3}TS which is dual to its color symmetry [222]c. Thus the coefficient for each c
(and TS) component has equal weights:

φ6q ([222]c ⊗ {33}TS) =
1√
5

5∑

α=1

(−1)α[222]c
α{33}α

TS . (25)
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Since the evolution potential is diagonal in isospin and spin, Cd is computed by the
trace of the color representation. The color factor is −2/3 for the color antisymmetric
pair {i, j} and +1/3 for the color symmetric pair {i, j}. Since three color antisym-
metric pairs {i, j} and two color symmetric pairs {i, j} exist in this state, the color
factor is

Cd =
1

5

(
−2

3
× 3 +

1

3
× 2

)
=

CF

5
. (26)

To solve the evolution Eq. (21), we factorize the Q2 dependence of Φ̃(xi, Q) as

Φ̃(xi, Q) = Φ̃(xi) e−γξ = Φ̃(xi)

[
`n

Q2

Λ2

]−γ

, (27)

where the eigenvalues of γ will provide the anomalous dimensions γn. The leading
anomalous dimension γ0 [corresponding to the eigenfunction Φ̃(xi) = 1] is

γ0 =
3CF

β
+

Cd

β

6∑

i6=j

δhihj
, (28)

so that the asymptotically dominant result for the helicity zero deuteron is given by
γ0 = (6/5)(CF /β).

Note that in order to have logarithmic evolution of the deuteron distribution
amplitude, the six-quark valence light-front wavefunction must fall nominally as
ψqqqqqq/d(xi, k⊥i) ' [ 1

k2
⊥
]5. This is also the prediction of conformal invariance and the

AdS/CFT correspondence. More generally, consistency with the operator product
expansion for the moments of the distribution amplitude requires the power law fall
off ψn(xi, k⊥i) ' [ 1

k2
⊥
]n−1 for all n-parton LFWFs with Lz = 0.

At high Q2 the deuteron form factor is sensitive to wavefunction configurations
where all six quarks overlap within an impact separation b⊥i < O(1/Q). Since the
deuteron form factor contains the probability amplitudes for the proton and neutron
to scatter from p/2 to p/2 + q/2, it is natural to define the reduced deuteron form
factor[163, 150]

fd(Q
2) ≡ Fd(Q

2)

F1N

(
Q2

4

)
F1N

(
Q2

4

) . (29)

The effect of nucleon compositeness is removed from the reduced form factor. Since
the leading anomalous dimensions of the nucleon distribution amplitude is CF /2β,
the QCD prediction for the asymptotic Q2 behavior of fd(Q

2) is

fd(Q
2) ∼ αs(Q

2)

Q2

(
`n

Q2

Λ2

)(2/5) CF /β

, (30)

where (2/5)(CF /β) = −(8/145) for nf = 2.
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QCD thus predicts essentially the same scaling law for the reduced deuteron
form factor as a meson form factor. This scaling is consistent with experiment for
Q2 > 1 GeV2. In fact as seen in Fig. 9, the deuteron reduced form factor contains
two components: (1) a fast-falling component characteristic of nuclear binding with
probability 85%, and (2) a hard contribution falling as a monopole with a scale of
order 0.5 GeV with probability 15%. The normalization of the deuteron form factor
observed at large Q2 [164], as well as the presence of two mass scales in the scaling
behavior of the reduced deuteron form factor [163] thus suggests sizable hidden-color
Fock state contributions such as | (uud)8C

(ddu)8C
〉 with probability of order 15% in

the deuteron wavefunction [165].

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6 7

(1
–q

2 /
m

2 0) F
D

(q
2 )

/F
2 N

(q
2 /

4)

–q2  (GeV2)10-2004
2763A18

Figure 9: Reduced Deuteron Form Factor showing the scaling predicted by perturba-
tive QCD and conformal scaling. The data show two regimes: a fast-falling behavior
at small Q2 characteristic of normal nuclear binding, and a hard scattering regime
with monopole fall-off controlled by the scale m2

0 = 0.28 GeV2. The latter contribution
is attributable to non-nucleonic hidden-color components of the deuteron’s six-quark
Fock state. From Ref. [163].

In general, one would expect corrections from the leading twist QCD predictions
from higher-twist effects (e.g., mass and k⊥ smearing) and higher-order contributions
in αs(Q

2), as well as nonleading anomalous dimensions. However, the agreement of
the data with simple Q2fd(Q

2) ∼ const. behavior for Q2 > 1/2 GeV2 implies that,
unless there is a fortuitous cancellations, all of the scale-breaking effects are small,
and the present QCD perturbation calculations are viable and applicable even in
the nuclear physics domain. The lack of deviation from the QCD parametrization
suggests that the parameter Λ in Eq. (30) is small. Alternatively, this can be taken as
evidence for fixed point behavior of the QCD coupling in the infrared. A comparison
with a standard definition such as ΛMS would require a calculation of next-to-leading
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effects. A more definitive check of QCD can be made by calculating the normalization
of fd(Q

2) from a perturbative calculation of TH and the evolution of the deuteron wave
function to short distances. It is also important to confirm experimentally that the
h = h′ = 0 form factor is indeed dominant.

Note that the deuteron wave function which contributes to the asymptotic limit
of the form factor is the totally antisymmetric wave function corresponding to the
orbital Young symmetry given by [6] and isospin (T )+ spin (S) Young symmetry
given by {33}. The deuteron state with this symmetry is related to the NN , ∆∆,
and hidden-color (CC) physical bases, for both the (TS) = (01) and (10) cases, by
the formula

ψ[6]{33} =
(

1

9

)1/2

ψNN +
(

4

45

)1/2

ψ∆∆ +
(

4

5

)1/2

ψCC . (31)

Thus the physical deuteron state, which is mostly ψNN at large distance, must evolve
to the ψ[6]{33} state when the six-quark transverse separations bi

⊥ ≤ O(1/Q) → 0.
Since this state is 80% hidden color, the deuteron wave functions cannot be described
by the nucleonic degrees of freedom in this domain. The fact that the six-quark color-
singlet state inevitably evolves in QCD to a dominantly hidden-color configuration at
small transverse separation also has implications for the form of the nucleon-nucleon
potential, which can be considered as one component in a coupled-channel system. As
the two nucleons approach each other, the system must do work in order to change
the six-quark state to a dominantly hidden-color configuration; i.e., QCD requires
that the nucleon-nucleon potential must be repulsive at short distances [166].

Thus a rigorous prediction of QCD is the “hidden color” of nuclear wavefunc-
tions at short distances. QCD predicts that nuclear wavefunctions contain “hidden
color” [167, 150] components: color configurations not dual to the usual nucleonic de-
grees of freedom. In general, the six-quark wavefunction of a deuteron is a mixture of
five different color-singlet states. The dominant color configuration at large distances
corresponds to the usual proton-neutron bound state where transverse momenta are
of order ~k2 ∼ 2MdεBE. However, at small impact space separation, all five Fock color-
singlet components eventually acquire equal weight, i.e., the deuteron wavefunction
evolves to 80% hidden color.

10.1 Hadron Helicity Conservation

The distribution amplitudes are Lz = 0 projections of the LF wavefunction, and
the sum of the spin projections of the valence quarks must equal the Jz of the
parent hadron. Higher orbital angular momentum components lead to power-law
suppressed exclusive amplitudes [64, 30]. Since quark masses can be neglected at
leading twist in TH , one has quark helicity conservation, and thus, finally, hadron-
helicity conservation: the sum of initial hadron helicities equals the sum of final
helicities. In particular, since the hadron-helicity violating Pauli form factor is com-
puted from states with ∆Lz = ±1, PQCD predicts F2(Q

2)/F1(Q
2) ∼ 1/Q2 [modulo
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logarithms]. A detailed analysis shows that the asymptotic fall-off takes the form
F2(Q

2)/F1(Q
2) ∼ log2 Q2/Q2 [168]. One can also construct other models [91] incor-

porating the leading-twist perturbative QCD prediction which are consistent with
the JLab polarization transfer data [169] for the ratio of proton Pauli and Dirac form
factors. This analysis can also be extended to study the spin structure of scattering
amplitudes at large transverse momentum and other processes which are dependent
on the scaling and orbital angular momentum structure of light-front wavefunctions.
Recently, Afanasev, Carlson, Chen, Vanderhaeghen, and I [170] have shown that
the interfering two-photon exchange contribution to elastic electron-proton scatter-
ing, including inelastic intermediate states, can account for the discrepancy between
Rosenbluth and Jefferson Lab spin transfer polarization data [169].

10.2 Timelike Form Factors

A crucial prediction of models for proton form factors is the relative phase of the
timelike form factors, since this can be measured from the proton single spin symme-
tries in e+e− → pp or pp → `` [171]. Carl Carlson, John Hiller, Dae Sung Hwang and
I [171] have shown that measurements of the proton’s polarization strongly discrim-
inate between the analytic forms of models which fit the proton form factors in the
spacelike region. In particular, the single-spin asymmetry normal to the scattering
plane measures the relative phase difference between the timelike GE and GM form
factors. The dependence on proton polarization in the timelike region is expected to
be large in most models, of the order of several tens of percent. The continuation
of the spacelike form factors to the timelike domain t = s > 4M2

p is very sensi-
tive to the analytic form of the form factors; in particular it is very sensitive to the
form of the PQCD predictions including the corrections to conformal scaling. The
forward-backward `+`− asymmetry can measure the interference of one-photon and
two-photon contributions to pp → `+`−.

11 Complications from Final-State Interactions

Although it has been more than 35 years since the discovery of Bjorken scaling [172] in
electroproduction [173], there are still many issues in deep-inelastic lepton scattering
and Drell-Yan reactions which are only now being understood from a fundamental
basis in QCD.

It is usually assumed—following the parton model—that the leading-twist struc-
ture functions measured in deep inelastic lepton-proton scattering are simply the
probability distributions for finding quarks and gluons in the target nucleon. In fact,
gluon exchange between the fast, outgoing quarks and the target spectators effects
the leading-twist structure functions in a profound way, leading to diffractive lep-
toproduction processes, shadowing of nuclear structure functions, and target spin
asymmetries.
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As I shall discuss in this section, the final-state interactions from gluon exchange
between the outgoing quark and the target spectator system lead to single-spin asym-
metries in semi-inclusive deep inelastic lepton-proton scattering at leading twist in
perturbative QCD; i.e., the rescattering corrections of the struck quark with the tar-
get spectators are not power-law suppressed at large photon virtuality Q2 at fixed
xbj [174] The final-state interaction from gluon exchange occurring immediately after
the interaction of the current also produces a leading-twist diffractive component to
deep inelastic scattering `p → `′p′X corresponding to color-singlet exchange with the
target system; this in turn produces shadowing and anti-shadowing of the nuclear
structure functions [87, 175]. In addition, one can show that the pomeron structure
function derived from diffractive DIS has the same form as the quark contribution
of the gluon structure function [176]. The final-state interactions occur at a short
light-front time ∆τ ' 1/ν after the virtual photon interacts with the struck quark,
producing a nontrivial phase. Here ν = p ·q/M is the laboratory energy of the virtual
photon. Thus none of the above phenomena is contained in the target light-front
wave functions computed in isolation. In particular, the shadowing of nuclear struc-
ture functions is due to destructive interference effects from leading-twist diffraction
of the virtual photon, physics not included in the nuclear light-front wave functions.
Thus the structure functions measured in deep inelastic lepton scattering are affected
by final-state rescattering, modifying their connection to light-front probability distri-
butions. As an alternative formalism, one can augment the light-front wave functions
with a gauge link corresponding to an external field created by the virtual photon qq
pair current [177, 178]. Such a gauge link is process dependent [179], so the resulting
augmented LFWFs are not universal [87, 177, 180]. Such rescattering corrections are
not contained in the target light-front wave functions computed in isolation.

Single-spin asymmetries in hadronic reactions provide a remarkable window to
QCD mechanisms at the amplitude level. In general, single-spin asymmetries measure
the correlation of the spin projection of a hadron with a production or scattering
plane [181]. Such correlations are odd under time reversal, and thus they can arise in
a time-reversal invariant theory only when there is a phase difference between different
spin amplitudes. Specifically, a nonzero correlation of the proton spin normal to a
production plane measures the phase difference between two amplitudes coupling the
proton target with Jz

p = ±1
2

to the same final-state. The calculation requires the
overlap of target light-front wavefunctions with different orbital angular momentum:
∆Lz = 1; thus a single-spin asymmetry (SSA) provides a direct measure of orbital
angular momentum in the QCD bound state.

The shadowing and antishadowing of nuclear structure functions in the Gribov-
Glauber picture is due to the destructive and constructive coherence, respectively,
of amplitudes arising from the multiple-scattering of quarks in the nucleus. The
effective quark-nucleon scattering amplitude includes Pomeron and Odderon con-
tributions from multi-gluon exchange as well as Reggeon quark exchange contri-
butions [175]. The multiscattering nuclear processes from Pomeron, Odderon and
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pseudoscalar Reggeon exchange leads to shadowing and antishadowing of the elec-
tromagnetic nuclear structure functions in agreement with measurements. An im-
portant conclusion is that antishadowing is nonuniversal—different for quarks and
antiquarks and different for strange quarks versus light quarks. This picture thus
leads to substantially different nuclear effects for charged and neutral currents, par-
ticularly in anti-neutrino reactions, thus affecting the extraction of the weak-mixing
angle sin2 θW and the constant ρo which are determined from the ratios of charged
and neutral current contributions in deep inelastic neutrino and anti-neutrino scat-
tering. In recent work, Schmidt, Yang, and I [182] have shown that a substantial part
of the difference between the standard model prediction and the anomalous NuTeV
result [183] for sin2 θW could be due to the different behavior of nuclear antishadowing
for charged and neutral currents. Detailed measurements of the nuclear dependence
of charged, neutral and electromagnetic DIS processes are needed to establish the
distinctive phenomenology of shadowing and antishadowing and to make the NuTeV
results definitive.

11.1 The Paradox of Diffractive Deep Inelastic Scattering

A remarkable feature of deep inelastic lepton-proton scattering at HERA is that
approximately 10% events are diffractive [184, 185, 186]: the target proton remains
intact and there is a large rapidity gap between the proton and the other hadrons
in the final state. These diffractive deep inelastic scattering (DDIS) events can be
understood most simply from the perspective of the color-dipole model [187]: the qq
Fock state of the high-energy virtual photon diffractively dissociates into a diffractive
dijet system. The color-singlet exchange of multiple gluons between the color dipole
of the qq and the quarks of the target proton leads to the diffractive final state. The
same hard pomeron exchange also controls diffractive vector meson electroproduction
at large photon virtuality [188]. One can show by analyticity and crossing symmetry
that amplitudes with C = + hard-pomeron exchange have a nearly imaginary phase.

This observation presents a paradox: deep inelastic scattering is usually discussed
in terms of the parton model. If one chooses the conventional parton model frame
where the photon light-front momentum is negative q+ = q0+qz < 0, then the virtual
photon cannot produce a virtual qq pair. Instead, the virtual photon always interacts
with a quark constituent with light-front momentum fraction x = k+

p+ = xbj. If one

chooses light-front gauge A+ = 0, then the gauge link associated with the struck
quark (the Wilson line) becomes unity. Thus the struck “current” quark experiences
no final-state interactions. The light-front wavefunctions ψn(xi, k⊥i of the proton
which determine the quark probability distributions q(x,Q) are real since the proton
is stable. Thus it appears impossible to generate the required imaginary phase, let
alone the large rapidity gaps associated with of DDIS.

This paradox was resolved by Paul Hoyer, Nils Marchal, Stephane Peigne, Francesco
Sannino and myself [87]. It is helpful to consider the case where the virtual photon
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interacts with a strange quark – the ss pair is assumed to be produced in the target
by gluon splitting. In the case of Feynman gauge, the struck s quark continues to
interact in the final state via gluon exchange as described by the Wilson line. The
final-state interactions occur at a light-front time ∆τ ' 1/ν after the virtual photon
interacts with the struck quark. When one integrates over the nearly-on-shell inter-
mediate state, the amplitude acquires an imaginary part. Thus the rescattering of
the quark produces a separated color-singlet ss and an imaginary phase.

In contrast, in the case of the light-front gauge A+ = n ·A = 0, one must consider
the final state interactions of the (unstruck) s quark. light-front gauge is singular—in
particular, the gluon propagator

dµν
LC(k) =

i

k2 + iε

[
−gµν +

nµkν + kµnν

n · k

]
(32)

has a pole at k+ = 0 which requires an analytic prescription. In final-state scatter-
ing involving nearly on-shell intermediate states, the exchanged momentum k+ is of
O (1/ν) in the target rest frame, which enhances the second term in the propagator.
This enhancement allows rescattering to contribute at leading twist even in LC gauge.
Thus the rescattering contribution survives in the Bjorken limit because of the singu-
lar behavior of the propagator of the exchanged gluon at small k+ in A+ = 0 gauge.
The net result is gauge invariant and identical to the color dipole model calculation.
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Figure 10: Two types of final state interactions. (a) Scattering of the antiquark (p2

line), which in the aligned jet kinematics is part of the target dynamics. (b) Scattering
of the current quark (p1 line). For each light-front time-ordered diagram, the poten-
tially on-shell intermediate states—corresponding to the zeroes of the denominators
Da, Db, Dc—are denoted by dashed lines.

The calculation of the rescattering effects on DIS in Feynman and light-front
gauge through three loops is given in detail for a simple Abelian model in Ref. [87].
Figure 10 illustrates two LCPTH diagrams which contribute to the forward γ∗T →
γ∗T amplitude, where the target T is taken to be a single quark. In the aligned
jet kinematics the virtual photon fluctuates into a qq pair with limited transverse
momentum, and the (struck) quark takes nearly all the longitudinal momentum of
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the photon. The initial q and q momenta are denoted p1 and p2 − k1, respectively.
The result is most easily expressed in eikonal form in terms of transverse distances
rT , RT conjugate to p2T , kT . The DIS cross section can be expressed as

Q4 dσ

dQ2 dxB

=
αem

16π2

1− y

y2

1

2Mν

∫ dp−2
p−2

d2~rT d2 ~RT |M̃ |2 (33)

where

|M̃(p−2 , ~rT , ~RT )| =
∣∣∣∣∣∣
sin

[
g2 W (~rT , ~RT )/2

]

g2 W (~rT , ~RT )/2
Ã(p−2 , ~rT , ~RT )

∣∣∣∣∣∣
(34)

is the resummed result. The Born amplitude is

Ã(p−2 , ~rT , ~RT ) = 2eg2MQp−2 V (mPhysLettrT )W (~rT , ~RT ) (35)

where m2
PhysLett = p−2 MxB + m2 and

V (m rT ) ≡
∫ d2~pT

(2π)2

ei~rT ·~pT

p2
T + m2

=
1

2π
K0(mrT ). (36)

The rescattering effect of the dipole of the qq is controlled by

W (~rT , ~RT ) ≡
∫ d2~kT

(2π)2

1− ei~rT ·~kT

k2
T

ei ~RT ·~kT =
1

2π
log


 |~RT + ~rT |

RT


 . (37)

The fact that the coefficient of Ã in is less than unity for all ~rT , ~RT shows that the
rescattering corrections reduce the cross section in analogy to nuclear shadowing.

A new understanding of the role of final-state interactions in deep inelastic scat-
tering has thus emerged. The final-state interactions from gluon exchange occurring
immediately after the interaction of the current produce a leading-twist diffractive
component to deep inelastic scattering `p → `′p′X due to the color-singlet exchange
with the target system. This rescattering is described in the Feynman gauge by the
path-ordered exponential (Wilson line) in the expression for the parton distribution
function of the target. The multiple scattering of the struck parton via instantaneous
interactions in the target generates dominantly imaginary diffractive amplitudes, giv-
ing rise to an effective “hard pomeron” exchange. The presence of a rapidity gap
between the target and diffractive system requires that the target remnant emerges
in a color-singlet state; this is made possible in any gauge by the soft rescattering of
the final-state s− s system.

11.2 Diffractive Deep Inelastic Reactions and Rescattering

Rikard Enberg, Paul Hoyer, Gunnar Ingelman and I have recently discussed some
further aspects of the QCD dynamics of diffractive deep inelastic scattering [176]. We
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show that the quark structure function of the effective hard pomeron has the same
form as the quark contribution of the gluon structure function. The hard pomeron is
not an intrinsic part of the proton; rather it must be considered as a dynamical effect
of the lepton-proton interaction.

Our QCD-based picture also applies to diffraction in hadron-initiated processes.
The rescattering is different in virtual photon- and hadron-induced processes due to
the different color environment, which accounts for the observed non-universality of
diffractive parton distributions. In the hadronic case the color flow at tree level can in-
volve color-octet as well as color-triplet separation. Multiple scattering of the quarks
and gluons can set up a variety of different color singlet domains. This framework
also provides a theoretical basis for the phenomenologically successful Soft Color In-
teraction (SCI) model which includes rescattering effects and thus generates a variety
of final states with rapidity gaps.

11.3 Origin of Nuclear Shadowing and Antishadowing

The physics of nuclear shadowing in deep inelastic scattering can be most easily un-
derstood in the laboratory frame using the Glauber-Gribov picture [189, 190, 191].
The virtual photon, W, or Z0 produces a quark-antiquark color-dipole pair which
can interact diffractively or inelastically on the nucleons in the nucleus. The destruc-
tive interference of diffractive amplitudes from pomeron exchange on the upstream
nucleons then causes shadowing of the virtual photon interactions on the back-face
nucleons [192, 193, 194, 195, 196, 197, 198]. The Bjorken-scaling diffractive interac-
tions on the nucleons in a nucleus thus leads to the shadowing (depletion at small
xbj) of the nuclear structure functions.

As emphasized by Ioffe [195], the coherence between processes which occur on
different nucleons at separation LA requires small Bjorken xB : 1/MxB = 2ν/Q2 ≥
LA. The coherence between different quark processes is also the basis of saturation
phenomena in DIS and other hard QCD reactions at small xB [199], and coherent
multiple parton scattering has been used in the analysis of p+A collisions in terms of
the perturbative QCD factorization approach [200]. An example of the interference
of one- and two-step processes in deep inelastic lepton-nucleus scattering illustrated
in Fig. 11.

An important aspect of the shadowing phenomenon is that the diffractive con-
tribution γ∗N → XN ′ to deep inelastic scattering (DDIS) where the nucleon N1 in
Fig. 11 remains intact is a constant fraction of the total DIS rate, confirming that it
is a leading-twist contribution. The Bjorken scaling of DDIS has been observed at
HERA [185, 201, 202]. As shown in Ref. [87], the leading-twist contribution to DDIS
arises in QCD in the usual parton model frame when one includes the nearly instan-
taneous gluon exchange final-state interactions of the struck quark with the target
spectators. The same final state interactions also lead to leading-twist single-spin
asymmetries in semi-inclusive DIS [174]. Thus the shadowing of nuclear structure
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Figure 11: The one-step and two-step processes in DIS on a nucleus. If the scattering
on nucleon N1 is via pomeron exchange, the one-step and two-step amplitudes are
opposite in phase, thus diminishing the q flux reaching N2. This causes shadowing of
the charged and neutral current nuclear structure functions.

functions is also a leading-twist effect.

It was shown in Ref. [175] that if one allows for Reggeon exchanges which leave
a nucleon intact, then one can obtain constructive interference among the multi-
scattering amplitudes in the nucleus. A Bjorken-scaling contribution to DDIS from
Reggeon exchange has in fact also been observed at HERA [185, 202]. The strength
and energy dependence of the C = + Reggeon t−channel exchange contributions
to virtual Compton scattering is constrained by the Kuti-Weisskopf [203] behavior
F2(x) ∼ x1−αR of the non-singlet electromagnetic structure functions at small x. The
phase of the Reggeon exchange amplitude is determined by its signature factor. Be-
cause of this phase structure [175], one obtains constructive interference and antishad-
owing of the nuclear structure functions in the range 0.1 < x < 0.2 – a pronounced
excess of the nuclear cross section with respect to nucleon additivity [204].

In the case where the diffractive amplitude on N1 is imaginary, the two-step pro-
cess has the phase i×i = −1 relative to the one-step amplitude, producing destructive
interference. (The second factor of i arises from integration over the quasi-real inter-
mediate state.) In the case where the diffractive amplitude on N1 is due to C = +
Reggeon exchange with intercept αR(0) = 1/2, for example, the phase of the two-
step amplitude is 1√

2
(1 − i) × i = 1√

2
(i + 1) relative to the one-step amplitude, thus

producing constructive interference and antishadowing.

The effective quark-nucleon scattering amplitude includes Pomeron and Odderon
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contributions from multi-gluon exchange as well as Reggeon quark-exchange con-
tributions [175]. The coherence of these multiscattering nuclear processes leads to
shadowing and antishadowing of the electromagnetic nuclear structure functions in
agreement with measurements. The Reggeon contributions to the quark scattering
amplitudes depend specifically on the quark flavor; for example the isovector Regge
trajectories couple differently to u and d quarks. The s and s couple to yet different
Reggeons. This implies distinct anti-shadowing effects for each quark and antiquark
component of the nuclear structure function. Ivan Schmidt, Jian-Jun Yang, and
I [205] have shown that this picture leads to substantially different antishadowing for
charged and neutral current reactions.

Figures 12–13 illustrate the individual quark q and anti-quark q contributions
to the ratio of the iron to nucleon structure functions R = FA

2 /FN0
2 in a model

calculation where the Reggeon contributions are constrained by the Kuti-Weisskopf
behavior [203] of the nucleon structure functions at small xbj. Because the strange
quark distribution is much smaller than u and d quark distributions, the strange
quark contribution to the ratio is very close to 1 although sA/sN0 may significantly
deviate from 1.

Our analysis leads to substantially different nuclear antishadowing for charged and
neutral current reactions; in fact, the neutrino and antineutrino DIS cross sections
are each modified in different ways due to the various allowed Regge exchanges.
The non-universality of nuclear effects will modify the extraction of the weak-mixing
angle sin2 θW , particularly because of the strong nuclear effects for the F3 structure
function. The shadowing and antishadowing of the strange quark structure function
in the nucleus can also be considerably different than that of the light quarks. We
thus find that part of the anomalous NuTeV result [206] for sin2 θW could be due to
the non-universality of nuclear antishadowing for charged and neutral currents. Our
picture also implies non-universality for the nuclear modifications of spin-dependent
structure functions.

Thus the antishadowing of nuclear structure functions depends in detail on quark
flavor. Careful measurements of the nuclear dependence of charged, neutral, and
electromagnetic DIS processes are needed to establish the distinctive phenomenology
of shadowing and antishadowing and to make the NuTeV results definitive. It is also
important to map out the shadowing and antishadowing of each quark component
of the nuclear structure functions to illuminate the underlying QCD mechanisms.
Such studies can be carried out in semi-inclusive deep inelastic scattering for the
electromagnetic current at Hermes and at Jefferson Laboratory by tagging the flavor
of the current quark or by using pion and kaon-induced Drell-Yan reactions. A new
determination of sin2 θW is also expected from the neutrino scattering experiment
NOMAD at CERN [207]. A systematic program of measurements of the nuclear
effects in charged and neutral current reactions could also be carried out in high
energy electron-nucleus colliders such as HERA and eRHIC, or by using high intensity
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Figure 12: The quark contributions to the ratios of structure functions at Q2 =
1 GeV2. The solid, dashed and dotted curves correspond to the u, d and s quark
contributions, respectively. This corresponds in our model to the nuclear dependence
of the σ(u−A), σ(d−A), σ(s−A) cross sections, respectively. In order to stress the
individual contribution of quarks, the numerator of the ratio FA

2 /FN0
2 shown in these

two figures is obtained from the denominator by a replacement qN0 into qA for only
the considered quark. As a result, the effect of antishadowing appears diminished.

neutrino beams [208].

11.4 Single-Spin Asymmetries from Final-State Interactions

Spin correlations provide a remarkably sensitive window to hadronic structure and
basic mechanisms in QCD. Among the most interesting polarization effects are single-
spin azimuthal asymmetries in semi-inclusive deep inelastic scattering, representing
the correlation of the spin of the proton target and the virtual photon to hadron
production plane: ~Sp ·~q×~pH [209]. Such asymmetries are time-reversal odd, but they
can arise in QCD through phase differences in different spin amplitudes.

Until recently, the traditional explanation of pion electroproduction single-spin
asymmetries in semi-inclusive deep inelastic scattering is that they are proportional to
the transversity distribution of the quarks in the hadron h1 [210, 211, 212] convoluted
with the transverse momentum dependent fragmentation (Collins) function H⊥

1 , the
distribution for a transversely polarized quark to fragment into an unpolarized hadron
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Figure 13: The anti-quark contributions to ratios of the structure functions at
Q2 = 1 GeV2. The solid, dashed and dotted curves correspond to u, d and s quark
contributions, respectively. This corresponds in our model to the nuclear dependence
of the σ(u−A), σ(d−A), σ(s−A) cross sections, respectively. In order to stress the
individual contribution of quarks, the numerator of the ratio FA

2 /FN0
2 shown in these

two figures is obtained from the denominator by a replacement qN0 into qA for only
the considered anti-quark.

with non-zero transverse momentum [213, 214, 215, 216, 217].

Dae Sung Hwang, Ivan Schmidt and I have showed that an alternative physical
mechanism for the azimuthal asymmetries also exists [174, 218, 219]. The same QCD
final-state interactions (gluon exchange) between the struck quark and the proton
spectators which leads to diffractive events also can produce single-spin asymmetries
(the Sivers effect) in semi-inclusive deep inelastic lepton scattering which survive in
the Bjorken limit. This is illustrated in Fig. 14. In contrast to the SSAs arising from
transversity and the Collins fragmentation function, the fragmentation of the quark
into hadrons is not necessary; one predicts a correlation with the production plane of
the quark jet itself ~Sp · ~q × ~pq.

The final-state interaction mechanism provides an appealing physical explanation
within QCD of single-spin asymmetries. Remarkably, the same matrix element which
determines the spin-orbit correlation ~S · ~L also produces the anomalous magnetic
moment of the proton, the Pauli form factor, and the generalized parton distribution
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Figure 14: The origin of the Sivers effect in semi-inclusive deep inelastic scattering

E which is measured in deeply virtual Compton scattering. Physically, the final-
state interaction phase arises as the infrared-finite difference of QCD Coulomb phases
for hadron wave functions with differing orbital angular momentum. An elegant
discussion of the Sivers effect including its sign has been given by Burkardt [220].

The final-state interaction effects can also be identified with the gauge link which
is present in the gauge-invariant definition of parton distributions [218]. Even when
the light-front gauge is chosen, a transverse gauge link is required. Thus in any
gauge the parton amplitudes need to be augmented by an additional eikonal factor
incorporating the final-state interaction and its phase [219, 177]. The net effect is that
it is possible to define transverse momentum dependent parton distribution functions
which contain the effect of the QCD final-state interactions.

A related analysis also predicts that the initial-state interactions from gluon ex-
change between the incoming quark and the target spectator system lead to leading-
twist single-spin asymmetries in the Drell-Yan process H1H

l
2 → `+`−X [179, 221].

Initial-state interactions also lead to a cos 2φ planar correlation in unpolarized Drell-
Yan reactions [222].

11.5 Calculations of Single-Spin Asymmetries in QCD

Hwang, Schmidt and I have calculated [174] the single-spin Sivers asymmetry in semi-
inclusive electroproduction γ∗pl → HX induced by final-state interactions in a model
of a spin-1/2 proton of mass M with charged spin-1/2 and spin-0 constituents
of mass m and λ, respectively, as in the QCD-motivated quark-diquark model of
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a nucleon. The basic electroproduction reaction is then γ∗p → q(qq)0. In fact,
the asymmetry comes from the interference of two amplitudes which have different
proton spin, but couple to the same final quark spin state, and therefore it involves
the interference of tree and one-loop diagrams with a final-state interaction. In this
simple model the azimuthal target single-spin asymmetry Asin φ

UT is given by

Asin φ
UT = CF αs(µ

2)

(
∆ M + m

)
r⊥

[ (
∆ M + m

)2
+ ~r2

⊥
]

×
[

~r2
⊥ + ∆(1−∆)(−M2 +

m2

∆
+

λ2

1−∆
)

]

× 1

~r2
⊥

ln
~r2
⊥ + ∆(1−∆)(−M2 + m2

∆
+ λ2

1−∆
)

∆(1−∆)(−M2 + m2

∆
+ λ2

1−∆
)

. (38)

Here r⊥ is the magnitude of the transverse momentum of the current quark jet relative
to the virtual photon direction, and ∆ = xBj is the usual Bjorken variable. To obtain
(38) from Eq. (21) of [174], we used the correspondence |e1e2|/4π → CF αs(µ

2) and
the fact that the sign of the charges e1 and e2 of the quark and diquark are opposite
since they constitute a bound state. The result can be tested in jet production using
an observable such as thrust to define the momentum q + r of the struck quark.

The predictions of our model for the asymmetry Asin φ
UT of the ~Sp ·~q×~pq correlation

based on Eq. (38) are shown in Fig. 15. As representative parameters we take αs =
0.3, M = 0.94 GeV for the proton mass, m = 0.3 GeV for the fermion constituent and
λ = 0.8 GeV for the spin-0 spectator. The single-spin asymmetry Asin φ

UT is shown as
a function of ∆ and r⊥ (GeV). The asymmetry measured at HERMES [223] Asin φ

UL =

KAsin φ
UT contains a kinematic factor K = Q

ν

√
1− y =

√
2Mx

E

√
1−y

y
because the proton

is polarized along the incident electron direction. The resulting prediction for Asin φ
UL

is shown in Fig. 15(b). Note that ~r = ~pq − ~q is the momentum of the current quark
jet relative to the photon momentum. The asymmetry as a function of the pion
momentum ~pπ requires a convolution with the quark fragmentation function.

Since the same matrix element controls the Pauli form factor, the contribution
of each quark current to the SSA is proportional to the contribution κq/p of that
quark to the proton target’s anomalous magnetic moment κp =

∑
q eqκq/p [174, 220].

Avakian [209] has shown that the data from HERMES and Jefferson laboratory could
be accounted for by the above analysis. The HERMES collaboration has recently mea-
sured the SSA in pion electroproduction using transverse target polarization [224].
The Sivers and Collins effects can be separated using planar correlations; both con-
tributions are observed to contribute, with values not in disagreement with theory
expectations.

It should be emphasized that the Sivers effect occurs even for jet production;
unlike transversity, hadronization is not required. There is no Sivers effect in charged
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Figure 15: Model predictions for the target single-spin asymmetry Asin φ
UT for charged

and neutral current deep inelastic scattering resulting from gluon exchange in the
final state. Here r⊥ is the magnitude of the transverse momentum of the outgoing
quark relative to the photon or vector boson direction, and ∆ = xbj is the light-front
momentum fraction of the struck quark. The parameters of the model are given in
the text. In (a) the target polarization is transverse to the incident lepton direction.

The asymmetry in (b) Asin φ
UL = KAsin φ

UT includes a kinematic factor K = Q
ν

√
1− y

for the case where the target nucleon is polarized along the incident lepton direction.
For illustration, we have taken K = 0.26

√
x, corresponding to the kinematics of the

HERMES experiment [223] with Elab = 27.6 GeV and y = 0.5.
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current reactions since the W only couples to left-handed quarks [225].
The corresponding single spin asymmetry for the Drell-Yan processes, such as

πp↔ (or pp↔) → γ∗X → `+`−X, is due to initial-state interactions. The simplest
way to get the result is applying crossing symmetry to the SIDIS processes. The
result that the SSA in the Drell-Yan process is the same as that obtained in SIDIS,
with the appropriate identification of variables, but with the opposite sign [218, 221].

We can also consider the SSA of e+e− annihilation processes such as e+e− →
γ∗ → πΛ↔X. The Λ reveals its polarization via its decay Λ → pπ−. The spin of
the Λ is normal to the decay plane. Thus we can look for a SSA through the T-odd
correlation εµνρσS

µ
Λpν

Λqρ
γ∗p

σ
π. This is related by crossing to SIDIS on a Λ target.

Measurements from Jefferson Lab [226] also show significant beam single spin
asymmetries in deep inelastic scattering. Afanasev and Carlson [227] have recently
shown that this asymmetry is due to the interference of longitudinal and transverse
photoabsorption amplitudes which have different phases induced by the final-state
interaction between the struck quark and the target spectators just as in the calcu-
lations of Ref. [174]. Their results are consistent with the experimentally observed
magnitude of this effect. Thus similar FSI mechanisms involving quark orbital angular
momentum appear to be responsible for both target and beam single-spin asymme-
tries.

12 New Directions for QCD

As I have emphasized in these lectures, the light-front wavefunctions of hadrons are
the central elements of QCD phenomenology, describing bound states in terms of their
fundamental quark and gluon degrees of freedom at the amplitude level. Given the
light-front wavefunctions one can compute quark and gluon distributions, distribution
amplitudes, generalized parton distributions, form factors, and matrix elements of
local currents such as semileptonic B decays. The diffractive dissociation of hadrons
on nucleons or nuclei into jets or leading hadrons can provide new measures of the
LFWFs of the projectile as well as tests of color transparency, hidden color, and
intrinsic charm. The advent of the 12 GeV upgrade of the Jefferson Laboratory
electron accelerator and the new 15 GeV antiproton storage ring HESR at GSI will
open up important new tests of these properties of QCD in hadronic and nuclear
reactions.

Although we are still far from solving QCD explicitly, a number of properties of
the light-front wavefunctions of the hadrons are known from both phenomenology and
the basic properties of QCD. For example, the endpoint behavior of light-front wave-
functions and structure functions can be determined from perturbative arguments
and Regge arguments. There are also correspondence principles. For example, for
heavy quarks in the nonrelativistic limit, the light-front formalism reduces to conven-
tional many-body Schrödinger theory. On the other hand, one can also build effective
three-quark models which encode the static properties of relativistic baryons.
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It is thus imperative to compute the light-front wavefunctions from first principles
in QCD. Lattice gauge theory can provide moments of the distribution amplitudes
by evaluating vacuum-to-hadron matrix elements of local operators [95]. The trans-
verse lattice is also providing new nonperturbative information [93, 94]. The DLCQ
method is also a first-principles method for solving nonperturbative QCD; at finite
harmonic resolution K the DLCQ Hamiltonian acts in physical Minkowski space as
a finite-dimensional Hermitian matrix in Fock space. The DLCQ Heisenberg equa-
tion is Lorentz-frame independent and has the advantage of providing not only the
spectrum of hadrons, but also the complete set of LFWFs for each hadron eigen-
state. An important feature the light-front formalism is that Jz is conserved; thus
one simplify the DLCQ method by projecting the full Fock space on states with spe-
cific angular momentum. As shown in Ref. [91], the Karmanov-Smirnov operator
uniquely specifies the form of the angular dependence of the light-front wavefunc-
tions, allowing one to transform the light-front Hamiltonian equations to differential
equations acting on scalar forms. A complementary method would be to construct
the T -matrix for asymptotic qq or qqq or gluonium states using the light-front analog
of the Lippmann-Schwinger method. This allows one to focus on states with the spe-
cific global quantum numbers and spin of a given hadron. The zeros of the resulting
resolvent then provides the hadron spectrum and the respective light-front Fock state
projections.

In principle, the complete spectrum and bound-state wave functions of a quantum
field theory can be determined by finding the eigenvalues and eigensolutions of its
light-cone Hamiltonian.

The DLCQ method has a number of attractive features for solving 3+1 quantum
field theories nonperturbatively because of the ability to truncate the Fock state to
low particle number sectors. One of the challenges in obtaining nonperturbative so-
lutions for gauge theories such as QCD using light-cone Hamiltonian methods is to
renormalize the theory while preserving Lorentz symmetries and gauge invariance.
For example, the truncation of the light-cone Fock space leads to uncompensated
ultraviolet divergences. Recently we presented two methods for consistently regu-
larizing light-cone-quantized gauge theories in Feynman and light-cone gauges [228]:
(1) the introduction of a spectrum of Pauli-Villars fields which produces a finite the-
ory while preserving Lorentz invariance; (2) the augmentation of the gauge-theory
Lagrangian with higher derivatives. Finite-mass Pauli-Villars regulators can also be
used to compensate for neglected higher Fock states. As a test case, we have applied
these regularization procedures to an approximate nonperturbative computation of
the anomalous magnetic moment of the electron in QED as a first attempt to meet
Feynman’s famous challenge.
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12.1 Testing Hidden Color

In traditional nuclear physics, the deuteron is a bound state of a proton and a neutron
where the binding force arise from the exchange of a pion and other mesonic states.
However, as I have reviewed, QCD provides a new perspective [163, 167].: 6 quarks
in the fundamental 3C representation of SU(3) color can combine into 5 different
color-singlet combinations, only one of which corresponds to a proton and neutron In
fact, if the deuteron wavefunction is a proton-neutron bound state at large distances,
then as their separation becomes smaller, the QCD evolution resulting from colored
gluon exchange introduce 4 other “hidden color” states into the deuteron wavefunc-
tion [150]. As I have discussed, the normalization of the deuteron form factor observed
at large Q2 [164], as well as the presence of two mass scales in the scaling behavior of
the reduced deuteron form factor [163] thus suggests sizable hidden-color Fock state
contributions such as | (uud)8C

(ddu)8C
〉 with probability of order 15% in the deuteron

wavefunction [165].
The hidden color states of the deuteron can be materialized at the hadron level

as ∆++(uuu)∆−(ddd) and other novel quantum fluctuations of the deuteron. These
dual hadron components become more and more important as one probes the deuteron
at short distances, such as in exclusive reactions at large momentum transfer. For
example, the ratio

dσ
dt

(γd → ∆++∆−)
dσ
dt

(γd → np)

should increase dramatically with increasing transverse momentum pT . Similarly the
Coulomb dissociation of the deuteron into various exclusive channels

ed → e′ + pn, ppπ−, ∆∆, · · ·

should have a changing composition as the final-state hadrons are probed at high
transverse momentum, reflecting the onset of hidden color degrees of freedom.

12.2 Perspectives on QCD from AdS/CFT

An outstanding consequence of Maldacena’s duality [11] between 10-dimensional
string theory on AdS5×S5 and conformally invariant Yang-Mills theories [229, 230] is
the potential to describe processes for physical QCD which are valid at strong coupling
and do not rely on perturbation theory. As shown by Polchinski and Strassler [12],
dimensional counting rules [23] for the leading power-law fall-off of hard exclusive
scattering can be derived from a gauge theory with a mass gap dual to supergravity
in warped spacetimes. The modified theory generates the hard behavior expected
from QCD, instead of the soft behavior characteristic of strings. Other examples are
the description of form factors at large transverse momentum [231] and deep inelastic
scattering [232]. The discussion of scaling laws in warped backgrounds has also been
addressed in [233, 13, 14].
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The AdS/CFT correspondence has now provided important new information on
the short-distance structure of hadronic LFWFs; one obtains conformal constraints
which are not dependent on perturbation theory. The large k⊥ fall-off of the valence
LFWFs is also rigorously determined by consistency with the evolution equations for
the hadron distribution amplitudes [64]. Similarly, one can also use the structure of
the evolution equations to constrain the x → 1 endpoint behavior of the LFWFs.
One can use these strong constraints on the large k⊥ and x → 1 behavior to model
the LFWFs. Such forms can also be used as the initial approximations to the wave-
functions needed for variational methods which minimize the expectation value of the
light-front Hamiltonian. The derivation is carried out in terms of the lowest dimen-
sions of interpolating fields near the boundary of AdS, treating the boundary values of
the string states Ψ(x, r) as a product of quantized operators which create n-partonic
states out of the vacuum [29]. The AdS/CFT derivation validate QCD perturba-
tive results and confirm the dominance of the quark interchange mechanism [234] for
exclusive QCD processes at large NC . The predicted orbital dependence coincides
with the fall-off of light-front Fock wavefunctions derived in perturbative QCD [30].
Since all of the Fock states of the LFWF beyond the valence state are a manifesta-
tion of quantum fluctuations, it is natural to match quanta to quanta the additional
dimensions with the metric fluctuations of the bulk geometry about the fixed AdS
background. For example, the quantum numbers of each baryon, including intrinsic
spin and orbital angular momentum, are determined by matching the dimensions of
the string modes Ψ(x, r), with the lowest dimension of the baryonic interpolating
operators in the conformal limit.

The AdS/CFT correspondence also provides a novel way to compute the hadronic
spectrum. The essential assumption is to require the hadron wavefunctions to vanish
at the fifth-dimensional coordinate r0 = ΛQCD. As an example, Fig. 16 shows the
orbital spectrum of the nucleon states and in Fig. 17 the ∆ orbital resonances recently
computed by Guy de Teramond and myself [235]. The values of M2 are computed
as a function of orbital angular momentum L. The nucleon states with intrinsic spin
S = 1

2
lie on a curve below the nucleons with S = 3

2
. We have chosen our boundary

conditions by imposing the condition Ψ+(x, zo) = 0 on the positive chirality modes
for S = 1

2
nucleons, and Ψ−

µ (x, zo) = 0 on the chirality minus strings for S = 3
2
. In

contrast to the nucleons, all of the know ∆ orbital states with S = 1
2

and S = 3
2

lie on the same trajectory. The boundary conditions in this case are imposed on the
chirality minus string modes. The numerical solution corresponding to the roots of
Bessel functions give the nonlinear trajectories indicated in the figures. All the curves
correspond to the value ΛQCD = 0.22 GeV, which is the only actual parameter aside
from the choice of the boundary conditions. The results for each trajectory show a
clustering of states with the same orbital L, consistent with strongly suppressed spin-
orbit forces; this is a severe problem for QCD models using one-gluon exchange. The
results also indicate a parity degeneracy between states in the parallel trajectories
shown in Fig. 16, as seen by displacing the upper curve by one unit of L to the right.
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Nucleon states with S = 3
2

and ∆ resonances fall on the same trajectory [236].
Since only one parameter, the QCD scale ΛQCD, is used, the agreement of the

model with the pattern of the physical light baryon spectrum is remarkable. This
agreement possibly reflects the fact that our analysis is based on a conformal tem-
plate, which is a good initial approximation to QCD [112]. We have chosen a special
color representation to construct a three-quark baryon, and the results are effectively
independent of NC . The gauge/string correspondence appears to be a powerful orga-
nizing principle to classify and compute the mass eigenvalues of baryon resonances.
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