SLAC-PUB-10869

FAST TCP:

From Theory to Experiments *

C. Jin, D. Wei, S. H. Low
G. Buhrmaster, J. Bunn, D. H. Choe, R. L. A. Cottrell, J. C. Doyle
W. Feng, O. Martin, H. Newman, F. Paganini, S. Ravot, S. Singh |

http://netlab.caltech.edu/FAST/

November 1, 2004

Abstract

We describe a variant of TCP, called FAST, that can sustain high throughput and utilization at
multi-Gbps over large distance. We present the motivation, review the background theory, summarize
key features of FAST TCP, and report our first experimental results.

Keywords: FAST TCP, large bandwidth-delay product

1 Introduction

The congestion control algorithm in the current TCP has performed remarkably well and is generally
believed to have prevented severe congestion as the Internet scaled up by six orders of magnitude in
size, speed, load, and connectivity in the last fifteen years. It is also well-known, however, that as
bandwidth-delay product continues to grow, the current TCP implementation will eventually become a
performance bottleneck.

In this paper we describe a different congestion control algorithm for TCP, called FAST [1]. FAST
TCP has three key differences. First, it is an equation-based algorithm and hence eliminates packet-level
oscillations. Second, it uses queueing delay as the primary measure of congestion, which can be more
reliably measured by end hosts than loss probability in fast long-distance networks. Third, it has a
stable flow dynamics and achieves weighted proportional fairness in equilibrium that does not penalize
long flows, as the current congestion control algorithm does. Alternative approaches are described in
[2, 3, 4, 5, 6]. The details of the architecture, algorithms, extensive experimental evaluations of FAST
TCP, and comparison with other TCP variants can be found in [1, 7).

In this paper, we will highlight the motivation, background theory, implementation and our first
major experimental results. The scientific community is singular in its urgent need for efficient high
speed data transfer. We explain in Section 2 why this community has been driving the development
and deployment of ultrascale networking. The design of FAST TCP builds on an emerging theory that
allows us to understand the equilibrium and stability properties of large networks under end-to-end
control. It provides a framework to understand issues, clarify ideas and suggest directions, leading to a
more robust and better performing design. We summarize this theory in Section 3 and explain FAST

*IEEE Network, to appear.

tG. Buhrmaster and L. Cottrell are with SLAC (Stanford Linear Accelerator Center), Stanford, CA. W. Feng is with
LANL (Los Alamos National Lab). O. Martin is with CERN (European Organization for Nuclear Research), Geneva. F.
Paganini is with EE Department, UCLA. All other authors are with Caltech, Pasadena, CA.

Work supported in part by the Department of Energy Contract DE-AC02-76SF00515

Invited talk presented at DPF 2004:
Annual Meeting of the Division of Particles and Fields (DPF) of the American Physical Society (APS),
8/26/2004 - 8/31/2004, Riverside, CA

TCP in Section 4. We report the results of our first global experiment in Section 5 and conclude in
Section 6.

2 Motivation

One of the key drivers of ultrascale networking is the High Energy and Nuclear Physics (HENP) commu-
nity, whose explorations at the high energy frontier are breaking new ground in our understanding of the
fundamental interactions, structures and symmetries that govern the nature of matter and spacetime
in our universe. The largest HENP projects each encompasses 2,000 physicists from 150 universities
and laboratories in more than 30 countries. Collaborations on this global scale would not have been
attempted if the physicists could not count on excellent network performance. Rapid and reliable data
transport, at speeds of 1 to 10 Gbps and 100 Gbps in the future, is a key enabler of the global collabora-
tions in physics and other fields. The ability to analyze and share many terabyte-scale data collections,
accessed and transported in minutes, on the fly, rather than over hours or days as is the current practice,
is at the heart of the process of search and discovery for new scientific knowledge.

For instance, the CMS (Compact Muon Solenoid) Collaboration, now building next-generation ex-
periments scheduled to begin operation at CERN’s (European Organization for Nuclear Research) Large
Hadron Collider (LHC) in 2007, along with the other LHC Collaborations, is facing unprecedented
challenges in managing, processing and analyzing massive data volumes, rising from the petabyte (10
bytes) to the exabyte (108 bytes) scale over the coming decade. The current generation of experiments
now in operation and taking data at SLAC (Stanford Linear Accelerator Center) and Fermilab face
similar challenges. SLAC’s experiment has already accumulated more than a petabyte of stored data.
Effective data sharing will require 10 Gbps of sustained throughput on the major HENP network links
within the next 2 to 3 years, rising to terabit/sec within the coming decade.

Continued advances in computing, communication, and storage technologies, combined with the
development of national and global Grid systems, hold the promise of providing the required capacities
and an effective environment for computing and science. The key challenge we face, and intend to
overcome with FAST TCP, is that the current congestion control algorithm of TCP does not scale to
this regime.

The currently deployed TCP implementation is an enhanced version of Reno. It is a loss-based
approach. It uses AIMD (additive increase multiplicative decrease) where the source transmission rate
is increased by one unit (packet per round-trip time) in each round-trip time, and halved on each loss
event. While it works well at low speed, Al is too slow and MD too drastic, leading to low utilization,
as network scales up in capacity. Moreover, it perpetually pushes the queue to overflow. It also
discriminates against flows with large round-trip times. To address these problems, TCP Vegas adopts
a delay-based approach where a source implicitly estimates its end-to-end queueing delay. Instead of
oscillating and pushing the queue to overflow, TCP Vegas stabilizes its rate at a value that buffers a
target number of its own packets in its path in order to keep the path fully utilized. It adjusts its rate by
one unit per round-trip time up or down depending on whether the number of its own packets buffered
in the path falls short or exceeds the target. FAST TCP is a high-speed version of TCP Vegas, with a
fairness property independent of the delay of the flows. We will explain their relationship in more detail
in Section 4 below after explaining the background theory.

3 Background theory

There is now a preliminary theory to understand large-scale networks, such as the Internet, under
end-to-end control. The theory clarifies how control algorithms and network parameters determine the
equilibrium and stability properties of the network, and how these properties affect its performance,

fairness and responsiveness. It is useful both in understanding problems of the current congestion control
algorithm as networks scale up in capacity and in designing better algorithms to solve these problems.

Congestion control consists of two components, a source algorithm, implemented in TCP, that
adapts sending rate (or window) to congestion information in the source’s path, and a link algorithm,
implemented in routers, that updates and feeds back local congestion information to sources that traverse
the link. Typically, the link algorithm is implicit and the measure of congestion is either loss probability
or queueing delay. For example, the current protocol TCP Reno and its variants use loss probability as
a congestion measure, and TCP Vegas primarily uses queueing delay as a congestion measure. Both are
implicitly updated by the queueing process and implicitly fed back to sources via end-to-end loss and
delay, respectively.

The source-link algorithm pair, referred to here as TCP/AQM (active queue management) algo-
rithms, forms a distributed feedback system, the largest man-made feedback system in deployment. In
this system, hundreds of millions of TCP sources and hundreds of thousands of network devices interact
with each other, each executing a simple local algorithm, implicitly or explicitly, based on local infor-
mation. Their interactions result in a collective behavior, whose equilibrium and stability properties we
now discuss.

3.1 Equilibrium and performance

We can interpret TCP/AQM as a distributed algorithm over the Internet to solve a global optimization
problem [8]; see also [9, 10] for recent surveys. The solution of the optimization problem and that
of an associated problem (to be discussed below) determine the equilibrium and performance of the
network. Different TCP and AQM algorithms all solve the same prototypical problem. They differ in
the objective function of the underlying optimization problem and the iterative procedure to solve it.

Even though historically TCP and AQM algorithms have not been designed as an optimization
procedure, this interpretation is valid under fairly general conditions, and useful in understanding
network performance, such as throughput, utilization, delay, loss, and fairness. Moreover, the underlying
optimization problem has a simple structure, that allows us to efficiently compute these equilibrium
properties numerically, even for a large network that is hard to simulate.

Specifically, we can regard each source as having a utility function that measures its “happiness” as a
function of its data rate. Consider the problem of maximizing the sum of all source utility functions over
their rates, subject to link capacity constraints. This is a standard constrained optimization problem
for which many iterative solutions exist. The challenge in our context is to solve for the optimal source
rates in a distributed manner using only local information. A key feature we exploit is the duality
theory. It says that associated with our (primal) utility maximization problem is a dual minimization
problem. Whereas the primal variables over which utility is to be maximized are source rates, the dual
variables for the dual problem are congestion measures at the links. Moreover, solving the dual problem
is equivalent to solving the primal problem. There is a class of optimization algorithms that iteratively
solve for both the primal and the dual problems at once.

TCP/AQM can be interpreted as such a primal-dual algorithm, that is distributed and decentralized,
and that solves both the primal and dual problems. TCP iterates on the source rates (a source increases
or decreases its window in response to congestion in its path), and AQM iterates on the congestion
measures (e.g., loss probability at a link increases or decreases as sources traversing that link increase
or decrease their rates). They cooperate to determine iteratively the network operating point that
maximizes aggregate utility. When this iterative process converges, the equilibrium source rates are
optimal solutions of the primal problem and the equilibrium congestion measures are optimal solutions
of the dual problem. The throughput and fairness of the network are thus determined by the TCP
algorithm and the associated utility function, whereas utilization, loss and delay are determined by the
AQM algorithm.

3.2 Stability

If we think of an equilibrium state as the desired operating point that produces good network perfor-
mance, then we want to make sure the equilibrium points are stable. This means that when the equi-
librium point shifts because of changes in network topology or flow pattern, the network will converge
to the new equilibrium point. It seems undesirable to operate a large network in an unstable regime,
and unnecessary if we know how to operate it in a stable regime without sacrificing performance.

It has been shown that TCP Reno algorithm can become unstable as delay increases, or more
strikingly, as network capacity increases! Moreover the high control gain introduced by TCP is mainly
responsible for the instability. The high control gain is a consequence of halving the window size on
each loss event. The gain increases rapidly with delay or capacity, making it very difficult for any AQM
algorithm to stabilize the current TCP. This underlies the difficulty of tuning parameters in the RED
(Random Early Detection) AQM scheme: they can be tuned to improve stability, but only at the cost
of a large queue. Most recommendations in the literature aim to avoid a large queue, often leading to
violent oscillations and reduced utilization.

Two types of TCP/AQM algorithms are proposed in [11] and [12] that can be proved to maintain
stability around the equilibrium point at high capacity and large delay in general networks. While both
of these algorithms are decentralized, they are complementary in many ways. The algorithms in [11],
called primal algorithms, allow general utility functions, and hence arbitrary fairness in rate allocation,
but give up tight control on utilization. The algorithms in [12], called dual algorithms, on the other
hand, can achieve very high utilization, but are restricted to a specific class of utility functions, and
hence fairness in rate allocation. The main insight from this series of work is that, to maintain stability,
sources should scale down their responses by their individual round trip delays (i.e., adjust their rates up
or down less aggressively if their round trip delays are large, and vice versa) and links should scale down
their responses by their individual capacities (i.e., update their congestion measures less aggressively if
their capacities are large, and vice versa).

In the original primal algorithms, only the source adaptation is dynamic and the link adaptation
has no dynamics, while in the original dual algorithms, the reverse is true. By adding slow timescale
dynamics to the link algorithm, the primal algorithms can be made to achieve both arbitrary fairness
and high utilization [13]. The primal approach motivates a TCP implementation tailored for high
bandwidth-delay product regime [4].

By adding slow timescale dynamics to the source algorithm, the dual algorithms can also be made
to achieve both arbitrary fairness and high utilization [12]. The original link algorithm in [12] assumes
explicit feedback so that network queues can be emptied. Its implementation would require modifying
routers in the current Internet. However, this link algorithm has the same dynamics mathematically
as the dynamics of queueing delay. This observation leads to an algorithm that can maintain linear
stability without having to change the current routers [14]. These theoretical results suggest that it is
possible to stabilize the Internet, as it continues to scale up in capacity and size, with the current FIFO
(first-in-first-out) routers by modifying just the TCP kernel at the sending hosts.

4 FAST TCP

The congestion control mechanism of FAST TCP has four components. They are functionally indepen-
dent so that they can be designed separately and upgraded asynchronously. The data control component
determines which packets to transmit, window control determines how many packets to transmit, and
burstiness control determines when to transmit these packets. These decisions are made based on in-
formation provided by the estimation component. Window control regulates packet transmission at the
round trip timescale, while burstiness control works at a smaller timescale. In the following, we provide
an overview of these components.

4.1 Estimation

This component computes two pieces of feedback information for each data packet sent — a multi-bit
queueing delay and an one-bit loss-or-no-loss indication — which are used by the other three components.
When a positive acknowledgment is received, FAST calculates the RTT for the corresponding data
packet and then uses it to compute the minimum RTT and an exponentially smoothed average RTT.
The average RT'T and the minimum RTT are used in the window control component. When a negative
acknowledgment (signaled by three duplicate acknowledgments or timeout) is received, it generates a
loss indication for this data packet to the data control component.

4.2 Window control

Like TCP Vegas, FAST TCP uses queueing delay as its main measure of congestion in its window
adjustment algorithm. In a loss-based approach, sources must periodically push buffers to overflow, in
the absence of AQM, in order to generate the target loss probability, thus inducing a jittery behavior.
Delay information allows the sources to settle into a steady state when the network is static. Queueing
delay also has two advantages as a congestion measure. It provides a finer-grained measure of conges-
tion: each measurement of packet loss (whether a packet is lost or not) provides one bit of congestion
information, whereas each measurement of queueing delay provides multi-bit information, limited by
clock accuracy and measurement noise. Moreover, the dynamics of delay has the right scaling with
respect to link capacity that helps maintain stability as networks scale up in capacity [12, 14].

Under normal network conditions, FAST periodically updates the congestion window w based on
the average RTT (round-trip time) according to:

b RTT
W <— min {QW, (1—vy)w + ’y(%w—l—a) } (1)

where 7 is a constant between 0 and 1, RTT is the current average round-trip time, baseRTT is the
minimum RTT observed so far, and « is a protocol parameter that controls fairness and the number of
packets each flow buffered in the network (see below).

Even though windows are adjusted in different ways at the packet level in TCP Vegas and FAST,
their flow dynamics are similar mathematically. Indeed, the mathematical model of (1) is (ignoring the
2w term)

wit +1) = wi(t) +v(— zi(t)g(t))

where w;(t) is the window size of flow i in the current update period ¢, x;(¢) is its current throughput,
and g;(t) is its current queueing delay. TCP Vegas has a flow dynamic

wilt+1) = wilt) + 7o sian(os — oi(0)ai(0)
i(t)

where T;(t) is the current RTT of flow i, and sign(z) = —1if 2 < 0, 0 if 2z = 0, and 1 if z > 0.
Hence while TCP Vegas adjusts its window up or down by one packet per RTT depending on whether
the number z;(t)g;(t) of buffered packets is smaller or greater than its target «;, the size of window
adjustment in FAST TCP depends on the magnitude, as well as the sign, of a; — z;(¢)¢;(¢). In other
words, FAST adjusts its window by a large amount, up or down, when the number of buffered packets
is far away from its target, and a small amount when it is close. In this sense, FAST is a high-speed
version of Vegas.

The equilibrium and fairness properties of FAST TCP in general networks with multiple links and
heterogeneous flows are simple to understand. Indeed, the equilibrium throughputs of FAST flows
are the unique optimal vector z* that maximizes) ; o; logx; subject to the link constraint that the
aggregate flow rate at any link does not exceed the link capacity. Here the sum is taken over all flows 4.

Hence FAST maximizes log utility function. This implies in particular that FAST achieves proportional
fairness which is milder than maxmin fairness in that it does not give absolute priority to small flows.

In addition to determining the fairness properties, the parameter «; is also equal to the number of
flow 4’s packets that are buffered in the routers in its path in steady state. If there are N flows, the
total number of packets buffered in the routers in steady state is Ef\il ;. The distribution of these
packets in the network, assuming all have enough buffering capacity, is completely determined by the
utility maximization problem: while the source rates solve the primal problem, the vector of queueing
delays at each link due to these packets is the optimal solution of the associated dual problem (Lagrange
multipliers). Hence, it is easy to calculate all the equilibrium flow throughputs and link delays for a
general network of FAST flows, if the network is static.

In reality networks are never static. Flows join and depart asynchronously. The solution of the
utility maximization problem describes the behavior to which the network as a whole converges when
flow pattern or topology shifts the equilibrium to a new point, provided the new equilibrium point is
stable. Global stability of FAST TCP in the presence of feedback delay is still an open problem, but
several partial results have been proved in [1, 15, 16]. First, FAST TCP is proved to be always locally
stable in general networks in the absence of feedback delay [1, 15]. When feedback delay is present, it
is locally stable if the heterogeneity of flow delays is small [16]. Second, FAST TCP is proved to be
globally stable at a single link in the absence of delay [16]. Moreover, it converges exponentially fast to
the equilibrium point.

4.3 Data control

Data control selects the next packet to send from three pools of candidates: new packets, packets that
are deemed lost (negatively acknowledged), and transmitted packets that are not yet acknowledged.
When there is no loss, new packets are sent in sequence as old packets are acknowledged. This is
referred to as self-clocking or ack-clocking. During loss recovery, a decision must be made on whether
to retransmit lost packets, to keep transmitting new packets, or to retransmit older packets that are
neither acknowledged nor marked as lost. The data control component makes the decision on how to
mix packets from the three candidate pools.

This decision becomes important especially when bandwidth-delay product is large. For example,
at a window size of 15,000 packets, a single loss event can lose 7,000 packets or more, e.g, in slow start.
They must be retransmitted rapidly, yet in a way that does not exacerbate congestion and lead to more
losses or even timeouts. Moreover, packets that are lost may not be detected all at once, which further
complicates the decision of what to transmit.

4.4 Burstiness control

The burstiness control component smooths out transmission of packets in a fluid-like manner to track
the available bandwidth. It is particularly important in networks with large bandwidth-delay products,
where traffic can be extremely bursty due to events both in the network and at the end hosts. For
instance, a single acknowledgment can acknowledge several thousand packets, opening up the window
in a large burst. Sometimes the sender CPU is occupied for a long period to serve interrupts of incoming
packets, allowing outgoing packets to accumulate at device output queue, to be transmitted in a large
burst when the CPU becomes available. Extreme burstiness creates long queues and increases the
likelihood of massive losses.

Pacing is a common way to solve the burstiness problem at sender. A straightforward implementation
of pacing would have the TCP sender schedule successive packet transmissions at a constant time
interval, obtained by dividing the congestion window by the current RTT. In practice, this would
require a timer with a very high resolution. For example, a host with a 1 Gbps throughput and 1500-
byte MTU (Maximum Transmission Unit) sends 83,333 packets per second and requires a scheduling

interval of 12 us. Considering that the typical kernel task scheduler runs every 10 ms, the overhead of
scheduling packet transmissions at 12 ys apart will significantly degrade overall OS performance. We
can reduce the overhead by scheduling small bursts of packets instead of individual packets. However,
at large congestion window, pacing alone cannot solve the burstiness problem.

We employ two burstiness control mechanisms, one to supplement self-clocking in streaming out
individual packets and the other to increase window size smoothly in smaller bursts. Burstiness reduction
decides how many packets to send, when an ack advances congestion window by a large amount,
and attempts to limit the burst size on a smaller timescale than one RTT. Window pacing increases
congestion window over the idle time of a connection to the target determined by the window control
component. It reduces burstiness with a reasonable amount of scheduling overhead.

5 Experimental results

We have tested FAST TCP over continental, trans-Atlantic, and trans-Pacific distances of more than
10,000km, employing a variety of commercial products. Its first public demonstration was a series of
experiments conducted during the SuperComputing Conference (SC2002) in Baltimore, MD, in Novem-
ber 16-22 2002 by a Caltech-SLAC research team working in partnership with the CERN, DataTAG,
StarLight, TeraGrid, Cisco, and Level(3). In this section, we present some of our experiments during
and after SC2002.

5.1 Infrastructure

The demonstrations used an OC192 (10 Gbps) link between Starlight (Chicago) and Sunnyvale, the
DataTAG 2.5 Gbps link between Starlight and CERN (Geneva), an OC192 link connecting the SC2002
showfloor in Baltimore and the TeraGrid router in StarLight Chicago, and the Abilene backbone of
Internet2. The network routers and switches at Starlight and CERN were used together with a Cisco
GSR 12406 router at Sunnyvale, and sets of dual Pentium 4 servers each with dual gigabit Ethernet
connections at Starlight, Sunnyvale, CERN and the SC2002 show floor provided by Caltech, SLAC and
CERN. The network setup is shown in Figure 1.

We have conducted a number of experiments, all using the standard MTU 1500 bytes including TCP
and IP headers. In all the experiments reported below, the bottleneck was either the gigabit Ethernet
card or the transatlantic OC48 link.

5.2 Throughput and utilization

In this subsection, we report our SC2002 experiments on throughput and utilization. To put these
results in perspective, we first present a set of calibration experiments conducted on January 27-28,
2003 after the SC2002 conference using the same testbed shown in Figure 1.

Using default device queue size (txqueuelen = 100 packets) at the network interface card, the
default Linux TCP (version v2.4.18), without any tuning on the AIMD parameters, routinely achieves
an average throughput of 185Mbps, averaged over an hour, with a single TCP flow between Sunnyvale
in California and CERN in Geneva, via StarLight in Chicago, a distance of 10,037km with a minimum
delay of 180ms round trip. This is out of a possible maximum of 973Mbps to the application, excluding
TCP/IP overhead, limited by the gigabit Ethernet card, and represents a utilization of just 19%. If
the device queue size is increased 100 times (txqueuelen = 10,000 packets), the average throughput
increases to 266 Mbps and utilization increases to 27%. With two TCP flows sharing the path, one flow
between each pair of servers, the aggregate throughputs are 317Mbps with txqueuelen = 100 packets
and 931Mbps with txqueuelen = 10,000 packets, out of a possible maximum of 1,947Mbps.

Under the same experimental conditions, using the default device queue size (txqueuelen = 100
packets), FAST TCP achieved an average throughput of 925Mbps and utilization of 95% during SC2002,

(SC2002 - Baltimore M

(Caltech) (SLAC
| e e
\/Linux Farm \) (Linux Farm\\
| = " .
8*1GE 8*1GE
Cisco 6500 Cisco 6500
s J
L] L)
10 GE 10 GE
I -
= W e R——
(.‘/ SCinet —-ﬁ
L T il
|
0oc192

‘ ’ TeraGrid

Abilene - oc192
(Starlight - Chicago i
CERN - Geneva 10 GE Level3 PoP - Sunnyvale
L Juniper T640 "
TeraGrid evel3: OC192

/ —\-_\

(Linux Farr_y I

T—— 10GE . 121GE
6"1GE Caltech(DoE)/ ,J\
CERN PoP

Cisco 7606 DataTag: OC48 s Cisco 7609

——
€ Linux Farm)
et = S

20"1GE

{ Linux Farm

. A

Figure 1: Network setup in SC2002, Baltimore, MD, November 16-22, 2002. Distance between Sunnyvale
and Geneva is 10, 037km and that between Sunnyvale and Baltimore is 3,948km.

averaged over an hour. The aggregate throughput with two flows was 1,797Mbps with txqueuelen =
100 packets.

The comparison is summarized in the first three rows of Table 1, where results from Linux TCP,
using large txqueuelen, are shown in parentheses. The throughput in each experiment is the ratio of

#flow | throughput | utilization | delay | distance | duration bmps transfer
Mbps ms km S 10%° GB
1 925 (266) | 95% (27%) | 180 10,037 3,600 9.28 (2.67) | 387 (111)
2 1,797 (931) | 92% (48%) | 180 10,037 3,600 18.03 (9.35) | 753 (390)
7 6,123 90% 85 3,948 21,600 24.17 15,396
9 7,940 90% 85 3,948 4,030 31.35 3,725
10 8,609 88% 85 3,948 21,600 33.99 21,647

Table 1: SC2002 FAST experimental results: average statistics. Statistics in parentheses are for current
TCP implementation in Linux v2.4.18 obtained on January 27-28, 2003.

total amount of data transferred and the duration of the transfer. Utilization is the ratio of throughput
and bottleneck capacity (gigabit Ethernet card), excluding the (40-byte) overhead of TCP/IP headers.
The “bmps” column is the product of throughput and distance of transfer, measured in bit-meter-per-
second. It is the combination of high capacity and large distance that causes performance problems,
and this is measured by “bmps”. Delay is the minimum round trip time. The throughput traces for
some of these experiments are shown in Figure 2.

Also shown in Table 1 are aggregate statistics for 7, 9, and 10-flow experiments using FAST with
txqueuelen = 100 packets. Their throughput traces are shown in Figure 3. In particular, with 10 flows,

2G T T T T T T T
plet’ ==
800
800
- —————— it
. —— &
LB
g
p
I ! {3
£
by I
¥ #Tf §aool
o
F
‘)
a |
- a ‘ { 4
/ ' | s m
.: - = txqz 100 = - - . i .th=_ 10000 i | O] L L 1 Il Il 1
T AESRRLSER A S 0 ED W W) Ze W B0
Linux TCP (default) Linux TCP (optimized) FAST

Figure 2: Aggregate throughput traces of 2 flows. From left: Linux (txqueuelen = 100), Linux
(txqueuelen = 10,000), FAST (txqueuelen = 100); z-axis is time, y-axis is aggregate throughput, and
percentage is utilization.

1000

S0

a0 |

7000 o

'neg.gr;nplut' -t

00 i

5000 it

4000 4

Throushput cHbops>

o0 000

2000 2000

Throughput (Mbps3

= ST | e 1600
} 1hr ‘ , § _6hr ; i ‘ , 6hr .
0 5000 10000 15000 20000 26000 B 7 T i S b
1 flow 7 flows 10 flows

Figure 3: Aggregate throughput traces for FAST experiments in Table 1. From left: 1 flow, 7 flows, 10
flows; z-axis is time, y-axis is aggregate throughput, and percentage is utilization.

FAST TCP achieved an aggregate throughput of 8,609 Mbps and utilization of 88%, averaged over a
6-hour period, over a routed path between Sunnyvale in California and Baltimore in Maryland, using
the standard MTU, apparently the largest aggregate throughput accomplished in such a configuration
by then as far as we know. These traces, especially those for 9 and 10 flows, display stable reduction
in throughput over several intervals of several minutes each, suggesting significant sharing with other
conference participants of network bandwidth. We were unable to calibrate our results using current
Linux TCP implementation for 7, 9, and 10-flow experiments because the path between StarLight in
Chicago and the conference showfloor in Baltimore is not available after SC2002. The path between
Sunnyvale and CERN remained available to us until end of February 2003 and allowed us to calibrate
the 1 and 2-flow experiments after the conference.

6 Conclusions

We have described the development of FAST TCP, from background theory to actual implementation
and its first demonstration. Unlike TCP Reno and its variants, FAST TCP is delay-based. This allows it
to achieve high utilization without having to fill the buffer and incur large queueing delay, as loss-based
algorithms often do. It achieves proportional fairness and does not penalize flows with large RTTs.

The experiments described in this paper were carried out in relatively simple scenarios. Even though
some of the experiments involved multiple flows with heterogeneous delays in the presence of background
traffic, the intensity of the background traffic was generally low and our own TCP flows were long-lived.
Whether FAST TCP can converge rapidly, yet stably, to a fair allocation, in a dynamic environment
where flows of heavy-tailed sizes join and depart in a random fashion, and in the presence of current
TCP flows needs a lot more evaluation. Some of these experiments are reported in [1, 7).

Acknowledgments: A global experiment such as the one reported here requires the contribution of a
large number of people. We gratefully acknowledge the support of the

e Caltech team, in particular, C. Chapman, C. Hu (Williams/Caltech), J. Pool, J. Wang and Z.
Wang (UCLA)

e CERN team, in particular, P. Moroni

e Cisco team, in particular, B. Aiken, V. Doraiswami, M. Potter, R. Sepulveda, M. Turzanski, D.
Walsten and S. Yip. Cisco also loaned the GSR 12406 router at Sunnyvale, and additional modules
at Starlight, CERN and Sunnyvale.

e DataTAG team, in particular, E. Martelli and J. P. Martin-Flatin.
e LANL team, in particular, G. Hurwitz, E. Weigle, and A. Engelhart

e Level(3) team, in particular, P. Fernes and R. Struble; Level(3) also donated the OC192 link
between StarLight in Chicago and Level(3) PoP in Sunnyvale.

¢ SCinet team, in particular, G. Goddard and J. Patton

e SLAC team, in particular, C. Granieri C. Logg, I. Mei, W. Matthews, R. Mount, J. Navratil and
J. Williams

e StarLight team, in particular, T. deFanti and L. Winkler

e TeraGrid team, in particular, L. Winkler

10

and the funding support of European Commission (Grant IST-2001-32459), US Army Research Of-
fice (Grant DAAD19-02-1-0283), US Department of Energy (Grants DE-AC03-76SF00515, DE-FG03-
92-ER40701, and W-7405-ENG-36), US National Science Foundation (Grants ANI-0113425 and ANI-
0230967).

11

References

1]

[2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Cheng Jin, David X. Wei, and Steven H. Low. TCP FAST: motivation, architecture, algorithms,
performance. In Proceedings of IEEE Infocom, March 2004. http://netlab.caltech.edu.

C. Casetti, M. Gerla, S. Mascolo, M. Sansadidi, and R. Wang. TCP Westwood: end-to-end
congestion control for wired/wireless networks. Wireless Networks Journal, 8:467-479, 2002.

Sally Floyd. HighSpeed TCP for large congestion windows. Internet draft draft-floyd-tcp-highspeed-
02.txt, work in progress, http://www.icir.org/floyd/hstcp.html, February 2003.

Tom Kelly. Scalable TCP: Improving performance in highspeed wide area networks. Submitted for
publication, http://www-1ce.eng.cam.ac.uk/~ctk21/scalable/, December 2002.

Sylvain Ravot. GridDT. The 1st International Workshop on Protocols for Fast Long-Distance
Networks, http://sravot.home.cern.ch/sravot/GridDT/GridDT.htm, February 2003.

Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary increase congestion control for fast long
distance networks. In IEEE Proc. of INFOCOM, March 2004.

Sanjay Hegde, David Lapsley, Bartek Wydrowski, Jan Lindheim, David Wei, Cheng Jin, Steven
Low, and Harvey Newman. FAST TCP in high speed networks: An experimental study. In
Proceeding of GridNets, October 2004.

Steven H. Low. A duality model of TCP and queue management algorithms. IEEE/ACM Trans.
on Networking, 11(4):525-536, August 2003. http://netlab.caltech.edu.

Frank P. Kelly. Fairness and stability of end-to-end congestion control. Furopean Journal of
Control, 9:159-176, 2003.

S. H. Low and R. Srikant. A mathematical framework for designing a low-loss, low-delay internet.
Networks and Spatial Economics, special issue on “Crossovers between transportation planning and
telecommunications”, E. Altman and L. Wynter, 4:75-101, March 2004.

Glenn Vinnicombe. On the stability of networks operating TCP-like congestion control. In Proc.
of IFAC World Congress, 2002.

Fernando Paganini, Zhikui Wang, John C. Doyle, and Steven H. Low. Congestion control for high
performance, stability and fairness in general networks. IEEE/ACM Transactions on Networking,
to appear, 2004.

S. Kunniyur and R. Srikant. Designing AV(Q parameters for a general topology network. In
Proceedings of the Asian Control Conference, September 2002.

Hyojeong Choe and Steven H. Low. Stabilized Vegas. In Proc. of IEEE Infocom, April 2003.
http://netlab.caltech.edu.

Jiantao Wang, Ao Tang, and Steven H. Low. Local stability of FAST TCP. In Proc. of the IEEE
Conference on Decision and Control, December 2004.

Jiantao Wang, David X. Wei, and Steven H. Low. Modeling and stability of FAST TCP. In Proc.
of IEEE Infocom, March 2005.

12

