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Abstract

We describe a simple class of type IIA string compactifications on Calabi-Yau mani-

folds where background fluxes generate a potential for the complex structure moduli, the

dilaton, and the Kähler moduli. This class of models corresponds to gauged N = 2 su-

pergravities, and the potential is completely determined by a choice of gauging and by

data of the N = 2 Calabi-Yau model – the prepotential for vector multiplets and the

quaternionic metric on the hypermultiplet moduli space. Using mirror symmetry, one can

determine many (though not all) of the quantum corrections which are relevant in these

models.
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1 Introduction

Finding compactifications with computable potentials for the scalar moduli is an impor-

tant problem in string theory. Early ideas in this direction, in the context of the heterotic

string, can be found in [1, 2]. More recently, there has been a great deal of activity

exploring the potentials generated by p-form fluxes in type II string models (for some

excellent reviews with references, see e.g. [3, 4]). Much of the attention has been focused

on type IIB Calabi-Yau flux vacua, where the flux-induced potentials depend on the com-

plex and dilaton moduli, but not the Kähler moduli [5, 6]. In this type IIB context, there

is increasingly strong evidence that proper incorporation of quantum corrections (to the

superpotential and/or Kähler potential) yields large numbers of models where the Kähler

moduli can be stabilized as well [7, 8, 9, 10, 11]. Concrete examples of moduli stabilization

which work outside the framework of low-energy supersymmetry have also been developed

[12]. In the present paper, we describe a class of type IIA flux vacua based on Calabi-Yau

compactification, where the fluxes alone generate a potential for all geometrical moduli.

One of the basic difficulties with analyzing N = 1 string compactifications is that the

scalar potential receives corrections at all orders in α′ and gs. Since one is usually ignorant

of the exact Kähler potential K, i.e. the exact two-derivative Lagrangian, corrections to

the potential which are suppressed by the ratio of the SUSY breaking scale M2 to M2
s and

which are difficult to compute will typically arise. For instance, in a background where a

chiral field φ has a SUSY-breaking auxiliary field VEV Fφ �= 0, one can potentially soak

up the superspace θ integrals in
∫
d4θ K by using Fφ, and hence terms in K proportional

to φ†φ can correct the scalar potential V . This is not necessarily a problem, since in

models where one obtains moderately weak couplings by tuning, such corrections can be

controlled (as in standard perturbative quantum field theory) – this is the situation for

many of the proposed string constructions with stabilized moduli. Nevertheless, this does

represent a concrete limitation on one’s knowledge of the potential.

In the class of models we describe here, in contrast, one can hope to compute the

exact two-derivative Lagrangian (though it is still a highly nontrivial task). These models

are based on N = 2 gauged supergravities; while such models cannot be completely

realistic, they can be useful toy models for the more general N = 1 situation. Among

the many developments during the duality revolution of the mid 90s was the discovery

that N = 2 supersymmetric string vacua are in some sense exactly soluble [13]. Using

heterotic/type II duality as well as mirror symmetry, one can find the exact prepotential

for the N = 2 vector multiplets at string tree-level in the type II picture, and the geometry

of the quaternionic manifold at string tree-level in the heterotic picture. In practice this

can be carried out for the vector multiplets in simple examples (see e.g. [14] where the

Seiberg-Witten solution of N = 2 gauge theory [15] was recovered using these dualities).

On the other hand, it has proved dauntingly difficult to understand the geometry of
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hypermultiplet moduli spaces (see e.g. [16] for some attempts). This is partially because in

the IIB picture the vector multiplet moduli space is exact at both string and sigma model

tree-level, while even in the heterotic picture the quaternionic manifold receives corrections

in sigma model perturbation theory (though not from string loops). Nevertheless, N = 2

vacua are clearly under better control than their N = 1 counterparts.

In this paper, we describe a class of type IIA Calabi-Yau compactifications where a

potential for all geometrical moduli (as well as the axio-dilaton) is determined completely

by the N = 2 prepotential and quaternionic metric, as well as a choice of gauging. In string

theory terms, these models arise from IIA compactifications on Calabi-Yau spaces with

the RR four-form flux F4 and the NS three-form flux H3 turned on. While the relevance of

gauged supergravity to flux potentials in string theory has been discussed extensively [17,

18, 19, 20, 21], most of the compact Calabi-Yau flux models which have been constructed

to date also include orientifold planes. The presence of the orientifold planes breaks

the supersymmetry to N = 1, and so the results derived from the gauged supergravity

analysis are not exact (though they can be an excellent approximation). In particular,

the Kähler potential need not be the one which follows from gauged supergravity. In our

class of models, the results from gauging (in terms of the fully corrected prepotential and

quaternionic metric) should be an even better approximation to the full theory. Since in

the N = 2 models we know the precise Kähler potential, one expects the first corrections

to the potential that we are neglecting to be down by two additional powers of Ms, in

comparison with typical N = 1 models.

Our models are simpler, more computable relatives of G2 flux compactifications of M-

theory. Models with only four-form flux turned on in that context do not yield vacua in

the large volume approximation, a fact we will see reflected here as well; orientifolds of our

IIA models should provide insight into quantum corrections which generate more struc-

ture in the effective potential in such compactifications. Earlier suggestions for moduli

stabilization in M-theory compactifications appeared in [22]. Some interesting Calabi-Yau

compactifications of IIA strings with only RR flux turned on were considered in [17], while

a different class of type IIA compactifications with flux was described in [23].

The organization of this paper is as follows. In §2, we describe the general gauged

supergravity framework which encompasses our models. In §3, we present a toy example

which shows that the resulting potentials can have interesting features. We close with a

discussion in §4. Our calculations have been relegated to several appendices.
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2 Scalar Potentials from Gauging

In this section, we describe the scalar potentials which arise in IIA Calabi-Yau compact-

ifications with RR four-form flux (and six-form flux with qualifications, see below) and

NS three-form flux turned on in the internal dimensions. In §2.1, we describe how the

potentials are derived given the data of a 4d N = 2 supersymmetric effective field theory.

In §2.2 and §2.3, we describe how IIA string compactifications on Calabi-Yau threefolds

with nontrivial F4 and H3 give examples of the class of theories described in §2.1. The

latter analysis relies heavily on earlier work of Louis and Micu [19].

2.1 Scalar potentials from N = 2 data

The data of an N = 2 supergravity theory in four dimensions includes a special Kähler

manifold MV , the moduli space of vector multiplets, and a quaternionic Kähler manifold

MH , the moduli space of hypermultiplets. In type IIA compactification on a Calabi-Yau

space X, these correspond to the Kähler moduli space and the complex structure + axio-

dilaton moduli space respectively (with the latter enhanced to a quaternionic manifold

by the presence of the RR axions).

The geometry of MV can be described by complex projective coordinates XI , I =

0, · · · , h1,1(X), and a prepotential F . The Kähler potential on MV is

K = − log[i(X
IFI −XIF I)] . (2.1)

MH comes equipped with a quaternionic metric huv, where u, v = 1, · · · , 4(h2,1(X) + 1).

In an N = 2 gauged supergravity [24], we in addition choose Killing vectors ki
I and ku

I

which generate the action of the Ith gauge field on the vector and hypermultiplet moduli

(I = 0 corresponds to graviphoton charges; we also note that for abelian gauging, the

case we will be considering in this paper, ki
I of course vanish). These are related to an

SU(2) triplet of Killing prepotentials Px
I (for x = 1, 2, 3). The scalar potential is given in

terms of the Killing vectors and the Killing prepotentials by

V = eKXIX̄J(gij̄k
i
Ik

j̄
J + 4huvk

u
I k

v
J) − (

1

2
(ImN )−1 IJ + 4eKXIX̄J)Px

I Px
J . (2.2)

ImN is the gauge coupling matrix,

Lvec
kin = i(N̄IJF

−I ∧ ∗F−J −NIJF
+I ∧ ∗F+J) (2.3)

= (ImN )IJF
I ∧ ∗F J − i(ReN )IJF

I ∧ F J . (2.4)

The important point for us is the following: the scalar potential of the resulting theory

is completely determined in terms of a choice of isometries and the data characterizing MV

3



and MH . Hence, although it is difficult work to compute the low-energy effective action

of the N = 2 theory resulting from Calabi-Yau compactification, this action together with

various choices of charges (fluxes) completely determines the potential (2.2) in this class

of models.

Most Calabi-Yau flux compactifications to date have involved, in addition to fluxes,

further explicit breaking of the supersymmetry (or have involved highly simplified models,

like toroidal or K3 orientifolds). In §2.3, we describe a class of IIA Calabi-Yau compacti-

fications where the theory is really an N = 2 gauged supergravity, and the formula (2.2)

is the full result for the potential.

2.2 Corrections to the tree level CY potential

It is a celebrated result in (ungauged) N = 2 supergravity that up to the two derivative

level, no interaction terms can be introduced that involve both vector multiplets and

(neutral) hypermultiplets. For CY string compactifications, this implies that the metric

on the vector multiplet scalar manifold receives no string loop corrections, and the metric

on whichever scalar manifold coincides with the complex structure moduli space of the

CY at tree level (hyper for IIA, vector for IIB) receives no α′ corrections. In gauged

supergravity, hypers can acquire charges under vectors. The two sectors of the theory

are then of course no longer decoupled. Nevertheless, the above conclusions can still be

drawn: the structure of the Lagrangian is completely encoded in terms of the same type

of N = 2 data as before gauging, i.e. the metric on a special Kähler manifold for the

vectors and on a quaternionic manifold for the hypers (in addition, as pointed out above,

killing vectors encoding the isometries of the scalar manifolds that are to be gauged must

be specified) [24]. As before, the presence of a potential notwithstanding, no mixing of

the metrics is allowed, and the same exactness conclusions as above can then be drawn.

In the presence of the fluxes, backreaction corrects the Calabi-Yau geometry and it is

no longer a solution of the equations of motion. However, there is strong evidence that

the result of turning on fluxes in the Calabi-Yau must, at the level of 4d effective field

theory, simply be to gauge the resulting N = 2 supergravity. We assume this to be true.

Then, the powerful results of [24] imply that the 4d effective field theory resulting from

the corrected geometry must be governed by the N = 2 data of the model with no flux.

Therefore, even without detailed knowledge of the structure of the corrected supergravity

or string solution, we are able to discuss the effective potential of the resulting low-energy

theory in 4d with confidence.

It is important to keep in mind that the “exact” results from gauged N = 2 supergrav-

ity receive corrections when one expands the resulting potentials around critical points

which break supersymmetry. In any systematic attempt to make controlled examples, the

relevant parameter controlling corrections will be µ = M/Ms where M is the supersym-
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metry breaking scale. Since the first unknown corrections will enter at higher orders in

the µ expansion for N = 2 gauged models than for general N = 1 models, we expect

these models to be a good laboratory for studying the space of vacua.

2.3 IIA strings with F4 and H3 flux

The class of models we will consider differ from the hitherto popular IIB models in two

main regards. Unlike the situation in IIB, we demonstrate below that tadpole constraints

do not force us to break N = 2 SUSY explicitly, e.g. by orientifolding, once we turn

on fluxes in IIA. This is why we can extend the power of N = 2 beyond the traditional

scenario without fluxes. Also, in IIA compactifications on CYs, RR and NS fluxes thread

cycles of different dimensions. Since the size of even dimensional cycles is controlled by

the Kähler data of the geometry, and the size of middle dimensional cycles is controlled

by the complex structure moduli, turning on both types of fluxes gives rise to non-trivial

dependence on both complex structure and Kähler moduli in the potential already at the

perturbative level in gs.
1

2.3.1 Tadpole constraints

In type IIB, turning on both RR and NS 3-form flux F3 and H3 gives rise to a D3 brane

tadpole visible in the CS term

∫
C4 ∧H3 ∧ F3 (2.5)

in the SUGRA action. We wish to determine whether such tadpoles can arise in IIA. The

fluxes in the game are F0, F2, F4, F6 and H3. Only tadpoles for space filling branes lead

to inconsistencies due to violation of Gauss’ law in the compact space. Hence, we only

need to worry about the gauge potentials C5, C7, C9.

• A C5 tadpole could only arise from a term
∫
C5 ∧ F2 ∧ H3. Since a CY has no

non-trivial 5 cycles, such a term cannot arise in a CY compactification.

• A C7 tadpole can arise from a term
∫
C7 ∧H3. Such a term arises from the kinetic

1The ‘non-trivial’ dependence is to be contrasted with the no-scale potentials in IIB [6], which also
have dependence on both types of moduli, the Kähler moduli however only entering trivially via the eK

prefactor in the potential of N = 1 supergravity.
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term of F̃2 = dC1 +mB2 in massive IIA, which is IIA with F0 flux turned on,∫
F̃2 ∧ ∗F̃2 → m

∫
B2 ∧ ∗dC1 (2.6)

= m

∫
B2 ∧ dC7 (2.7)

= −m
∫
H3 ∧ C7 . (2.8)

• Finally, there are no 1-forms present to give rise to a C9 tadpole.

The only tadpole for space filling branes that can be generated in this setup hence arises

in the presence of both F0 and H3 flux. It is a C7 tadpole, corresponding to a space filling

D6 brane wrapping a 3 cycle in the CY. We will avoid this tadpole by simply leaving the

RR F0 flux turned off.

2.3.2 The Chern-Simons term

Before proceeding with our analysis, we need to address a subtlety. Upon turning on

fluxes, the relation between field strength and gauge potential, F = dA, no longer holds.

In particular, various incarnations of the CS terms that are related by integration by

parts before turning on fluxes are no longer equivalent. In [19], this issue is dealt with

pragmatically by choosing a form of the action in which the compromised gauge potentials

do not appear explicitly in the CS term. This is no longer possible once both RR and NS

fluxes are turned on, at least not in 10 dimensions.2

Requiring that the 10 dimensional action upon compactification fits into the constrain-

ing harness of N = 2 gauged SUGRA, we arrive at the following proposal for the 10d CS

term in a Calabi-Yau background in the presence of fluxes:

SCS =

∫
1

2
(dB +Hflux

3 ) ∧ C3 ∧ dC3 − B ∧ F flux
4 ∧ dC3 . (2.9)

This term clearly reduces to the standard CS term in the absence of fluxes. To derive this

proposal from first principles, one could, in the spirit of [25], introduce a CS term on an

11-manifold W that has the physical 10 dimensional space M as boundary, ∂W = M,

SCS = −1

2

∫
W
H3 ∧ F4 ∧ F4 . (2.10)

Assuming that M is of the formX×Z where X is a Calabi-Yau manifold and Z represents

the noncompact dimensions, and that the cohomology of the Calabi-Yau (together with
2Any fears that turning on RR and NS flux simultaneously may not be consistent should be allevi-

ated, at least for the case of turning on both F4 and H3, by the fact that this situation arises upon
compactification of M-theory on a circle in a generic G-flux background.

6



its ring structure) is preserved in W, this prescription gives rise to the 10d CS term (2.9)

proposed above. To elevate this heuristic sketch into a derivation, one must show that

appropriate manifolds W exist, and that the 10d term is independent of which manifold

W one chooses. We take the fact that (2.9) reduces to previously proposed formulae in

suitable limits, together with the fact that it gives rise to a dimensional reduction which

fits into the expected supergravity framework, to be sufficient evidence for our proposal,

and leave a more rigorous argument (perhaps along the lines suggested above) for future

work.

2.3.3 Gauged supergravities arising from F4 and H3 flux

The fluxes we have at our disposal are F0, F2, F4, F6 and H3. To avoid the need to cancel

a D6 brane tadpole, we set F0 = 0. As Louis and Micu [19] have demonstrated (in the

absence of H3 flux), turning on F2 and F4 simultaneously gives both electric and magnetic

charges to the axion a (the N = 1 SUSY partner of the dilaton) under the gauge fields

in the vector multiplet. We bypass such complications by also setting F2 = 0 (we could

just as well consider turning on F2 flux and setting F4 = 0; this merely swaps electric for

magnetic charges for the RR axions). By F6 = ∗F4, turning on F6 flux is equivalent to

modifying the spacetime part of F4. Hence, the presence of F6 flux can be dealt with after

performing the dimensional reduction. We are thus left with reducing in the presence of

F4 and H3 flux. We give the details of this calculation in appendix A.1. Here, we state

our results.

We consider compactification on a Calabi-Yau X with the fluxes

F flux
4 = eiω̃

i , (2.11)

Hflux
3 = pAαA + qAβ

A (2.12)

turned on, where ω̃i, i = 1, . . . , h1,1, are a dual basis for H1,1(X),3 and αA, β
A, A =

0, . . . , h2,1, a symplectic basis for H3(X). In this flux background, the axion a as well as

the RR axions ξA, ξ̃A become charged under the graviphoton. In addition, a also acquires

charges under all vector multiplets. Specifically, the killing vectors are given by

ka
0 = 2n− 2biei + pAξ̃A − qAξ

A , (2.13)

kξA

0 = pA ,

kξ̃A
0 = qA ,

ka
i = −2ei , (2.14)

where n ∈ Z can be interpreted as F6 flux (see A.1). The bi are the partners of the

(metric) Kähler moduli on the complexified Kähler cone. As expected, the isometries

3Meaning, if we take ωi to be a basis for H1,1(X, Z), then
∫

X ωi ∧ ω̃j = δj
i .
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being gauged by the graviphoton and the gauge fields of the vector multiplets commute

pairwise. Comparing to [19], we see that the most naive assumption holds true: the

isometries being gauged upon turning on both RR and NS flux are simply the sum of

those gauged upon turning on the fluxes individually.

The potential we obtain from dimensional reduction also follows, as required for con-

sistency, from the general form of the gauged N = 2 potential (2.2) with the above choice

of killing vectors. It is given by

V =
e4φ

2K (
1

4
gijeiej + (n− biei + pAξ̃A − qAξ

A)2) − e2φ

4K (q + pM)(ImM)−1(q + pM̄) ,

(2.15)

where K = 1
8
e−K is the volume of X and gij = 1

4K
∫

X
ωi ∧ ∗ωj. Here M is the matrix

defined by

MAB = GAB + 2i
(Im G)ACZ

C(Im G)BDZ
D

ZC(ImGCD)ZD
, (2.16)

where ZA and GA are the periods and dual periods in a symplectic basis forH3, and further

subscripts on G indicate differentiation with respect to the relevant complex modulus.

In this section we have simply summarized the results of our computations because

they are somewhat lengthy and involved. The interested reader can find the derivation

of the potential (2.15) from dimensional reduction in appendix A.1, and from the general

form of the N = 2 gauged supergravity potential (given the killing vectors (2.13)) in

appendix A.2.

3 Worldsheet instantons and a toy example

One class of minima of the potential (2.15) lie at infinite Kähler parameter. This comes

as no surprise: whenever the Kähler class dependence is purely that of classical geometry,

fluxes will drive the geometry to large Kähler class, as this causes them to be diluted

and reduces their contribution to the energy. However, as described in §2.2, we need not

restrict our attention to the large volume limit; the data relevant for computing the scalar

potential (in particular, the N = 2 prepotential) is available for all values of the Kähler

class. So, we can simply use the full instanton corrected N = 2 data of the CY model,

to compute the scalar potential (2.2) including worldsheet instanton corrections. While

this expression for the potential is not exact, the first corrections we are neglecting are

suppressed by more powers of Ms than in the analogous N = 1 constructions. Hence,

in any case where the SUSY breaking order parameters are smaller than Ms, corrections
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may be controllable.4

We leave the construction of such classes of examples for future work, and here pro-

vide only a simple illustrative model that demonstrates that our potentials can contain

interesting structure. For our toy example, we will join together the complex structure

of a rigid CY with the Kähler moduli space of a one Kähler parameter CY. Our moti-

vation for considering this fictional geometry is to isolate the main features of this class

of compactifications without being swamped by too many computational hurdles. Such

a geometry would give rise to one 4 dimensional vector multiplet and one (the universal)

hypermultiplet. With the killing vectors determined in the previous section and the asso-

ciated killing prepotentials determined in appendix B, the potential for our toy example

takes the form

V = −e4φ(ImN )−1 IJaIaJ − 1

2
e2φ(p̃2 + q̃2)

(
(ImN )−1 00 +

3

4KX
0X̄0

)
, (3.1)

where a0 = 1√
2
n+ p̃y − q̃x and a1 = 1

2
√

2
e1. We have here rotated the RR axions and the

fluxes to the more convenient basis
√

2

(
x
y

)
=

(
α β
γ δ

) (
ξ

ξ̃

)
, 1√

2

(
p̃
q̃

)
=

(
α β
γ δ

) (
p
q

)
,

where the transformation matrix is a real symplectic matrix whose entries depend on the

period matrix of the complex structure moduli space. The explicit entries are given in

appendix B.

3.1 The moduli of the universal hypermultiplet

The dependence of the potential on the scalar fields of the hypermultiplet is very simple.

The potential is quadratic in the string coupling and quadratic in the RR axions, which

occur only in the combination a0 = 1√
2
n+ p̃y − q̃x. There is no dependence on the axion

a.

The dilaton: highlighting the dilaton dependence, the potential takes the form

V = e2φ(A2e
2φ + A1) , (3.2)

where

A1 = −1

2
(p̃2 + q̃2)

(
(ImN )−1 00 +

3

4KX
0X̄0

)
(3.3)

A2 = −(ImN )−1 IJaIaJ . (3.4)

4We expect that it will probably be easier to construct families of such examples in orientifolds of
our class of models, where the negative term in the potential coming from the O-plane tensions plays a
helpful role in stabilizing gs and volume moduli; for a nice discussion of this in component form see [3].
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For fixed A1 and A2, there is hence always a stationary point at vanishing string coupling

(gs = eφ), where the potential and all of its derivatives with regard to φ vanish. For

positive A1, this point is a minimum. The other stationary point lies at e2φ = − A1

2A2
.

Since the dilaton is a real scalar field (and hence the string coupling is always real and

positive), this is only a physically acceptable solution when the RHS of this equation is

positive.

The analysis thus hinges on the signs of A1 and A2. Let us consider these in turn. ImN
is the gauge coupling matrix, and hence negative definite (negative rather than positive

definite due to its standard definition in SUGRA). A2 is therefore always positive. For

the potential to have a minimum away from vanishing string coupling eφ = 0, A1 must

thus be negative. This imposes the following inequality on the N = 2 data:

4(ImN )−1 00K + 3X0X̄0 > 0 . (3.5)

Note that the choice of the values of the fluxes did not enter into these considerations.

This is a simplification that would not persist in more general models, but arises because

of our extremely simple choice of vector and hyper moduli spaces.

In the classical limit, in the gauge X0 = 1, (ImN )−1 00K = −1, and the inequality

is not satisfied. To move into the interior of moduli space, we need to pick a model.

We will do so below. First, let us assume that we can find a model with A1 < 0 in

some region of the Kähler moduli space, and press on with the analysis. Plugging in the

functional dependence of the string coupling on the remaining parameters of the theory

at the minimum, we obtain the following expression for the potential:

Vφ = − A2
1

4A2

. (3.6)

The logic of the notation is that the subscript denotes the field that has been eliminated

from the potential.

The RR axions: Vφ depends on the RR axions x and y in the combination a0 =
1√
2
n+ p̃y − q̃x. Minimizing with regard to a0 yields the potential

Vφ,ξ,ξ̃ =
1

4

A2
1(ImN )−1 00

a2
1 det ImN−1

(3.7)

=
1

256

(4(ImN )−1 00K + 3X0X̄0)2(ImN )−1 00

K2 det ImN−1

(p̃2 + q̃2)2

a2
1

. (3.8)

Since the eigenvalues of the gauge coupling matrix are, away from singular points, always

negative, the determinant is strictly positive. The sign of Vφ,ξ,ξ̃ hence depends on the sign

of (ImN )−1 00. A simple argument shows that in models with a single Kähler parameter,
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this must be negative: at large radius, (ImN )−1 00 is negative. If it is positive at some

point in moduli space, it must, by continuity and the fact that singular points on the

moduli space are of complex codimension one, vanish at some point. We know that

the determinant of the gauge coupling matrix is strictly positive away from singular

points. The matrix being symmetric, the off diagonal elements contribute negatively

to the determinant. Hence, neither of the diagonal elements can vanish anywhere on

moduli space, and they must therefore retain their sign throughout moduli space. We

conclude that Vφ,ξ,ξ̃ for our toy example will vanish or be negative. Any minimum will

hence be anti de Sitter, in this approximation. Furthermore, the potential is bounded

from below5 and vanishes in the large radius limit. So we can conclude that as long as

there is some region in Kähler moduli space where the potential goes negative (as happens

if A1 < 0), it must attain a minimum.

Once we minimize with regard to a0, we obtain the following flux dependence for the

string coupling

g2
s ∼ p̃2 + q̃2

e21
. (3.9)

By a judicious choice of fluxes, one can therefore find vacua at weak string coupling.

This feature will persist in more general models; in the limit where the RR flux quantum

numbers are larger than the NS flux quantum numbers, the coupling will always be weak.

3.2 The Kähler moduli

The dependence on Kähler moduli enters the potential via the gauge coupling matrix and

X0. For our toy example, we choose the Kähler moduli space as that of the sextic in

WP
4
2,1,1,1,1. Using mirror symmetry, this is equivalent to the complex structure moduli

space of the orbifold of the hypersurface W = 2x3
0 +x6

1 +x6
2 +x6

3 +x6
4 in WP

4
2,1,1,1,1 by the

group G = Z3 ×Z
2
6 [29, 30]. Following the calculational steps outlined in appendix C, we

obtain the N = 2 data necessary to write down the potential in an expansion around the

Landau-Ginzburg point.

As outlined above, the crucial step in our analysis is finding a region in moduli space

in which the inequality (3.5) is satisfied, such that A1 < 0 and the minimum of the

potential lies away from vanishing string coupling. This is equivalent to requiring that

(ImN )−100 + 3
4KX

0X̄0 > 0. A plot of the LHS of this inequality over the ψ plane, where

ψ = reib is the coordinate on the Kähler moduli space in a neighborhood of the Landau-

Ginzburg point (see C.1), is shown in figure 1.
5The only singular point on moduli space is the (mirror) conifold point, and V → 0 there as gs is

driven to vanish. At any finite value of gs, the potential (naively) tends to positive infinity there. This
is related to the fact that the dilaton carries electric charge, in contrast to the situation studied in [17].
The potential is manifestly finite at any smooth points.
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Figure 1: A plot of 4(ImN )−1 00K+3X0X̄0 against ψ. To produce this and the following
plot, the periods around the LG point were expanded to order 6 in ψ.

Computing (3.2) precisely at the Landau-Ginzburg point, we see that the minimum

of the potential in the dilaton direction would arise by taking gs → 0 (where V vanishes).

On the other hand, as we vary the expectation value of the Kähler mode by hand, we

see that for r ∼ 0.6 and a range of values of the axion, the dilaton vacuum arises at a

finite value of gs. At this critical point V < 0. As explained in §3.1, this is all we need

to know to infer the existence of a minimum of the full potential at finite r. To examine

whether this minimum lies within our range of computability, we consider a plot of Vφ,ξ,ξ̃

in figure 2. The plot suggests that a minimum of the potential lies very close to r = 1,

(but at b ∼ 3.7, i.e. far from the conifold). This result should be verified by expanding

the periods to higher order in ψ. Again, we can infer the existence of a minimum simply

by observing the potential take on negative values, and this happens already at r ∼ 0.6,

where we trust our calculation.

Note that in computing the potential, we allow the NS axion partner of the Kähler

mode to vary over a full 2π period; this results in a smooth potential. While one might

naively expect the axion to vary only over a pie-wedge of angle 2π
6

in this model, the

fluxes spontaneously break the Z6 symmetry responsible for this identification. Hence
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Figure 2: A plot of Vφ,ξ,ξ̃ against ψ.

upon leaving one pie-wedge and entering the neighboring region, one can either perform

a modular transformation (determined by the LG monodromy) which changes the fluxes

(and is necessary to obtain a smooth potential), or one can fix the fluxes and allow the

axion to vary over a larger region in field space. We choose the latter course; since the

order of the monodromy is 6, this simply re-enlarges the axion moduli space to have 2π

period.

3.3 Incorporating string loop corrections

Since we can dial the size of the string coupling by a diligent choice of fluxes, we can mean-

ingfully incorporate the first string loop corrections to our result. Recall that at the two

derivative level, the vector multiplet moduli space receives no corrections at higher loops

in gs. The hypermultiplet moduli space receives both perturbative and non-perturbative

corrections. The perturbative corrections in the case of a single hypermultiplet have been

studied in e.g. [26, 27, 28].

Our main interest is whether the additional features introduced by the known loop

corrections can qualitatively change the behavior of the potential in the region of Kähler

13



moduli space where A1 > 0; recall that in the absence of corrections, vacua at finite gs

only arise if A1 < 0. We will find that the A1 > 0 region in parameter space can be

redeemed if two other inequalities, which depend sensitively on the Kähler and the flux

data, are satisfied.

The potential takes the form

V = A1e
2φ + A2e

4φ + A3e
6φ , (3.10)

where

A1 = −
(

(ImN )−1 00 +
3

4KX
0X̄0

)
(p̃+ q̃)2 (3.11)

A2 = −(ImN )−1 IJaIaJ + χ1

(
(ImN )−1 00 +

1

2KX
0X̄0

)
(p̃+ q̃)2 (3.12)

A3 =
χ1

KXIX̄JaIaJ , (3.13)

and χ1 = 4ζ(2)χ
(2π)3

, where χ = 2, the Euler number of our make-believe rigid Calabi-Yau.

Note that we must distinguish between the terms in the potential stemming from the

NSNS and the RR sector of string theory. The latter are kept to one higher order in e2φ.

Let’s focus our attention on the string coupling dependence again. The minima of the

potential with regard to gs lie at

−A2 ±
√
A2

2 − 3A1A3

3A3
, (3.14)

if this is positive, else at 0. Again, our analysis boils down to the signs of the three

coefficients Ai. A3 is positive. The signs of A1 and A2 depend on where we are in the

Kähler moduli space. First, let’s consider the case for which minima away from vanishing

string coupling existed at tree level, A1 < 0. A quick glance at (3.14) convinces us that

the same is true here, independent of the sign of A2. Next, consider A1 > 0. Unlike the

situation at tree level, a minimum at finite string coupling is now possible in this region of

parameter space, if the inequalities A2 < 0 and A2
2−3A1A3 > 0 can be satisfied. The first

contribution to A2 is positive definite. The sign of the second depends on where we are in

Kähler moduli space, but A1 > 0 implies that this term is negative. Hence, by choosing

the magnitude of the fluxes p̃, q̃ carefully compared to that of n, e1, we can arrange for

A2 < 0. Notice that unlike the case at tree level, the fluxes enter crucially in this analysis.

Incorporating the second inequality into our considerations requires launching a numeric

study of the Kähler data similar to our analysis of the tree level inequality above. We

leave this to the interested reader.

The lesson we glean from this study is that, as expected, the computable quantum

corrections to V allowed by N = 2 supergravity give rise to interesting substructure in
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our potentials. Note also that, once one has incorporated the positive term A3 into the

potential (3.10), this toy model can potentially admit de Sitter vacua, which was not

possible in the approximation of §3.1.

4 Discussion

Our construction provides another illustration of the fact that fairly common string theory

backgrounds can include enough different effects in the potential to stabilize the geometric

moduli. Our toy model was not sufficiently complicated to admit parametric control; it

would be interesting to find an analogue of the tuning parameter W0 of [7], which would

allow one to stabilize some small fraction of the models in the semi-classical regime. Since

the unknown corrections to the potential in this class of models are down by more powers

of Ms than in typical N = 1 constructions, but the potential is nevertheless a reasonably

generic function of all moduli, one expects this class of models to be a good toy laboratory

for studying moduli stabilization.

In the IIB context, it has recently become clear that the space of flux vacua admits

a statistical description [31]. The class of IIA models we study in this paper seems even

more amenable to such analysis, since the potential (2.2) relevant to compactification

on a given Calabi-Yau manifold X can be completely constructed in terms of classical

geometric data on X and its mirror manifold Y . In other words, this is a setting in which,

in the leading approximation, mirror symmetry allows one to compute potentials for all

moduli.

One should be able to generalize this construction to a class of N = 1 Calabi-Yau

orientifold models where all geometric moduli enjoy flux-generated potentials. In that

context, the leading approximation to the potential would still be given by gauged su-

pergravity formulae (as in the type IIB orientifolds). We note here that the negative

contribution to the scalar potential coming from the inclusion of orientifold planes in the

N = 1 setting should actually make the stabilization of moduli considerably simpler there

than in the N = 2 constructions presented here (for discussions of the helpful role of ori-

entifold planes, see [6] and [3]). Furthermore, there has recently been significant progress

in both constructing semi-realistic chiral brane models, and in combining them with flux

compactifications (see e.g. [32, 33, 34, 35, 36]). Many of these constructions arise in IIA

string theory, and should naturally admit embeddings into (orientifolds of) our class of

Calabi-Yau flux models.

Finally, the connection between gauged supergravity and string compactification fairly

begs the question: which class of string compactifications is generic enough to yield the

most general (or even most general abelian) gaugings imaginable? We leave these as

promising directions for future work.
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A The reduction

The starting point of our analysis is the following ten-dimensional type IIA supergravity

action,

S =

∫
e−2φ̂(

1

2
R ∗ 1 + 2dφ̂ ∧ ∗dφ̂− 1

4
H3 ∧ ∗H3)

−1

2
(F2 ∧ ∗F2 + F̃4 ∧ ∗F̃4)

+
1

2
H3 ∧ C3 ∧ dC3 − B ∧ F flux

4 ∧ dC3 , (A.1)

where

H3 = dB +Hflux
3 , (A.2)

F2 = dC1 , (A.3)

F4 = dC3 + F flux
4 , (A.4)

F̃4 = F4 − C1 ∧H3 . (A.5)

As reviewed in section 2, the 4d effective theory of the compactified 10d SUGRA becomes

gauged upon turning on fluxes. Gauged N = 2 SUGRA in 4d exhibits a potential which is

completely determined in terms of the N = 2 data of the ungauged theory and the killing

vectors of the isometries that are being gauged. Our goal in this appendix is to derive

the potential as well as the killing vectors from dimensional reduction, and demonstrate

that they fit the expected N = 2 mold.

A.1 Potential and killing vectors from reduction

We consider compactification on a Calabi-Yau X. We begin by decomposing the field

strengths as follows,

F4 = dc3 + dAiωi + dξAαA + dξ̃Aβ
A + eiω̃

i (A.6)

H3 = db2 + dbiωi + pAαA + qAβ
A . (A.7)
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Here, ωi, i = 1, . . . , h1,1, are a basis for H1,1(X), and ω̃i a dual basis spanning H2,2(X),

i.e. ∫
X

ωi ∧ ω̃j = δj
i . (A.8)

αA, β
A, A = 0, . . . , h2,1, are a symplectic basis for H3(X),∫

X

αA ∧ βB = δB
A . (A.9)

Contributions to the potential arise from the kinetic terms of C3,

−1

2
(F̃4 ∧ ∗F̃4) → − 1

8Keiejg
ij , (A.10)

and the kinetic term for B2,

−e
−2φ̂

4
H3 ∧ ∗H3 (A.11)

→ −e
−2φ̂

4
(pApBαA ∧ ∗αB + pAqB(αA ∧ ∗βB + βB ∧ ∗αA) + qAqBβ

A ∧ ∗βB) .

Upon expressing the integrals over the 3 cycles in terms of the period matrix M, and

introducing the 4d dilaton e−2φ = e−2φ̂K, this last expression becomes

e−2φ

4K (q + pM)(ImM)−1(q + pM̄) . (A.12)

In addition, the spacetime field c3 turns out to play an important role in determining

the potential. We collect all terms containing c3,

−1

2
(F̃4 ∧ ∗F̃4) +

1

2
H3 ∧ C3 ∧ dC3 −B ∧ F flux

4 ∧ dC3 (A.13)

→ −K
2

(dc3 −A ∧ db2) ∧ ∗(dc3 − A ∧ db2) + (A.14)

(pAξ̃A − qAξ
A − biei)dc3 . (A.15)

A here is the 4d graviphoton field which descends from C1. dc3, being dual to a 0 form

field strength, carries no local degrees of freedom. We can eliminate it from the action,

following [37, 19], by solving for it via its equations of motion and plugging back into the

action,

−
∫
P (dc3 − j) ∧ ∗(dc3 − j) +Qdc3 → −

∫
1

4P
(Q+ n)2 + (Q+ n)j . (A.16)

Here, n is an integration constant which must be chosen to be integral [38]. This choice

of integer in the potential is the exact analogue of the integer appearing in the potential
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of the massive Schwinger model studied by Coleman [39, 37]. The part of codimension 2

objects charged under the top form which are nucleated out of the vacuum is here played

by D2 branes in spacetime. Since F6 flux jumps in between a D2/ D2 pair, we see that

the choice of n from a 10d point of view corresponds to the choice of F6 flux.

Returning to our task, we apply the above to (A.15),

− 1

2K(−biei + pAξ̃A − qAξ
A + n)2 + (−biei + pAξ̃A − qAξ

A + n)A ∧ db2 . (A.17)

Collecting terms and passing to the Einstein frame,
√
g → √

ge4φ, we arrive at the 4d

potential

V =
e4φ

2K(
1

4
gijeiej + (n− biei + pAξ̃A − qAξ

A)2) − e2φ

4K (q + pM)(ImM)−1(q + pM̄) .

(A.18)

Next, we turn towards determining the killing vectors of the isometries being gauged.

These can be read off from the covariantized kinetic terms of the 4d fields which acquire

charges under gauging. To obtain the kinetic term for the axion da = ∗db2, let us collect

all terms involving b2,

−e
−2φK
4

db2 ∧ ∗db2 + (−biei + pAξ̃A − qAξ
A + n)A ∧ db2 +

1

2
db2 ∧ (ξ̃Adξ

A − ξAdξ̃A + 2eiA
i)

= −e
−2φK
4

db2 ∧ ∗db2 +

1

2
db2 ∧ [(2biei − 2n− pAξ̃A + qAξ

A)A+ 2eiA
i + ξ̃A(dξA − pAA) − ξA(dξ̃A − qAA)] .

Dualizing b2 along the lines of

−
∫

[P (db2 ∧ ∗db2) − 1

2
db2 ∧ j] → −

∫
1

16P
(da+ j) ∧ ∗(da+ j) (A.19)

yields

−e
2φ

4K [da+ (2biei − 2n− pAξ̃A + qAξ
A)A + 2eiA

i + ξ̃A(dξA − pAA) − ξA(dξ̃A − qAA)]2

= −e
2φ

4K [Da + ξ̃ADξ
A − ξADξ̃A]2 (A.20)

with

Da = da+ (2biei − 2n− pAξ̃A + qAξ
A)A+ 2eiA

i , (A.21)

DξA = dξA − pAA , (A.22)

Dξ̃A = dξ̃A − qAA . (A.23)
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Hence, we see that, as promised in section 2, turning on H3 and F4 leads to the gauging

of the following isometries,

ka
0 = 2n− 2biei + pAξ̃A − qAξ

A , (A.24)

kξA

0 = pA ,

kξ̃A
0 = qA ,

ka
i = −2ei . (A.25)

A.2 Consistency with gauged SUGRA

The most general scalar potential in N = 2 gauged supergravity with only electric charges

is given by

V = eKXIX̄J(gij̄k
i
Ik

j̄
J + 4huvk

u
I k

v
J) − (

1

2
(ImN )−1 IJ + 4eKXIX̄J)Px

I Px
J . (A.26)

Let’s take a closer look at the various ingredients in turn. gij̄ , i, j̄ = 1, . . . , nV , and huv,

u, v = 1, . . . , 4nH , are the metrics on the vector and hypermultiplet moduli space, MV

and MH , respectively. The tree level metric on MH was derived in [40] from dimensional

reduction to be

ds2 = dφ⊗ dφ+
e4φ

4

[
da+ ξ̃Adξ

A − ξAdξ̃A

]
⊗

[
da+ ξ̃Adξ

A − ξAdξ̃A

]

−e
2φ

2
(ImM−1)AB

[
dξ̃A + MACdξ

C
]
⊗

[
dξ̃B + MBDdξ

D
]
.

ki
I , I = 0, . . . , nV , are the components of killing vectors encoding isometries of MV ,

gauged by the gauge field from the Ith vector multiplet, I = 0 denoting the graviphoton

of the gravity multiplet. Due to N = 2 supersymmetry, gauging isometries of MV implies

introducing non-abelian gauge symmetries. These isometries hence cannot become gauged

merely by turning on fluxes. The ku
I are the killing vectors on MH we determined above,

and the Px
I are the corresponding prepotentials, which we shall compute for the case of

nH = 1 in the next subsection. For the analysis immediately below, we will only need to

know Px
i = −e2φeiδ

x3.

ImN is the gauge coupling matrix and ReN the θ angle matrix for the vectors and

graviphoton. When the metric on the Kähler moduli space is encoded in a prepotential

F , N is related to F by

NIJ = F̄IJ + 2i
(ImF)IKX

K(ImF)JLX
L

XK(ImF)KLXL
. (A.27)

The standard large radius prepotential F = − 1
3!

KijkXiXjXk

X0 on the complexified Kähler

moduli space arises as the vector multiplet prepotential upon dimensional reduction of the
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SUGRA action, not as we have written it down in (A.1), but after the field redefinition

C3 → C3−A1∧B. This new basis for the gauge fields is hence more natural when working

with a prepotential. The gauge fields in the action (A.1) are related to those in this basis

by Ai → Ai − biA. Under this transformation, the killing vectors (A.24) transform into

ka
0 = 2n+ pAξ̃A − qAξ

A , (A.28)

kξA

0 = pA ,

kξ̃A
0 = qA ,

ka
i = −2ei . (A.29)

Since we will be working in this new basis from now on, we do not bother with introducing

new notation to distinguish the two bases. The advantage of using the transformed killing

vectors is that when moving away from the large radius limit, we can simply use the period

matrix of the mirror CY as our gauge coupling matrix, without need of transforming into

a different basis.

From the prepotential given above, one easily obtains the following inverse gauge

coupling matrix [19],

(ImN )−1 = − 1

K
(

1 bi

bj 1
4
gij + bibj

)
, (A.30)

where e−K = 8K.

With these preparations, we now demonstrate that the potential (A.18) is consistent

with the general form of the potential (A.26) obtained from gauged supergravity. For

readability, we divide the potential into three pieces and evaluate them separately.

Terms involving only the graviphoton killing vectors

1

2Khuvk
u
0k

v
0 =

1

2K [
e4φ

4
(ka

0 + ξ̃Ak
ξA

0 − ξAkξ̃A
0 )2 − e2φ

2
(q + pM)(Im M)−1(q + pM̄)]

=
1

2K [
e4φ

4
(2n+ pAξ̃A − qAξ

A + ξ̃Ap
A − ξAqA)2

−e
2φ

2
(q + pM)(Im M)−1(q + pM̄)]

=
1

2K [e4φ(n + pAξ̃A − qAξ
A)2 − e2φ

2
(q + pM)(Im M)−1(q + pM̄)] .

(A.31)
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Terms involving only the vector multiplet killing vectors

4eKX iX̄j(huvk
u
i k

v
j − P x

i P
x
j ) − 1

2
(Im N )−1 ijP x

i P
x
j = −1

2
(Im N )−1 ijP x

i P
x
j

=
e4φ

2K (
1

4
gij + bibj)eiej .

(A.32)

Terms mixing graviphoton and vector multiplet killing vectors

eK(X iX̄0 +X0X̄ i)4huvk
u
0k

v
i − [(Im N )−1 i0 + 4eK(X iX̄0 +X0X̄ i)]P x

i P
x
0

= eK(2bi)4huvk
u
0k

v
i − [(Im N )−1 i0 + 4eK(2bi)]P x

i P
x
0

=
1

Kb
ihuvk

u
0k

v
i

= −e
4φ

K (n+ pAξ̃A − qAξ
A)biei , . (A.33)

Adding the three contributions (A.31), (A.32), and (A.33), we arrive, as promised, at the

potential (A.18) obtained by dimensional reduction.

B The killing prepotential for the universal hyper-

multiplet

The hypermultiplet moduli space MH is a quaternionic manifold of dimension 4nH . The

structure group of the tangent bundle is hence the product Sp(2) × Sp(2nH), and the

Levi-Civita connection and curvature decompose accordingly. Relevant for defining the

killing prepotential are the Sp(2) ∼= SU(2) connection, ω, and its curvature, Ω. In terms

of these, the relation between a killing vector k = ka∂qa encoding an isometry of MH and

the corresponding killing prepotential P = Pxσx is

ιkΩ
x = DPx + εxyzωyPz . (B.1)

Given the metric on MH and a killing vector k, one must hence calculate the connection

and curvature, extract the Sp(2) factor and then solve the above differential equation to

determine the corresponding killing prepotential P.

For simplicity, we will restrict ourselves to the universal hypermultiplet. The holonomy

can be made explicit with the choice of vierbein

q =

(
u v
v̄ −ū

)
, (B.2)
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in terms of which the metric is given by

ds2 = qAα(σ2)AB(σ2)αβq
Bβ . (B.3)

The 1-forms u and v get the following contributions at tree and 1-loop level [28]

u0 = eφ(dx+ idy) (B.4)

v0 = −dφ+ e2φi(ydx− xdy +
1

2
da) (B.5)

u1 = −χ1e
2φu0 (B.6)

v1 = −1

2
χ1e

2φv0 , (B.7)

where χ1 = 4ζ(2)χ
(2π)3

, χ being the Euler number of the compactification manifold. The (first)

Sp(2) factor of the curvature is given by [28]

Ω1
0 = i(ū0 ∧ v0 + v̄0 ∧ u0) (B.8)

Ω2
0 = (ū0 ∧ v0 − v̄0 ∧ u0) (B.9)

Ω3
0 = i(ū0 ∧ u0 − v̄0 ∧ v0) (B.10)

Ω1
1 = e2φ

(
−χ1Ω

1
0 + i

χ1

2
(u0 ∧ v0 − ū0 ∧ v̄0)

)
(B.11)

Ω2
1 = e2φ

(
−χ1Ω

2
0 −

χ1

2
(u0 ∧ v0 + ū0 ∧ v̄0)

)
(B.12)

Ω3
1 = e2φ

(−2χ1Ω
3
0 − 2iχ1(v̄0 ∧ v0)

)
(B.13)

The three killing vectors of this metric that correspond to shift symmetries of the

axions are

k1 = ∂a (B.14)

k2 = 2y∂a + ∂x (B.15)

k3 = −2x∂a + ∂y . (B.16)

Note that these shift symmetries are preserved by the perturbative loop corrections to

the metric (in fact, this is a crucial ingredient in deriving these corrections). To calculate

the killing prepotential, we use the relation

Px =
1

4
DikjΩx

ij . (B.17)
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This yields

P1 =
1

2

⎛
⎝ 0

0
e2φ − 4χ2

1e
6φ

⎞
⎠ (B.18)

P2 = 2

⎛
⎝ 0

−eφ + 1
2
χ1e

3φ

e2φy − 4χ2
1ye

6φ

⎞
⎠ (B.19)

P3 = −2

⎛
⎝ eφ − 1

2
χ1e

3φ

0
e2φx+ 4χ2

1xe
6φ

⎞
⎠ . (B.20)

To relate these results to our compactification, we need to identify the coordinates in

which we obtain the quaternionic manifold via dimensional reduction to those introduced

here. This is easily accomplished by comparing the metric (B.3) at tree level to the one

obtained via reduction. The latter is

ds2
red = dφ2 +

e4φ

4
[da+ ξ̃dξ − ξdξ̃]2 − e2φ

2MI
[dξ̃2 + MR(dξdξ̃ + dξ̃dξ) + |M|2dξ2] .

(B.21)

Recall that M is the period matrix on the complex structure moduli space, and in (B.21)

we use the notation that MR,I are its real and imaginary parts. Since we are considering

a rigid Calabi-Yau, M is simply a constant in our example which encodes the expansion

coefficients of the Hodge duals ∗α and ∗β of a symplectic basis {α, β} of H3 of the rigid

CY in this basis. In particular,

(ImM)−1 = −
∫
β ∧ ∗β , (B.22)

i.e ImM < 0. Plugging in the tree level expressions for u and v into (B.3) yields

ds2 = dφ2 + e4φ4(da+ 2(ydx− xdy))2 + e2φ(dx2 + dy2) . (B.23)

We can read off that
√

2

(
x
y

)
and

(
ξ

ξ̃

)
are related via a symplectic transformation. With

the parametrization

√
2

(
x
y

)
=

(
α β
γ δ

) (
ξ

ξ̃

)
, (B.24)
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we determine this transformation to be

α = − |M|√−MI

(B.25)

β = − MR

|M|√−MI

(B.26)

γ = 0 (B.27)

δ =

√−MI

|M| . (B.28)

This field identification remains correct at 1-loop level. By the linearity of (B.17),

expanding the isometries gauged by the graviphoton (2.13) and the vectors in the vector

multiplets (2.14) in this set of killing vectors allows us to read off the corresponding killing

prepotentials. The expansions are easily determined to be

kgrav = (2n+ pξ̃ − qξ)∂a + p∂ξ + q∂ξ̃ (B.29)

= 2nk1 +
1√
2
(αp+ βq)k2 +

1√
2
δqk3 , (B.30)

kvect = −2ek1 . (B.31)

C Calculations at the Landau-Ginzburg point

For our example, we choose the CY given as a hypersurface in the weighted projective

space WP
4
2,1,1,1,1. The periods around the Landau-Ginzburg (LG) point can be determined

in terms of the power series

ω0(ψ) = − 1

kπ4

∞∑
n=1

∏4
i=0 Γ(n

k
νi) sin(πn

k
νi)

Γ(n)

ei π
k
(k−1)n

sin(πn
k

)
(γψ)n , (C.1)

where the νi are the weights of the ambient weighted projective space, k = 6 (this is

the smallest common multiple of the powers ni in the polynomial
∑4

i=0 x
ni
i defining the

hypersurface; e.g. k = 5 for the quintic), and γ = k
∏4

i=0(νi)
−νi/k. A basis for the solutions

to the Picard-Fuchs equations is now given by {ω0, ω1, ω2, ω5}, where ωi(ψ) = ω0(β
jψ) for

β = exp(2πi
k

). Assembling these in a vector ω = − (2π)i3

OrdG
(ω2, ω1, ω0, ω5)

T , they are related

to a symplectic basis Π′ = (G1,G2, z
1, z2)T via the transformation Π′ = mω, with m given

by

m =

⎛
⎜⎜⎝
−1

3
−1

3
1
3

1
3

0 0 −1 0
−1 0 3 2
0 1 −1 0

⎞
⎟⎟⎠ . (C.2)
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To calculate the gauge coupling matrix, we need the second derivatives of the prepo-

tential G. Using the homogeneity of G these can be expressed in terms of the periods as

follows,

G12 =
G′

1 − G1

z1 (z1)′

(z2)′ − z2

z1 (z1)′
(C.3)

G11 =
G1

z1
− G12

z2

z1
(C.4)

G22 =
G2

z2
− G12

z1

z2
, (C.5)

where the prime denotes differentiation with regard to ψ. We next need to relate these

results to the large radius limit. With the period vector in the large radius limit given

as Π ∼ (t2, t3, t, 1)T , our choice of the matrix N relating the two bases (recall that this

matrix is only specified up to monodromy) is given by

N =

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ (C.6)

After calculating the gauge coupling matrix in the basis Π′, we can transform it to the

basis Π: given a symplectic transformation N =

(
A B
C D

)
, the gauge coupling matrix N

transforms as N ′ =
(
B + AN (ψ)

)(
D + CN (ψ)

)−1
.
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