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Abstract

A self-consistent theory of a free electron laser (FEL) with slowly-varying beam
and undulator parameters is developed using the WKB approximation. The the-
ory is applied to study the performance of a self-amplified spontaneous emission
(SASE) FEL when the electron beam energy varies along the undulator as would
be caused by vacuum pipe wakefields and/or when the undulator strength pa-
rameter is tapered in the small signal regime before FEL saturation. We find
that a small energy gain or an equivalent undulator taper slightly reduces the
power gain length in the exponential growth regime and can increase the sat-
urated SASE power by about a factor of 2. Power degradation away from the
optimal performance can be estimated based upon knowledge of the SASE band-
width. The analytical results, which agree with numerical simulations, are used
to optimize the undulator taper and to evaluate wakefield effects.
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I. INTRODUCTION

High-gain free electron lasers (FELs) are being developed as extremely bright x-ray

sources of a next-generation radiation facility. An x-ray FEL based on self-amplified spon-

taneous emission (SASE) typically requires an electron beam with a few kilo-Ampere peak

current and a small-gap undulator system of tens to a hundred meter in length. The collec-

tive interaction of a high-current short electron bunch with the undulator vacuum chamber

may significantly change the beam energy inside the undulator and degrade the FEL per-

formance, as highlighted by the recent analysis of the ac resistive wall wakefield [1] for the

linac coherent light source (LCLS) [2]. Understanding the effects of the undulator wakefield

is of critical importance in the design of an x-ray FEL.

The wakefield generates an energy variation along the undulator distance as well as along

the bunch position. Since the typical bunch length for an x-ray FEL greatly exceeds the

radiation slippage length over the entire undulator, the energy variation within an FEL

slippage length (known as an FEL slice) is usually negligible for the wakefield that do not

vary rapidly inside the bunch. Thus, the main effect of the undulator wakefield in an

FEL slice is due to the energy change along the undulator distance and may be considered

to be equivalent to that caused by tapering the undulator strength parameter. However,

the classical treatment of a tapered undulator [3] has been focused on the FEL saturation

regime where a significant energy loss induced through the FEL interaction can be offset by

tapering the undulator parameter. On the other hand, the bulk of energy change due to the

undulator wakefield occurs in the small signal regime before saturation, and its effect upon

FEL performance has mainly been addressed by time-dependent simulation codes (see, e.g.,

Ref. [4, 5]).

Motivated by these considerations, we present an analytical description of the FEL process

in the small signal regime with slowly-varying beam energy and undulator parameter. Since

the rate of the wakefield-induced fractional energy change is typically less than the FEL

Pierce parameter ρ (∼ 10−3 for short-wavelength FELs) within one electric field gain length,

we develop the WKB approximation for the coupled Maxwell-Vlasov equations in order to

determine the evolution of the beam-radiation system, based upon a priori knowledge of the

FEL dispersion relation. In the lowest-order approximation, the growth rate Im(µ0) for the

radiation field amplitude at a given frequency ω becomes a function of the undulator distance
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FIG. 1: Zeroth-order growth rate Im(µ0) as a function of the radiation frequency ω at three different

undulator locations z1, z2, and z3 is obtained by shifting the gain curve of a constant-parameter

FEL along the horizontal axis by ∆ω(z) due to changes in the beam energy and the undulator

parameter.

z, and the total gain is determined by
∫ z

Im[µ0(ω, z′)]dz′. The zeroth-order growth rate

Im[µ0(ω, z)] is obtained by shifting the growth rate of a constant-parameter FEL Im[µc(ω)]

by ∆ω(z) due to changes in the beam energy and the undulator parameter (see Fig. 1),

i.e., Im[µ0(ω, z)] = Im[µc(ω −∆ω(z))]. In addition to the zeroth-order gain, we also find a

first-order correction µ1 that is small in comparison with µ0. Nevertheless, after integration

over the length of the undulator, this correction can give rise to a noticeable change of the

radiation power at the end of the undulator.

We apply this theory to study the SASE FEL under a linear energy variation along the

undulator distance and find that a fractional energy gain of about 2ρ over the saturation

distance or an equivalent undulator taper can slightly reduce the gain length in the expo-

nential growth regime and improve the saturated power by about a factor of 2 as compared

to a constant-parameter FEL. Power degradation away from this optimal energy gain is ap-

proximately Gaussian with a fwhm fractional energy variation of about 4 times the relative

rms radiation bandwidth, which is typically close to ρ at saturation. Thus, a noticeable

degradation of output power will occur if the accumulated fractional energy change is either

negative or positive but larger than 4ρ.

This paper is organized in the following manner. In Sec. II, we define the problem by
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writing down the FEL equations with variable beam energy and undulator parameter. In

Sec. III, we ignore the transverse motion of electrons and the radiation diffraction to obtain

the WKB solution for the one-dimensional (1-D) FEL system. We apply this solution to

study the effect of a linear energy change on both seeded and SASE FELs. The results

obtained in the 1-D case are then generalized to the three-dimensional (3-D) system in

Sec. IV and are applied to study the effects of the LCLS undulator wakefields in Sec. V.

Finally, the general WKB solution to the 3-D Maxwell-Vlasov equations with slowly-varying

beam and undulator parameters is presented in Appendix A.

II. FEL EQUATIONS WITH VARIABLE BEAM ENERGY AND UNDULATOR

PARAMETER

Let us consider a planar undulator with a period λu = 2π/ku and an undulator strength

parameter K(z) that may vary along the undulator distance z. We also assume γc(z)mc2

is the average electron energy in the absence of the FEL interaction, which may vary along

the undulator due to wakefields and emission of spontaneous radiation. The initial resonant

wavelength of the FEL is

λ0 =
2π

k0

=
2πc

ω0

=
λu

2γc(0)2

[
1 +

K(0)2

2

]
. (1)

We define the electron energy (in units of mc2) resonant to λ0 as the resonant energy:

γr(z) =

√
λu

2λ0

[
1 +

K(z)2

2

]
, (2)

from which we obtain γr(0) = γc(0) ≡ γ0.

In this and the following sections, we ignore any transverse effect and consider 1-D FEL

system. The longitudinal motion of the electron with a wiggle-averaged position ct∗ can be

described by a ponderomotive phase variable θ(z) = (k0 + ku)z − k0ct
∗ and a normalized

energy variable η(z) = [γ(z)− γc(z)] /γ0. Taking into account that

cdt∗

dz
= 1 +

1 + K(z)2/2

2γ(z)2
, (3)

and that changes in K and γc over the entire undulator distance are typically very small
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compared to K(0) ≡ K0 and γ0, the FEL pendulum equations [6] can be written as

dθ

dz
=2ku

γ(z)− γr(z)

γ0

= 2ku(η + δ) , (4)

dη

dz
=

eK0[JJ]

4γ2
0mc2

∫
dνEν(z)eiνθ−i∆νkuz + complex conjugate , (5)

where the fractional energy change with respect to the resonant energy in the absence of the

FEL interaction is

δ(z) =
γc(z)− γr(z)

γ0

with δ(0) = 0 . (6)

Here Eν(z) is the (complex) electric field amplitude at the frequency ω = νω0 near ω0, ∆ν =

ν − 1, |∆ν| ¿ 1, and the Bessel function factor [JJ]=J0(ξ)− J1(ξ) with ξ = K2
0/(4 + 2K2

0).

In the small signal regime before saturation, the electron distribution function can be

decomposed into two parts: a coarse-averaged electron distribution function V (η) (for a

uniform bunch current) and a small perturbation containing the initial shot noise fluctuation

and the FEL interaction δF (θ, η; z). Incorporating the pendulum Eqs. (4) and (5), the

linearized Vlasov equation for the Fourier component of the distribution function Fν(η; z) =
∫

δF (θ, η; z) exp(−iνθ)dθ/(2π) is

dFν

dz
+ iν2ku (η + δ) Fν +

eK0[JJ]

4γ2
0mc2

Eν(z)e−i∆νkuz dV

dη
= 0 . (7)

The Maxwell equation for the electric field is then

dEν

dz
= −ek0K0[JJ]

2ε0γ0

ei∆νkuz

∫ ∞

−∞
dηFν(η; z) (8)

with ε0 being the vacuum permittivity.

The FEL equations (4), (5) and (8) are solved in perturbation theory when δ(z) can

be considered small such as due to undulator errors [7]. Here we develop an approximate

solution when δ(z) is not necessarily small but slowly-varying with z.

III. SOLUTION IN THE ONE-DIMENSIONAL CASE

The Vlasov-Maxwell equations (7) and (8) can be solved by the Laplace transform when

δ(z) = 0 [8, 9]. The system is characterized by the FEL Pierce parameter ρ defined as [10]

ρ =

[
1

8π

Ie

IA

(
K0[JJ]

1 + K2
0/2

)2
γ0λ

2
0

ΣA

]1/3

, (9)
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where Ie is the electron peak current, IA = 4πε0mc3/e ≈ 17 kA is the Alfvén current, ΣA

is the area of the electron beam transverse cross section. For instance, the relative gain

bandwidth ∆ν is typically a few ρ, and the electric field gain length is about λu/(4πρ).

Since the main effect of the energy variation is to move electrons off-resonance, δ(z) can be

regarded as a slowly-varying function of z when∣∣∣∣∣
λu

4πρ

dδ

dz

∣∣∣∣∣ ¿ a few ρ , or

∣∣∣∣∣
λu

4πρ

dδ

dz

∣∣∣∣∣ < ρ . (10)

This condition will allow us to use the WKB approximation (see, e.g., Ref. [11]) to solve

Eqs. (7) and (8) and is satisfied if the accumulated energy change over the saturation distance

(typically about 10 field gain length) is less than 10ρ.

A. WKB Approximation

We first introduce the following dimensionless variables to simplify notation:

z̄ =2ρkuz , η̄ =
η

ρ
=

γ(z)− γc(z)

γ0ρ
, δ̄ =

δ

ρ
=

γc(z)− γr(z)

γ0ρ
,

ν̄ =
∆ν

2ρ
, aν = − eK[JJ]

4γ2
0mc2kuρ

e−i∆νkuzEν , fν =
2kuρ

2

k0

Fν . (11)

Equations (8) and (7) in the matrix form are

d

dz̄


 aν

fν


 = iM


 aν(z̄)

fν(η̄; z̄)


 , (12)

where

M =


 −ν̄ −i

∫∞
−∞ dη̄

−idV
dη̄

− [
η̄ + δ̄(z̄)

]


 . (13)

We define
∫∞
−∞ dη̄ as the integration operator that operates on a function of η̄.

In the lowest (zeroth) order, we seek a solution of the form

exp

(
−i

∫ z̄

0

µ0(τ)dτ

)
Ψ0 ≡ exp

(
−i

∫ z̄

0

µ0(τ)dτ

) 
 A0

F0(η̄; z̄)


 . (14)

In the 1-D case, A0 is simply a constant given by the initial conditions. Treating dF0/dz̄ as

a first-order term, the zeroth-order eigenvalue equation is

 (µ0 − ν̄) −i

∫∞
−∞ dη̄

−idV
dη̄

[
µ0 −

(
η̄ + δ̄(z̄)

)]





 A0

F0(η̄)


 = 0 . (15)
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The eigenvalue is determined by solving the second row for

F0(η̄; z̄) =
iA0

µ0 −
[
η̄ + δ̄(z̄)

] dV

dη̄
(16)

and inserting F0 into the first row. The dispersion relation for µ0 is

µ0 − ν̄ =

∫ ∞

−∞

dη̄[
η̄ + δ̄(z̄)− µ0

] dV

dη̄
. (17)

After changing variables to

µ̂(z̄) = µ0(z̄)− δ̄(z̄) , ν̂(z̄) = ν̄ − δ̄(z̄) , (18)

we rewrite Eq. (17) as

µ̂− ν̂ =

∫ ∞

−∞

dη̄

(η̄ − µ̂)

dV

dη̄
, (19)

which is the same FEL dispersion relation as in the constant-parameter case [8]. For a

variable-parameter FEL, the instantaneous frequency detune ν̂(z̄) = ν̄− δ̄(z̄) is z̄-dependent

due to changes in the beam energy and the undulator parameter. As a result, the local

growth rate Im(µ0)=Im(µ̂) is also a function of z̄ (see Fig. 1).

The eigenvector corresponding to the eigenvalue µ0 is

Ψ0(z̄) =


 A0

F0(η̄; z̄)


 ∝


 1

i

µ0−[η̄+δ̄(z̄)]
dV
dη̄


 . (20)

To take into account the z-dependence of F0, we must include the first-order corrections

for the eigenvalue and the eigenvector as
 aν

fν


 ≈ exp

[
−i

∫ z̄

0

(µ0(τ) + µ1(τ)) dτ

]
[Ψ0(z̄) + Ψ1(z̄)] . (21)

Note that both Ψ1 = (A1,F1(η̄)) and µ1 are considered small as compared to Ψ0 and µ0,

respectively, but the accumulated phase change
∫ z̄

0
µ1(τ)dτ in the exponent can be of the

same order. Inserting Eq. (21) into Eq. (12), we obtain

[−iµ0(z̄)− iµ1(z̄)] (Ψ0 + Ψ1) + (Ψ′
0 + Ψ′

1) = iM(Ψ0 + Ψ1) , (22)

where (′) = d/dz̄. Making use of −iµ0Ψ0 = iMΨ0 and neglecting the higher-order terms

µ1Ψ1 and Ψ′
1, we have

Ψ′
0 − iµ1Ψ0 = i(µ0 + M)Ψ1

=


 i(µ0 − ν̄)A1 +

∫∞
−∞ dη̄F1(η̄)

A1
dV
dη̄

+ i[µ0 − (η̄ + δ̄(z̄))]F1(η̄)


 . (23)
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The growth rate correction µ1 can be found by using the adjoint eigenvector of Eq. (20)

and a properly defined scalar product as illustrated in Appendix A for the general 3-D FEL

system. In the 1-D case, the adjoint eigenvector is simply

Φ0 =

(
1,

i

µ0 −
[
η̄ + δ̄(z̄)

]
)

. (24)

Defining the 1-D scalar product as

(Φ0, Ψ0)1D =

[
1−

∫ ∞

−∞
dη̄

dV/dη̄[
µ0 −

(
η̄ + δ̄(z̄)

)]2

]
≡ B

(
µ0 − δ̄

)
, (25)

we apply Φ0 to both sides of Eq. (23). The resulting scalar product to the right side becomes

i(µ0 − ν̄)A1 +

∫ ∞

−∞
dη̄F1(η̄) +

∫ ∞

−∞
dη̄

[
iA1

µ0 −
[
η̄ + δ̄(z̄)

] dV

dη̄
−F1(η̄)

]
= 0 (26)

because of the dispersion relation Eq. (17). Then the scalar product to the left side is

(
1,

i

µ0 −
[
η̄ + δ̄(z̄)

]
) 

 0− iµ1

−i(µ′0−δ̄′)

[µ0−(η̄+δ̄(z̄))]
2

dV
dη̄

+ µ1

µ0−[η̄+δ̄(z̄)]
dV
dη̄




=− iµ1B
(
µ0 − δ̄

)
+ (µ′0 − δ̄′)

∫ ∞

−∞
dη̄

dV/dη̄[
µ0 −

(
η̄ + δ̄(z̄)

)]3 = 0 , (27)

In view of Eq. (18), the correction to the complex growth rate is

µ1 =− i
µ′0 − δ̄′

B
(
µ0 − δ̄

)
∫ ∞

−∞
dη̄

dV/dη̄[
µ0 −

(
η̄ + δ̄(z̄)

)]3

=− i
µ̂′

B (µ̂)

∫ ∞

−∞
dη̄

dV/dη̄

(µ̂− η̄)3 , (28)

which can be obtained after solving the FEL dispersion relation (i.e., Eq. (17) or (19)).

For practical purposes, we assume a linear energy variation δ̄(z) = αz̄ with |α| < 1 for

the WKB approximation to be valid. We consider both coherent amplification (for a seeded

FEL) and self-amplified spontaneous emission.

B. Coherent Amplification

Let us take a Gaussian energy distribution function

V (η̄) =
1√

2πση̄

exp

(−η̄2

2σ2
η̄

)
(29)
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with the rms energy spread ση̄ in units of ρ, and define the plasma dispersion function

D(ζ) =
1√
2π

∫

C

dp
pe−p2/2

p− ζ
, (30)

where the integration contour C is from p = −∞ to ∞ and is deformed so that the point ζ

always stay above it in the complex ζ plane. Equation (19) becomes

µ̂(z̄)− ν̂(z̄) +
1

σ2
D

(
µ̂(z̄)

σ

)
= 0 , (31)

and Eq. (28) can be shown to be

µ1 = i
α

2σ4
η̄

d2D

dζ2

(
1 +

1

σ3
η̄

dD

dζ

)−2
∣∣∣∣∣
ζ=µ̂(z̄)/ση̄

. (32)

For a cold beam with a vanishing energy spread, we have D(ζ) = −ζ−2, and

µ1 = − 3iα

µ̂4 (1 + 2/µ̂3)2 , (33)

where µ̂− ν̂ − µ̂−2 = 0 is the well-known cubic equation with a growing, a damping and an

oscillatory solution. At ν̂ = 0, we have µ̂3 = 1 and

µ1(ν̂ = 0) = −i
α

3µ̂
. (34)

The correction to the growing mode in this case µ̂(1) = µ
(1)
0 − αz̄ = −1/2 + i

√
3/2 is

µ
(1)
1 =

α

6

(
−
√

3 + i
)

. (35)

Therefore, the growth rate near ν̂ = ν̄ − αz̄ = 0 is increased (decreased) by |α|/6 for a

linear energy gain (loss) with respect to the resonant energy. For a cold beam with constant

beam and resonant energies, the maximum growth rate occurs when the electrons are on

resonance and when a single growing mode dominates. However, as the electron energy is

moving away from the resonance, slightly above resonance is the preferred situation since

the energy modulation is immediately accompanied by the net energy loss of the electrons to

the radiation field. Such an asymmetry also exists for the gain curve in a low-gain FEL [12].

The local growth rate of the radiation power predicted from the WKB approximation is

compared to 1-D FEL simulations with a seed signal. For a cold beam with a seed power

|a0(0)|2 = 10−6 initially on resonance (i.e., ν̄ = 0), the radiation power is completely specified
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FIG. 2: (Color) Local power growth rate difference G(±0.2; z̄) − G(0; z̄) for a cold beam with an

increasing (in blue) or a decreasing (in red) energy relative to the resonant energy in the undulator.

by the growing, the damping and the oscillatory modes and their corresponding corrections

due to the energy variation, i.e.,

P̄ (α; z̄) =
|a0(0)|2

9

∣∣∣∣∣
3∑

n=1

exp

[
−i

∫ z̄

0

dτ
(
µ

(n)
0 (τ) + µ

(n)
1 (τ)

)] ∣∣∣∣∣

2

. (36)

Here each mode has an initial amplitude a0(0)/3. Let us define the local power growth rate

G(α; z̄) ≡ d ln[P̄ (α; z̄)]

dz̄
, (37)

Fig. 2 shows the difference in the local growth rate G(α; z̄) − G(0; z̄) for α = ±0.2. The

agreement between theory and simulation is very good. The initial growth rate is enhanced

for a beam gaining energy relative to the resonant energy and is reduced for a beam losing

energy. Nevertheless, at a larger undulator distance (z̄ > 2) when ν̂ = −αz̄ (ν̄ = 0 here)

is sufficiently detuned away from the resonance, the growth rates for both energy gain and

loss are smaller than the growth rate when the beam energy stays on resonance.

For a beam with a Gaussian energy spread, we may only obtain an asymptotic solution in

the high-gain regime since there are infinite damping modes during the initial power build-

up [13]. We can still compare the local growth rate of the radiation power (i.e., Eq. (37))

derived from the 1-D simulation with the dominant growing mode 2Im[µ0(z̄) + µ1(z̄)] from

the WKB approximation in the high-gain regime. Taking ση̄ = 0.5 and seeding the FEL

with |aν̄(0)|2 = 10−6 at the initial frequency detune ν̄ ≈ −0.4 that yields 2Im(µ0) ≈ 1.4 for

a constant-parameter FEL, we show in Fig. 3 that the theory and the simulation agree fairly
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FIG. 3: (Color) Local power growth rate G(±0.2; z̄) for a beam with a Gaussian rms energy spread

ση = 0.5ρ (ση̄ = 0.5) and with an increasing (in blue) or a decreasing (in red) centroid energy

relative to the resonant energy in the undulator.

well for α = ±0.2 in the high-gain regime when z̄ > 5. In particular, the different growth

rate between a beam gaining and losing energy relative to the resonant energy is again due

to the asymmetry discussed above.

C. Self-Amplified Spontaneous Emission

The power spectrum for a constant-parameter SASE FEL in the high-gain regime has

been determined in Ref. [8, 9]. In the variable-parameter case discussed here, we can include

the z̄-dependent growth rate and its WKB correction for the growing mode as

dP

dω
= gS(ν̄)

ργ0mc2

2π
exp

[
2

∫ z̄

0

dτ Im (µ0(τ) + µ1(τ))

]
, (38)

where

gS(ν̄) =
1

|B(µ0(0))|2
∫ ∞

−∞

dη̄V (η̄)

|µ0(0)− η̄|2 , (39)

B(µ0) is defined in Eq. (25), and we have dropped the superscript (1) of the growing mode

for simplicity. Equation (38) can be computed numerically for different frequencies to obtain

the SASE spectrum as well as the total radiated power.

Because of the exponential growth, the radiation power in the high-gain regime is dom-

inated when the frequency detune ν̂ = ν̄ − αz̄ is near the optimal value ν̄m that has the
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FIG. 4: (Color) Maximum zeroth-order growth rate µ0m (in blue) and the optimal detune ν̄m (in

red) as a function of the rms energy spread ση̄ (in units of ρ).

largest Im(µ0) ≡ µ0m. Let us expand

Im (µ0) ≈ µ0m

[
1− C2(ν̂ − ν̄m)2

]
= µ0m

[
1− C2(ν̄ − αz̄ − ν̄m)2

]
, (40)

where µ0m =
√

3/2, ν̄m = 0, and C2 = 1/9 for a cold beam and are shown in Figs. 4 and 5 for

a Gaussian energy distribution. This expansion is expected to be valid if the accumulated

change in ν̂ is less than the width of the frequency detune for the growth rate Im(µ0), i.e.,

when |αz̄| <
√

2/C2 ≈ 4. For a linear energy variation relative to the resonant energy, the

gain correction near ν̂ = ν̄m can be factorized as

Im (µ1) ≈ Cαµ0mα . (41)

Here Cα =
√

3/9 for a cold beam and is shown in Fig. 5 for a Gaussian energy distribution.

Inserting Eqs. (40) and (41) into Eq. (38) and integrating over z̄, we obtain

dP

dω
≈gS(ν̄)

ργ0mc2

2π
exp

[
2µ0m

∫ z̄

0

dτ
(
1 + Cαα− C2(ν̄ − ατ − ν̄m)2

)]

=
ργ0mc2

2π
exp

[
2µ0mz̄

(
1 + Cαα− C2

α2z̄2

12

)]

× gS(ν̄) exp

[
−2µ0mC2z̄

(
ν̄ − ν̄m − αz̄

2

)2
]

. (42)

In general, gS(ν̄) has a relatively weak dependence on the frequency detune ν̄ and is taken

to be approximately constant from now on. Thus, the last exponent in Eq. (42) describes

12
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FIG. 5: (Color) Gain coefficients C2 (in blue) and Cα (in red) defined in Eqs. (40) and (41) as a

function of the rms energy spread ση̄ (in units of ρ).

a Gaussian power spectrum that has basically the same rms bandwidth as a constant-

parameter SASE, given by

σν = σ∆ω/ω0 = 2ρσν̄ =
ρ√

µ0mC2z̄
=

√
ρ

2µ0mC2kuz
= ρ

√
2LG

C2z
(43)

with the power gain length LG = λu/(8πρµ0m). The central frequency of the power spectrum

is determined by

ν̄c = ν̄m + αz̄/2 = ν̄m +
δ

2ρ
, (44)

i.e., the central frequency of the radiation spectrum moves half as fast as does the optimal

frequency (for the maximum zeroth-order growth rate) due to the changing energy. Finally,

we integrate Eq. (42) over ω to obtain the total radiated power as

P (z) ≈gS
ργ0mc2

√
2π

ω0σν exp

[
z

LG

(
1 + Cαα− C2

α2z̄2

12

)]
(45)

=Pm(z) exp

[
−1

2

(
δ(z)− δm(z)√

3σν(z)

)2
]

, (46)

where δ(z) = αz̄ρ is the fractional energy change defined in Eq. (6),

Pm(z) = gS
ργ0mc2

√
2π

ω0σν exp

[
z

LG

(
1 +

3C2
α

4ρ2k2
uz

2C2

)]
(47)

is the maximum SASE power under the optimal energy gain δm(z) = 6Cα/(2kuzC2), and

the rms width of the fractional energy change for the SASE power is
√

3 times as large as

the relative rms radiation bandwidth σν determined by Eq. (43).

13
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FIG. 6: (Color) Rate of the central frequency shift dν̄c/dz̄ as a function of the energy gradient α

in theory (solid line) and in simulations (symbols).

Equations (45) and (46) are valid for a slowly-varying beam energy relative to the resonant

energy in the high-gain regime before saturation. In addition to the normal exponential

growth given by the first term in the exponent of Eq. (45), the second term in the exponent

describes the WKB correction to the growth rate and shows the gain enhancement when

the beam increases energy relative to the resonant energy. The last term in the exponent

of Eq. (45) shows the detuning effect of the energy variation that degrades the radiation

power. The competition between a positive second term and a negative third term in the

exponent of Eq. (45) leads to an optimal energy gain δm(z) in Eq. (46) that maximizes the

output power.

The linear theory is compared with the 1-D SASE simulation results for a cold beam

without any initial energy spread. Figure 6 shows that the rate of the central frequency

shift extracted from the radiation phase in the simulation agrees well with the theoretical

expectation dν̄c/dz̄ = α/2. The small discrepancy at larger α may come from the quadratic

approximation used in Eq. (40). The scaled radiation power P̄ = P/(ρPbeam) for different

energy gradient is computed with Eq. (46) using the simulated shot noise. Here Pbeam =

Ieγ0mc2/e is the electron beam power. Figure 7 shows close agreement between theory and

simulations for the dependence of the radiated power on the fractional energy variation at

z̄ = 2kuρz = 8 before saturation.

Near the FEL saturation, the electron beam starts to lose a significant fraction of energy
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FIG. 7: (Color) SASE power (in units of ρPbeam) at z̄ = 2ρkuz = 8 versus the fractional energy

change δ̄ = αz̄ = δ/ρ from theory (curve) and from simulations (symbols) for a 1-D cold beam.
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FIG. 8: (Color) Radiated power P̄ (in units of ρPbeam) as a function of the scaled undulator

distance z̄ = 2ρkuz for a cold beam in 1-D SASE FEL simulations for different energy gradient α.

(∼ ρ) to the radiation through the FEL interaction. In the case when the electrons gain

energy relative to the resonant energy (i.e., for a small and positive α), the external energy

gain compensates the FEL-induced energy loss and leads to longer resonant interaction

between the electron beam and the radiation than in cases when α ≤ 0. 1-D, cold beam

SASE simulations in Fig. 8 show that α ≈ 0.2 (a fractional energy gain of about 2ρ over

the saturation distance at z̄ ≈ 10) not only reduces the gain length in the linear regime, but

also enhances the energy extraction efficiency in the nonlinear regime by about a factor of

2.
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IV. GENERALIZATION TO THE 3-D SYSTEM

The general solution to the coupled 3-D Maxwell-Vlasov equations using the WKB ap-

proximation is illustrated in Appendix A. In the high-gain regime where a single transverse

mode with the largest growth rate Im(µ0) dominates over other higher-order modes, the

SASE spectral power can be written as

dP

dω
= gS(ν̄)

ργ0mc2

2π

(∫ ∞

−∞
dx̄

∣∣A0(x̄, ν̂(z̄))
∣∣2

)
exp

[
2

∫ z̄

0

dτ Im (µ0(τ) + µ1(τ))

]
, (48)

where gS(ν̄) is the expansion coefficient of the guided fundamental mode determined by the

initial shot noise, A0(x̄, ν̂) and µ0 = µ̂ + αz̄ are the dominant eigenmode and the eigenvalue

at the instantaneous frequency detune ν̂(z) = ν̄ − αz̄ determined by Eq. (A5), and the

growth rate correction µ1 is given by (A11).

Following the approach developed in the 1-D case, we consider the properties of µ0 and

µ1 near the optimal detune and ignore the weak frequency dependencies of both gS and the

transverse mode size. Thus, Eq. (46) for the SASE power is also valid in 3-D, i.e.,

P (z) ≈ Pm(z) exp

[
−1

2

(
δ(z)− δm(z)√

3σν(z)

)2
]

. (49)

Here σν(z) is the relative rms bandwidth of the guided mode for a constant-parameter SASE

found in the 3-D theory or simulations. The optimal fractional energy gain δm(z) can be

determined by the growth rate correction µ1 in the linear regime before saturation. For

the optimal saturation performance, 3-D SASE simulation codes such as GINGER [14] and

GENESIS [15] can be used to scan for δm(zsat). For example, using the standard LCLS

parameters [2], GENESIS simulations shown in Fig. 9 indicate that δm(zsat) ≈ 2ρ enhances

the output power by about a factor of 2, very similar to the 1-D results. Such a power

enhancement has also been observed in start-to-end LCLS simulations including wakefield

effects [16]. Since the expected rms bandwidth σν near the LCLS saturation is very close to

ρ ≈ 5× 10−4, we can estimate the fwhm fractional energy variation for the SASE power at

saturation as

(2
√

2 ln 2)
√

3σν(zsat) ≈ 4σν(zsat) ≈ 4ρ . (50)

Figure 10 shows the simulated LCLS power versus fractional energy change δ at z = 90 m

with a fwhm nearly 4ρ.
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FIG. 9: (Color) LCLS power evolution obtained from GENESIS simulations for different fractional

energy change δ(z = 90 m).
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FIG. 10: LCLS power obtained from GENESIS simulations versus fractional energy change δ̄ = δ/ρ

at z = 90 m. The maximum power is reached when δ ≈ 2ρ, and the fwhm fractional energy change

is about 4ρ, in agreement with Eq. (50).

V. EFFECTS OF UNDULATOR WAKEFIELDS

In this section, we apply the above results to evaluate the SASE performance under the

influence of undulator wakefields for the LCLS FEL at the resonant wavelength λ0 = 1.5 Å.

Reference [1] discusses the ac resistive wall wakefield for both copper (Cu) and aluminum

(Al) vacuum chambers with different geometries, generated by the expected LCLS bunch

profile with two high-current horns at both the bunch head and tail for 1-nC bunch charge
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(see Fig. 5(c) of Ref. [1] for the current distribution). The wakefield in the core part of

the bunch (from the bunch coordinate s ≈ −30 µm to s ≈ 0 µm) is of the most concern

since this part of the bunch has the best beam quality in terms of emittance and energy

spread and is responsible for most lasing. From Fig. 5(a), we see that the wakefield in this

part of the bunch for Cu and Al with a standard round 5-mm diameter beam pipe may be

approximated by

δw(zsat, s) ≈ δA sin

(
2πs

λwake

)
, (51)

where δA is the fractional energy oscillation amplitude and is about 6ρ (3ρ) for Cu (Al) at

the saturation distance zsat ≈ 90 m, and λwake ≈ 30 µm is the wake oscillation period and is

about a half of the LCLS bunch length. In addition to compensating for the energy loss of

the spontaneous radiation, we assume that the undulator parameter is tapered to produce a

resonant energy change of δr = −2ρ over ∼ 90-m undulator distance, then the SASE power

in the absence of any wakefield is optimized to yield Pm(zsat) ≈ 16 GW from Fig. 10 instead

of the nominal 8 GW without any taper. Since such a wakefield creates negligible energy

slopes (local energy chirps) over one cooperation length λ0/(4πρ), given by

∣∣∣∣∣
dδw

ds

λ0

4πρ

∣∣∣∣∣ ≤
2πδA

λwake

λ0

4πρ
≤ 12πρ

30

1.5× 10−4

4πρ
= 1.5× 10−5 ¿ ρ , (52)

we ignore any local energy chirp and consider only the z-dependent energy variation for each

FEL slice. The radiation power averaged over one wake oscillation period λwake ≈ 30 µm in

the core part of the bunch can be obtained by convoluting δw(zsat, s)− δr = δw(zsat, s) + 2ρ

with the SASE power response function Eq. (49), i.e.,

〈P (zsat)〉
Pm(zsat)

=

∫ λwake

0

ds

λwake

exp

[
−1

6

δw(zsat, s)
2

σ2
ν(zsat)

]
= exp

[ −δ2
A

12σ2
ν(zsat)

]
I0

[
δ2
A

12σ2
ν(zsat)

]
, (53)

where I0 is the zeroth-order modified Bessel function. If we take σν(zsat) = ρ, then the

averaged power degradation factor given by Eq. (53) is plotted in Fig. 11 (in red). Therefore,

the average power in the core part of the bunch is about 50 % (25 %) of the maximum SASE

power (≈ 16 GW at 90 m) in a round 5-mm-diameter Cu (Al) vacuum pipe. As comparison,

Fig. 11 also shows the average power degradation without any taper (in blue), indicating

the power improvement due to the above undulator taper is negated for a sinusoidal wake

energy loss when its amplitude δA ≥ 3ρ.
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FIG. 11: (Color) Power degradation factor averaged over the core part of the bunch (with about

30 µm in length) versus the sinusoidal wake oscillation amplitude δA/ρ at the LCLS saturation

(z = 90 m) for a prescribed tapered undulator (in red) and without any taper (in blue).

VI. CONCLUSION

In this paper, we present a self-consistent theory of a FEL with slowly-varying beam and

undulator parameters. A general method is developed to obtain the WKB correction of the

exponential growth rate (i.e., the eigenvalue of the Maxwell-Vlasov equations) by employing

the adjoint eigenvector that is orthogonal to the eigenfunctions of the beam-radiation system.

This method may be useful for other slowly-varying processes in beam dynamics.

This theory is then applied to study the performance of a SASE FEL under a linear energy

variation along the undulator distance. The optimal energy gain (or the equivalent undulator

taper) for the maximum radiation power is determined in the linear regime through the

WKB solution as well as at the saturation point through SASE simulations. For typical

FEL parameters, we find that a fractional energy gain of about 2ρ over the saturation

distance enhances the saturated power by roughly a factor of 2. Power degradation away

from this optimal energy gain is approximately Gaussian given by Eq. (49), which is utilized

to evaluate the LCLS performance under the influence of the ac resistive wall wakefield. The

results discussed in this paper may be used to facilitate the design of a fourth-generation

x-ray source based on a high-gain FEL system.
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APPENDIX A: WKB APPROXIMATION FOR THE THREE-DIMENSIONAL

MAXWELL-VLASOV EQUATIONS

We derive the correction to the (complex) growth rate for the three-dimensional FEL

system with slowly-varying parameters using the WKB approximation. Following the stan-

dard approach [17], the Maxwell-Vlasov equations including the radiation diffraction and

the betatron motion are

∂

∂z̄


 aν(x̄; z̄)

fν(x̄, p̄, η̄; z̄)


 = iM


 aν

fν


 =


 i

(
−ν̄ +

∇̄2
⊥
2

)
aν +

∫∞
−∞ dp̄

∫∞
−∞ dη̄fν

aν
∂f0

∂η̄
− i

[
φ + δ̄(z̄)− i

(
x̄′ ∂

∂x̄
+ p̄′ ∂

∂p̄

)]
fν


 ,

(A1)

where x = (x, y) represents the transverse coordinates, x̄ = x
√

2k0kuρ, ∇̄2
⊥ = ∂2/(∂x̄2), x̄′ =

dx̄/dz̄ = p̄, p̄′ = dp̄/dz̄ = −k̄βx̄, k̄β = kβ/(2kuρ) with kβ = 1/〈β〉 being the average betatron

wavenumber, φ = η̄−(p̄2+k̄2
βx̄

2)/2, and f0

(
p̄2 + k̄2

βx̄
2, η̄

)
is the average distribution function

that is matched to the undulator focusing lattice. Note that δ̄(z̄) = [γc(z) − γr(z)]/(ργ0)

describes the relative change of the beam energy to the resonant energy.

As illustrated in Sec. III, we seek a solution of Eq. (A1) in the form of Eq. (21), i.e.,

Γ ≡

 aν

fν


 ≈ exp

[
−i

∫ z̄

0

(µ0(τ) + µ1(τ)) dτ

]
[Ψ0(z̄) + Ψ1(z̄)] . (A2)

The zeroth-order terms are given by

(µ0 + M)Ψ0(z̄) = 0 , with Ψ0 =


 A0(x̄; z̄)

F0(x̄, p̄, η̄; z̄)


 . (A3)

From the second row of Eq. (A3), we obtain

F0(x̄, p̄, η̄; z̄) =
∂f0

∂η̄

∫ 0

−∞
dτA0(x̄+; z̄)ei(φ+δ̄−µ0)τ . (A4)
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where x̄+ = x̄ cos(k̄βτ) + (p̄/k̄β) sin(k̄βτ). If the energy-shifted detune and growth rate

defined in Eq. (18) are used, we obtain the same FEL eigenmode equation as in a constant-

parameter FEL [18]:

(
µ̂− ν̂ +

∇̄2
⊥

2

)
A0(x̄; z̄) = i

∫ ∞

−∞
dp̄

∫ ∞

−∞
dη̄

∫ 0

−∞
dτA0(x̄+; z̄)ei(φ−µ̂)τ ∂f0

∂η̄
. (A5)

Here ν̂(z̄) = ν̄ − δ̄(z̄) is a z̄-dependent frequency detune because of the energy change. As

a result, both µ̂(ν̂(z̄)) = µ0 − δ̄(z) and A0 = A0 (x̄, ν̂(z̄)) are functions of z̄ determined by

Eq. (A5).

To take into account the next-order correction in the complex growth rate, we make use

of the adjoint eigenvector introduced in Ref. [19, 20] for the initial value solution of the 3-D

FEL system because M in Eq. (A1) is a non-Hermitian operator [17]. Defining the scalar

product of two arbitrary vectors Γ1 and Γ2 as [19]

(Γ1, Γ2) =

(
aν1(x̄; z̄), fν1(x̄, p̄, η̄; z̄)

)
 aν2(x̄; z̄)

fν2(x̄, p̄, η̄; z̄)




=

∫ ∞

−∞
dx̄aν1aν2 +

∫ ∞

−∞
dx̄

∫ ∞

−∞
dp̄

∫ ∞

−∞
dη̄fν1fν2 , (A6)

we construct an adjoint eigenvector Φ0 = (Ã0, F̃0) so that the scalar product

(
Φ

(m)
0 , Ψ

(n)
0

)
= δnm

(
Φ

(n)
0 , Ψ

(n)
0

)
. (A7)

Here the index n = 1, 2, 3, ... indicates a discrete set of eigenvalues µ
(n)
0 and eigenvectors

Ψ
(n)
0 that satisfy Eq. (A5), and δnm is the Kronecker Delta function. We also designate the

first mode (n = 1) to be the growing mode with the largest growth rate Im(µ0). It can

be shown that the eigenvalue corresponding to the adjoint eigenvector is also µ̂, and that

Ã0 = A0 [19, 20] and

F̃0 =
∂f0

∂η̄

∫ 0

−∞
dτA0 (x̄−) ei(φ+δ̄−µ0)τ (A8)

with x̄− = x̄ cos(k̄βτ)− (p̄/k̄β) sin(k̄βτ).

Assuming the set of eigenvectors is complete, we can expand the first-order correction

Ψ1 in Eq. (A2) as Ψ1 =
∑

n κnΨ
(n)
0 . Inserting Eq. (A2) into Eq. (A1) and ignoring the

higher-order terms µ1Ψ1 and Ψ′
1, we obtain

Ψ′
0 − iµ1Ψ0 = i(µ0 + M)Ψ1 = i(µ0 + M)

∑
n

κnΨ
(n)
0 = i

∑
n

(µ0 − µ
(n)
0 )κnΨ

(n)
0 . (A9)
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Since we are interested in the high-gain behavior when the first mode with its largest growth

rate dominates, we take µ0 = µ
(1)
0 and apply its corresponding adjoint eigenvector to form

the scalar product at both sides of Eq. (A9). The scalar product of the right side vanishes

in view of the orthogonality relation of Eq. (A7), and the scalar product of the left side is

(Φ0, Ψ
′
0 − iµ1Ψ0) = 0 . (A10)

Thus, the first-order correction to the complex growth rate for the 3-D FEL system is

µ1 = −i
(Φ0, Ψ

′
0)

(Φ0, Ψ0)
. (A11)

It is straightforward to show that Eq. (A11) reduces to Eq. (28) in the 1-D case since A0(x̄)

becomes independent of x̄ and the scalar product (Φ0, Ψ0) = ΣA(Φ0, Ψ0)1D, where ΣA is the

area of the electron beam transverse cross section and (Φ0, Ψ0)1D is given in Eq. (25).
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