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the leading effects stabilizing the moduli are perturbative. We show that these effects

self-consistently dominate over standard estimates for further α′ and quantum corrections,

via tuning available from large flux and brane quantum numbers.
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1. Introduction

The construction and study of string theory models of de Sitter space is of interest

for many reasons. It provides a basis for phenomenological models of dark energy and

inflation from string theory and also provides a concrete microphysical framework in which

to investigate holography in the cosmological context. The emerging variety of discrete,

physically connected solutions has interesting implications for the global structure of the

universe according to string theory and challenges conventional naturalness assumptions

in the resulting particle phenomenology.

In this paper, we present a new class of compactifications of string theory, based on

Riemann surfaces, yielding de Sitter (as well as anti de Sitter) solutions in the resulting

four-dimensional effective field theory. There are many potential compactifications of string

theory beyond those which classically preserve a massless gravitino; those we consider here

form a particularly simple illustrative set of examples. They realize the case of Kaluza-

Klein scale breaking of supergravity, complementing the previous classes of models with

sub-KK scale supersymmetry breaking [1] and string scale supersymmetry breaking [2].

This class turns out to be particularly simple, involving basic aspects of the geometry of

Riemann surfaces while generating sufficiently generic contributions to the moduli potential

to meta-stabilize the system perturbatively.

Although generic vacua of this class will have high-scale supersymmetry breaking, low-

energy supersymmetric particle physics models may be included, as the communication of

the supersymmetry breaking in the gravity sector allows for a separation of scales between

the matter superpartner masses and the KK-scale gravitino masses. In any case, the

apparent proliferation of vacua in this new class suggests that (as would be expected from

genericity) their number may significantly exceed that of the more symmetric choices of

vacua. We should also emphasize that this class is itself likely to be a small corner of the

space of possibilities.

Our construction starts from a compactification on a Riemann surface of genus at least

two whose complex-structure moduli we stabilize via fluxes in a simple manner (explicitly

for genus 2 and 3). Reducing from the critical dimension (for simplicity) this leaves four

remaining compact dimensions which can be compactified in many ways. Perhaps the

simplest option, which we exercise, is to consider these to also be Riemann surfaces, giving

us a compactification on the product of three Riemann surfaces.

The low-energy theory obtained from a flux compactification on Riemann surfaces

alone has remaining tadpoles for the dilaton and the volume of each surface. In order to
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stabilize these moduli we add 7-branes, described via an F-theory compactification on an

elliptically fibered fourfold. We argue that, by a small generalization of a similar mechanism

used in [3][1], the set of intersecting wrapped 7-branes (equivalently the topology of the

F-theory fourfold) provides an anomalous negative threebrane charge and tension and

therefore a tunable negative contribution to the potential.

1.1. Relations to previous works

The previous string-theoretic models of de Sitter fall into two classes–those based on

supersymmetric low-energy effective theories arising from Calabi-Yau compactifications of

critical string theory [1], and those based on string-scale supersymmetry breaking in su-

percritical limits of string theory [2].1 The present models lie in between these classes.

Here supersymmetry is generically broken in the gravity sector at an intermediate scale

corresponding to the Kaluza-Klein scale of the compactification. This may still allow for

low-energy supersymmetry in the matter sector, but with intermediate scale gravitini2;

more generally these models have non-supersymmetric spectra at low energies (and some

of them may fit into the framework [7]). The complex-structure moduli of the Riemann

surface are stabilized by one-form fluxes on pairs of dual one-cycles in a way similar to the

stabilization of complex-structure moduli of the Calabi-Yau in [3] by three-form fluxes on

pairs of dual three-cycles. The dilaton tadpole present at leading order in the expansion

in string coupling is of the same form as that arising in supercritical limits of pertur-

bative string theory [2]. Like the models [2], Riemann-surface compactifications exhibit

sufficient forces to stabilize all moduli perturbatively, while like the models [1], the species

enhancement to the effective couplings is manifestly controllable.

1.2. A note on control.

For readers most familiar with low-energy-supersymmetric compactifications, it is

worth reviewing the methods for theoretical control that exist in the absence of super-

symmetry below the Kaluza-Klein scale. We use a controlled perturbation expansion in

1 Many important works have appeared recently in the area of moduli stabilization and the dis-

cretuum, including for example [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27]

[28,29,30,31,32]. The work [33] considered compactification on hyperbolic spaces, and the work

[34] considered compactifications of field theories on Riemann surfaces.
2 This may be of use in addressing the gravitino problem, as discussed recently in [35][36] and

references therein.
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the low-energy effective field theory derived from string theory. This is obtained by intro-

ducing by hand sufficiently large flux and brane quantum numbers to ensure that couplings

are stabilized at small enough values and volumes at large enough values that the solution

has small flux energy density and small effective couplings (including enhancements from

numbers of species running in loops). This procedure, and the control it affords, does not

depend on low-energy supersymmetry.3

As in flux compactifications on spheres (familiar in recent years for their role in the

AdS/CFT correspondence), the tadpoles arising from the curvature in the geometry are

cancelled by forces introduced by other ingredients arising at higher orders in the expansion

in inverse volumes and string coupling (such as fluxes, wrapped branes and orientifolds).

It is not necessary for consistency to cancel tadpoles order by order in string perturbation

theory–indeed such a procedure would guarantee that the dilaton is not fixed perturba-

tively.

2. Riemann surface flux compactification

Consider string theory compactified on a Riemann surface Σ of genus h. The light

degrees of freedom (which we will refer to as “moduli”) arising from the metric on the

Riemann surface are as follows. Using diffeomorphism invariance, we can reduce the metric

degrees of freedom to the complex structure moduli, which are zero modes, the conformal

factor, whose overall volume mode we will keep and whose higher KK modes we will self-

consistently ignore, and off-diagonal metric modes, which we will ignore because they are

massive due to the absence of continuous isometries in higher-genus Riemann surfaces.

As an example, one can consider a configuration in which the metric has constant

curvature on the Riemann surface–this is the configuration toward which the system evolves

in the absence of other sources, or for sources which are uniformly distributed on the

surface. For h ≥ 2 the surface has 3h − 3 complex-structure moduli which correspond to

3 Indeed, low-energy supersymmetric non-renormalization theorems, if too powerful, can pre-

clude the generation of sufficient forces to fix moduli perturbatively. Thus they can require the

tuning of classical effects against non-perturbative effects, a procedure that turns out to be pos-

sible (and elegant) [1] but is arguably harder than the tuning needed to play different orders of

perturbation theory off of each other. Conversely, with either N = 1 supersymmetry or N = 0,

the moduli potential suffers from quantum corrections at arbitrary loop orders, and hence pertur-

bative control must be established in much the same way in both cases.
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changes of metric that do not affect the curvature, and hence are massless deformations

about that configuration. In addition, there is a scalar field corresponding to the volume

of the surface, arising from the lowest mode of the conformal factor of the metric.

We will introduce fluxes and other ingredients to stabilize these moduli as well as the

other potentially runaway moduli (such as the dilaton) arising in a full compactification

down to four dimensions. In particular, we will obtain solutions with a local minimum of

the potential energy above zero, i.e. metastable de Sitter solutions. Because the Kaluza-

Klein modes start with large masses from their internal gradients, we will ignore their

dynamics here; in our final analysis we will see that the KK scale can be tuned to be

parametrically higher than the curvature scale of the four-dimensional spacetime, and

that the masses for the moduli can be arranged to be parameterically lighter than the KK

masses in the minimum if so desired.

The Einstein term
√

gR integrated over the Riemann surface produces a tree-level con-

tribution to the low-energy effective potential proportional to 2h− 2. In four-dimensional

Einstein frame (appropriate after further compactification on a space X of volume VX in

string units) this contribution scales like4

UR ∼ 1

l44
(2h − 2)

g2
s

V 2
ΣVX

(2.1)

where l4 is the four-dimensional Planck length. The contribution (2.1) provides a tree-

level force on a combination of the dilaton and volume moduli, but does not depend on

the 3h − 3 (for h ≥ 2) complex moduli of the Riemann surface.

More generally, we will consider 7-branes embedded in Σ, described via F-theory on

an appropriate fourfold geometry. These contribute positive potential energy from their

tension in addition to negative contributions arising from F-theoretic curvature couplings

which we will review later.

In standard F-theory constructions, one considers F-theory compactified on an

elliptically-fibered Calabi-Yau manifold, which in the corresponding type IIB description

is a set of intersecting 7-branes embedded in the base of the fibration [38]. The positive

tension contributions of the 7-branes add to the tree level tadpole in (2.1). For example,

the type IIB description of F-theory on K3 amounts to 24 (p,q) 7-branes embedded in a

4 See [37] for a basic review of the potential energy arising from various ingredients in string

compactifications.
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genus h = 0 compactification, in such a way that the 7-branes cancel the term (2.1) com-

pletely. More generally, if we view a higher-genus Riemann surface Σ as a IP1 with handles

attached, we can consider the same set of 7-branes on Σ. In the F-theory description, we

are patching into the base of the fibration a trivial fibration of a T 2 over a set of handles.

This means that (2.1) becomes

UR,7Bs ∼ 1

l44
2h

g2
s

V 2
ΣVX

(2.2)

Here we used that the h = 0 contribution in (2.1) is cancelled by the effects of the sev-

enbranes; this is a good approximation at large volume, where the SUSY breaking scale

is much smaller than the 7-brane tensions. More generally, it may be possible to consider

other numbers of 7-branes on the Riemann surface and these may contribute more to (2.1),

but for simplicity will stick to the case (2.2) in our discussion below.

Fluxes threading one-cycles of Σ will prove useful for stabilizing the volume and dila-

ton, and also yield classical forces on the complex-structure moduli from the flux kinetic

terms Lflux ∼ −
∫

F ∧ ∗F ; we will study this explicitly in the next subsection. The basic

physics is as follows: flux through a one-cycle forces the cycle to expand to lower the

energy density contained in the flux. Similarly, flux through the dual to this cycle forces

the dual cycle to expand. At fixed total volume, the combination of these two flux effects

tends to stabilize the ratio of the sizes of the cycles and their duals. As we will see in §2.1,

in order to achieve this stabilization for all the independent complex structure moduli, we

will require 2h independent fluxes threading the one-cycles of Σ.

2.1. Calculating the flux potential

We would like to compute the potential energy obtained from the flux kinetic energy

for one-form fields threading one-cycles on a Riemann surface. We do this explicitly for the

cases of genus h = 1, 2, 3, for which the period matrix (reviewed below) provides a faithful

representation of the Riemann-surface complex-structure moduli space. This enables us to

organize the problem as a simple change of basis between the integral basis appropriate to

quantized fluxes and the holomorphic basis defining the period matrix. Our analysis may

generalize to higher-genus examples if the extra directions in the period-matrix description

can be dealt with.
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Consider a genus h Riemann surface Σ with homology basis ai, bi and integral one-

forms αi, βi such that
∫

ai

αj = δij

∫

bi

βj = δij

(2.3)

and for any one-form η
∫

ai

η =

∫

Σ

η ∧ βi

∫

bi

η =

∫

Σ

αi ∧ η.

(2.4)

We wish to calculate the potential Uflux =
∫

Σ
F ∧ ∗F for a one-form field F in terms of

the vector (mi, ni) such that F = miαi + niβi (up to a shift by an exact 1-form). This

becomes cleaner by a transformation to a holomorphic basis where the Hodge star is easily

defined. We can take a standard basis of h holomorphic one-forms ωi with antiholomorphic

partners ωi such that
∫

ai

ωj = δij

∫

bi

ωj = τij

(2.5)

for some symmetric period matrix τ with Im τ positive definite.

Considering our flux one-form in the ω basis and in the α, β basis

F = uiωi + uiωi = miαi + niβi + exact, (2.6)

we can see that
∫

ai

F = δijuj + δijuj = mi

∫

bi

F = τijuj + τ ijuj = ni,

(2.7)

so we can define a 2h × 2h matrix K such that

K =

(

I I
τ τ

)

(

m
n

)

= K

(

u
u

)

.

(2.8)

Now the Hodge star acts on forms in the ω basis as

∗ω = −iω

∗ω = iω
(2.9)
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so it transforms the coefficients through the action of the matrix H defined as

H =

(

−iI 0
0 iI

)

. (2.10)

Also, from (2.4) we know that
∫

Σ
αi ∧ βj = δij , so altogether we get

Uflux = (m n)MKHK−1

(

m
n

)

(2.11)

where

M =

(

0 I
−I 0

)

. (2.12)

To calculate everything in terms of τ , we need to invert K. We find

K−1 =

(

−(τ − τ̄)−1τ̄ (τ − τ̄)−1

(τ − τ̄)−1τ −(τ − τ̄)−1

)

(2.13)

Multiplying, we get

MKHK−1 = i

(

2τ(τ − τ)−1τ −(τ + τ)(τ − τ)−1

−(τ − τ)−1(τ + τ) 2(τ − τ)−1

)

. (2.14)

For h = 1 this reduces to

MKHK−1 =
2i

τ − τ

(

|τ |2 −Re τ
−Re τ 1

)

. (2.15)

So we obtain a flux potential energy

Uflux ∝
NF
∑

I=1

QiIAj
i (τ)QI

j (2.16)

where I indexes NF different types of flux with one component on Σ, i and j index the

quantum numbers on the a and b cycles, and Aj
i (τ) is the 2h × 2h matrix

A(τ) = i

(

2τ(τ − τ)−1τ −(τ + τ)(τ − τ)−1

−(τ − τ)−1(τ + τ) 2(τ − τ)−1

)

(2.17)

In (2.16) we have indicated the full dependence on τ , while further dependence on volumes

will arise in a complete construction via further compactification (and conversion to four-

dimensional Einstein frame) in a way to be discussed explicitly below.

If we have higher-form fluxes that wrap cycles on more than one Riemann surface,

the flux quantum numbers will just gain extra indices to be contracted by A, e.g. for

a three form flux wrapping one-cycles of three different Riemann surfaces, the potential

contribution is

Uflux ∝ QikmAj
i (τ1)A

l
k(τ2)A

n
m(τ3)Qjln (2.18)

where τ1, τ2, τ3 are the period matrices of the three surfaces and the flux indices can vary

over different ranges if the genera of the Riemann surfaces are different.
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2.2. Analysis of τ stabilization

We would like to understand if the potential energy (2.16) is sufficient to metastabilize

the complex-structure moduli τ . If we can show that the potential blows up at all the

boundaries of the moduli space, then it must have a minimum in the interior.5 These

boundaries are known–they correspond to the imaginary part of τ becoming degenerate

or τ factoring into smaller Riemann surfaces (e.g. τ12 → 0 in the h = 2 case.) The first

boundary can be dealt with fairly easily if there are 2h independent flux vectors: Since A

is a positive-definite symmetric matrix, it has all positive eigenvalues. As an eigenvalue of

τ − τ approaches 0, (τ − τ)−1 has an eigenvalue that gets large. This dominates the other

components of A, meaning that A must get a large eigenvalue, but with 2h independent

fluxes at least one has a component along the eigenvector with large eigenvalue, and thus

the inner product (2.16) goes to infinity.

This argument does not deal with the factorization boundary, which is of a different

character. The first type of boundary involves the shrinking of a nontrivial cycle, which

some flux wraps, while the factorization limit involves the shrinking of a trivial cycle, which

no flux wraps. However, for the case of small genus, we can explicitly find local minima

of the flux potential for τ away from all boundaries. At h = 3, a computer search of 100

linearly-independent flux choices found minima away from the boundary in all cases. It is

possible to vary the flux choices, which allows some degree of tuning of the solutions for

τ . The computer search demonstrated a wide variation in the locations, which suggests

that they are indeed tunable. It would be nice to have a conceptual argument for why the

factorization boundary is avoided–a similar effect occurs in the case of the large complex

structure limit of flux-stabilized Calabi-Yau compactifications [3].

3. The volume and dilaton tadpoles: basic strategy

Having fixed the complex-structure moduli via the flux potential described in the last

section, we now turn to the stabilization of the dilaton and volume moduli. As discussed

above, we have a tree-level tadpole for these quantities after compactifying on Σ. For our

case of h ≥ 2, this tree-level contribution to the potential energy is positive, driving the

5 In fact, since the one-form fluxes spontaneously break modular invariance, at fixed flux

quantum numbers we are interested in the boundary of the covering space of the Riemann-surface

moduli space.
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volume toward large values and the dilaton toward weak coupling. We need to introduce

further ingredients in order to stabilize these directions, while also stabilizing any additional

runaway moduli introduced by the new ingredients, and doing it all in a way consistent

with a controlled perturbative approximation scheme. This (in our experience) requires

some trial and error, which results in the class of de Sitter models which we present in the

next section. However, much of the input is based on simple intuition about the forces

at play in compactifications with flux and branes [37], so we will start in this section by

sharing our basic strategy.

Because all sources of Einstein-frame potential energy go to zero at weak coupling and

large volume, stabilization requires sufficiently strong negative contributions. To obtain de

Sitter space we aim for three terms in increasing orders of perturbation theory about weak

coupling and large volume, with the middle term negative. For example, for the string

coupling g, fixing the other moduli at their ultimate minima we require a potential of the

form ag2 − bg3 + cg4 which for large enough b and c produces a metastable minimum at

weak coupling. In our examples, the tree-level contribution (2.2), and (2.16) in the case of

NS 3-form flux, produces a positive term proportional to g2. We can add a negative term

at order g3 (the order at which orientifolds, the simplest such negative contribution, arise)

and use the RR flux appearing at order g4 to provide a final positive term.

In fact, we will now argue that there is a more general way to obtain a tunably

large negative contribution as discussed in §2.1 of [3], by using the fact that wrapped

intersecting branes and related curvature contributions can produce negative D3-brane

charge and tension.

Consider first the low-energy supergravity case of [3], starting from F-theory com-

pactifications on elliptically fibered Calabi-Yau fourfolds. The base of the fibration has

7-branes at the loci where the T 2 fiber degenerates. There is an anomalous contribution

to the D3-brane charge, given for a Calabi-Yau fourfold by −χ4/24 where χ4 is the Eu-

ler character of the fourfold. There is correspondingly a supersymmetric partner of this

charge, an effective 3-brane tension also given by −χ4/24. By varying the choice of four-

fold, one can tune this contribution to large negative values. (In the IIB language this

tunably-large anomalous charge and corresponding tension is associated in large part to

inflow on intersections of 7-branes as in [39].) For perhaps the simplest case of a CY

fourfold fibered over IP1 × IP1 × IP1, χ4/24 = 732 [40], which yields a control parameter of

order 10−3; more general fibrations can yield χ4/24 significantly larger [41].
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In our case, we are interested in type IIB string theory in the critical dimension,

compactified on a product of Riemann surfaces. Let us consider, for example, the above

case of a CY fourfold fibered over IP1× IP1× IP1, but sew in handles to the base IP1 factors

in smooth regions away from the 7-branes. For a general (non-Calabi-Yau) fourfold, the

anomalous 3-brane charge is proportional to [42,43]

− 1

768
(tr(R2))2 +

1

192
trR4 (3.1)

In the region near the handles, this contribution vanishes because the manifold is a product

of the handle times a 3-manifold in that region and the traces in (3.1) vanish for this con-

figuration (to be specific, one may consider adding handles to the CY base in its orientifold

limit [44,45,46]). As a result, the tunably large negative contribution to the 3-brane charge

and tension from the associated CY four-fold survives to a good approximation. It is only

approximate because supersymmetry is broken, and the relation between the anomalous

threebrane charge and tension is corrected. However, at large volume the supersymmetry

is broken at a scale much lower than the scale of the 3-brane tension, so the BPS relation

between the anomalous contribution to the charge and that of the effective threebrane

tension is still a good approximation as long as we ultimately stabilize the system in the

large-volume regime.

Altogether, these ingredients yield a term in the effective potential of the form

U3 ∼ − 1

l44
N7

g3
s

V 2
(3.2)

where V is the total volume of the compactification, and N7 is the effective control param-

eter just described (χ4/24 of the associated CY fourfold to a good approximation). Here

we have used the fact that the anomalous contributions do not depend on any geometric

moduli in the string frame (and only the only depend on the overall volume in Einstein

frame in four dimensions via the factor volume in (3.2) coming from the conversion to four

dimensional Einstein frame).

In what follows, we will include 7-branes via a term of the form (3.2), and show how

the volumes and dilaton are stabilized. We will not determine where the 7-branes become

localized inside the compactification.

4. A new class of de Sitter models

With the above inputs and motivations, we present our de Sitter models.
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4.1. The ingredients

Consider type IIB string theory in the critical dimension compactified on a product of

three Riemann surfaces Σs of genera hs, s = 1, 2, 3, with each Riemann surface containing

24 7-branes. For simplicity, we will often take h1 = h2 = h3 = h in the following. The

7-branes can be described as the singular locus of a T 2 fibration over Σ1×Σ2×Σ3; i.e. the

7-branes sit at the locus where the T 2 fiber degenerates6. Each 7-brane sits at a point in

one of the Σs factors and wraps a four cycle consisting of the other two Riemann surfaces.

In addition, let us include the following types of flux in this compactification. First

some notation: let is = 1, . . .2hs index the 1-cycles on Σs. As above, let s = 1, 2, 3 index

the Riemann surface factors Σs. The ingredients are:

(1) Neveu-Schwarz 3-form flux H3 on 3-cycles consisting of one one-cycle in each of the

three Σ factors. Let us denote these flux quantum numbers N i1i2i3 .

(2) Ramond-Ramond 3-form flux F3 on 3-cycles consisting of one one-cycle in each of the

three Σ factors. Let us denote these flux quantum numbers Qi1i2i3
3 .

The contributions (1) and (2) must satisfy the constraint that
∫

H3 ∧ F3 cancel the

tadpole in three-brane charge arising from the intersecting wrapped 7-branes described

above:

1

2

1

(2π)4(α′)2

∫

Σ3

H(3) ∧ F(3) + ND3 = N7. (4.1)

where N7 is the anomalous 7-brane contribution to effective negative D3 charge.

(3) Ramond-Ramond 1-form flux on the 1-cycles of Σs; the corresponding flux quantum

numbers will be denoted Qs
1. This contribution will not play a significant role in our

stabilization mechanism, but can be included among this class of models.

(4) Ramond-Ramond 5-form flux on the 5-cycles consisting of 1-cycles of Σs times Σs+1 ×
Σs+2 where the subscripts are reduced mod 3. The corresponding flux quantum numbers

will be denoted QIs
5 .

There is an interesting subtlety with this contribution. As discussed in [47], in an

orientifold limit of the system of 24 7-branes on IP1, T 2/(I2Ω(−1)FL), we cannot consider

6 More generally one may be able to consider nontrivial fibrations of these Riemann surfaces

over each other, as well as situations with larger numbers of 7-branes. We will describe the

effective potential in terms of the parameter N7 in what follows; much of the same structure

would go through in these more general cases.
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5-form flux with one index transverse to the O7-plane. That is, the zero mode of this

flux is projected out by the orientifold action. More precisely, the flux must vanish at the

positions of the O7-planes; all the KK excitations of this sort (with zeros at the O7-planes)

are projected in and are hence consistent configurations.

Of course Kaluza-Klein excitations of the RR flux would not be suitable for our model

building, since such modes necessarily fluctuate in time. Fortunately in our case we add

handles to the IP1, and the topology of the Riemann surfaces come to the rescue. The

holomorphic 1-forms, which correspond to static solutions of the equations of motion for the

flux, have zeros on higher genus Riemann surfaces (at genus h the holomorphic 1-forms

each have 2h − 2 zeros by the Riemann-Roch theorem). Starting from a configuration

where we sew handles onto the orientifold limit of the IP1 with 24 7-branes, in the Σi

direction in which our 5-form flux reduces to a 1-form we must consider the 1-form with

zeros at the positions of the orientifold planes. The flux solution is determined by the

integer flux quanta and the complex structure only up to cohomology, so the zeros can be

placed at the correct points by adding exact 1-forms. Having addressed this constraint

in the orientifold limit, the setup should be consistent for more general configurations:

nonsingular deformations of the compactification away from this limit will not change

topological features such as the number of zeros. More generally, fluxes with boundary

conditions that they must vanish at the positions of certain defects may be accommodated

by considering sufficient genus to obtain enough zeroes in the corresponding holomorphic

1-forms.

4.2. The low-energy spectrum

In what follows we will analyze the potential for the remaining potentially runaway

moduli–the dilaton and the volumes of the three Riemann surfaces. Because of the absence

of isometries, we do not expect massless off diagonal components in the metric, including

scalars that would modify the product structure of our base manifold as well as massless

gauge fields in four dimensions arising from the 10d metric. However there are other light

degrees of freedom in the low-energy effective field theory arising from our construction.

In particular, there are RR gauge fields from dimensional reduction of the 10 dimensional

RR potentials on the cycles of our compactification.
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These come from the type IIB RR scalar C0 and harmonic 2-forms made from the NS

and RR potentials B2 and C2 integrated over 2-cycles of the compactification, as well as

the RR 4-form C4 on 4-cycles. The IIB axion C0 couples via the term

UC0
∝

∫

|F3 − C0H3|2 (4.2)

In general, one can solve C0’s equation of motion and plug the result into (4.2), yielding

a more complicated potential energy for the other moduli (including τ) than that arising

in the absence of the C0 coupling. This potential may generically have nontrivial local

minima, but we can simplify the situation by arranging the fluxes to produce a solution at

or near C0 = 0. That is, we can arrange that the C0 tadpole cancel by setting to zero the

coefficient of its linear term in (4.2)

UC0 tadpole ∝ C0

∫

(H3 ∧ ∗F3 + F3 ∧ ∗H3) ≡ 0. (4.3)

This condition is consistent with our requirement to simultaneously turn on
∫

H3 ∧ F3 to

satisfy the Gauss’ law constraint (4.1).

The axions arising from the 2-forms B2 and C2 have similar couplings:

UC2,B2
∝

∫

|F5 −
1

2
C2 ∧ H3 +

1

2
B2 ∧ F3|2 (4.4)

We can also arrange a solution with negligible tadpoles for C2 and B2 by insisting that

the coefficient of the linear term for these axions (
∫

2−cycles
C2 and

∫

2−cycles
B2) be small.

The number of conditions on the flux choices this entails is 2b2 where b2 = 12h2 +3 (given

the same genus h for all three Riemann surfaces). The number of 3-form fluxes alone is

16h3 so it is possible to accommodate these conditions, leaving behind enough independent

fluxes to have 2h independent fluxes threading one-cycles on each Riemann surface factor.

Similar comments apply to the C4 field, whose contribution scales like that of C2.

If we made more general choices than those yielding C0 ∼ 0 ∼
∫

B2 ∼
∫

C2 ∼
∫

C4,

we would obtain a somewhat more complicated effective potential for the other moduli.

This may be interesting to study. In any case, having made these simplifications in the

pseudoscalar sector, we move on to the potential energy for the volume moduli and the

dilaton.
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4.3. The potential energy

We combine the sources described in the previous sections, including (2.2)(2.16)(3.2).

We will denote the volume in string units of the Σs factors Vs. We will not explicitly

stabilize the moduli having to do with the positions of mobile 7-branes; once we stabilize

the volumes these moduli take values on a compact space.

U =
1

l44

g4
s

(V1V2V3)2

{

∑

r

1

g2
s

2hrVr+1Vr+2 + N i1i2i3A(τ1)
j1
i1

A(τ2)
j2
i2

A(τ3)
j3
i3

Nj1j2j3

− 1

gs
N7 + Qi1i2i3

3 A(τ1)
j1
i1

A(τ2)
j2
i2

A(τ3)
j3
i3

Q3 j1j2j3

+
∑

r

[

Qir
1 A(τr)irjr

Qjr

1 Vr+1Vr+2 + Qir
5 A(τr)irjr

Qjr

5

1

Vr+1Vr+2

]}

(4.5)

where we take the r index to range cyclically over the labels 1,2,3 of the three Riemann

surface factors. Here the overall factor comes from the conversion to four-dimensional

Einstein frame and the first term is from the Einstein-Hilbert action, dimensionally reduced

as in (2.2). We have included the offset from the 7-branes cancelling the −2 in the 2h− 2

coefficient of (2.1). The second line contains the NS flux contribution, as in (2.18), and

the effective threebrane tension contribution from intersecting wrapped 7-branes, as in

(3.2). The last line contains the RR flux contributions. We have dropped several order-

one factors; we will keep track of the dependence on our discrete parameters which will

provide parametric control.

4.4. Metastable minima of the moduli potential

In this subsection, we will elucidate how this model, with appropriately tuned choices

of flux and brane quantum numbers, produces metastable de Sitter minima. We will first

recall the result of §1 that (with sufficient independent fluxes) the complex moduli of each

Σ are metastabilized. Then we will observe that e.g. for an approximately symmetric

distribution of fluxes, the relative volumes Vr/Vs get stabilized at order 1 by the potential

(4.5). Finally, we will demonstrate the stabilization of the overall volume and dilaton.

These manipulations will lead us to tuning requirements on the flux and brane quan-

tum numbers, as well as expressions for how the stabilized values of the moduli scale with

these discrete quantum numbers. In the following subsection we will use these results to

make standard estimates for the size of the α′ and gs corrections to the background, which

14



must be tuned small self-consistently. We will see that the required tuning is available in

our system given the possibility of scaling up the contribution N7 as discussed above.

Complex moduli of Σ

In §1, we established that the complex-structure moduli τ of the Riemann surface

are stabilized by 2h independent fluxes threading one-cycles of Σ. The 1-form and 5-form

fluxes alone are sufficient to stabilize the complex moduli of a genus 2 Riemann surface.

More generally, the 3-form fluxes lead to 4hr+1hr+2 types of fluxes on Σr, allowing one to

stabilize the complex structure moduli of products of higher genus surfaces as well.

Ratios of Σ volumes

In (4.5), the positive terms in the potential are symmetric among the three Σ factors.

Let us scale out the dependence on the overall volume V = V1V2V3 in each term. The

positive terms in the resulting potential all go to infinity for any large ratio of volumes

Vr/Vs. If we tune the fluxes to be approximately symmetric among the three Σr factors,

then we obtain a minimum at Vr/Vs ∼ 1 from these terms7.

Overall volume and dilaton

Let us now move to the problem of stabilizing the overall volume V = V1V2V3 and

dilaton. Setting the relative volumes Vr/Vs ≡ 1 our potential reduces to one of the form

U(gs, V ) = C

(

g2
sh

1

V 4/3
+ g2

sn2
3

1

V 2

− g3
sN7

1

V 2

+ g4
sq2

3

1

V 2
+ g4

sq2
1

1

V 4/3
+ g4

sq2
5

1

V 8/3

)

(4.6)

Here for simplicity we have taken the fluxes to be symmetrically distributed among the

three Σ factors, each of genus h. We have introduced the shorthand n2
3 for the flux potential

from the NS 3-form, evaluated at the minimum τ = τ∗, and similarly for the Ramond fluxes

q2
a.

Consider first the first, third, and sixth terms in (4.6). These form a fourth degree

polynomial in the combination g/V 2/3 so for appropriate choices of coefficients, they sta-

bilize this combination at
g

V 2/3
∼ h

N7
∼ N7

q2
5

(4.7)

7 More generally, one can use the symmetry of the potential and the Arithmetic Mean-

Geometric Mean inequality to show that the volumes are stabilized at values of order the ratios

of flux numbers.
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Plugging this into the remaining terms (the second, fourth, and fifth) in (4.6), we obtain

a contribution

U2−4−5 ∼
(

h

N7

)2

n2
3

1

V 2/3
+

(

h

N7

)4

q2
3V 2/3 +

(

h

N7

)4

q2
1V 4/3 (4.8)

If we consider flux choices such that the first two terms here dominate (while remaining

subdominant to the first, third and sixth terms discussed above), the second set of terms

will not destabilize g
V 2/3

and we find V stabilized such that

V 4/3 ∼
(

N7n3

hq3

)2

(4.9)

while the string coupling is stabilized at

gs ∼ n3

q3
(4.10)

This procedure for stabilizing the volume and dilaton requires that the terms (4.8)

are subdominant to the first, third and sixth terms in (4.6). In particular, the 3-form NS

and RR flux potentials at the minimum, n2
3 and q2

3 , need to be sufficiently small so that

the corresponding terms are subdominant. At the same time, we must satisfy (4.1), which

ties the flux quantum numbers N3 and Q3 to N7. Luckily the constraint (4.1) involves a

topological inner product on the flux quantum numbers while the n2
3 and q2

3 terms in the

potential involve a complex-structure-dependent inner product, so these requirements are

compatible. In fact, the complex-structure-moduli stabilization picks the potential terms

to be as small as possible, so this condition should be easy to satisfy.

The cosmological constant and moduli masses

The set of metastable minima we have exhibited produces a discretuum of possible

cosmological constants, depending on the flux choices. If we do not tune coefficients signif-

icantly to obtain a low cosmological constant, then the scale of the resulting cosmological

constant is of order the Kaluza-Klein scale of the compactification

Λuntuned ∼ h3

N2
7

1

l24
∼ h

V 1/3

1

α′
(4.11)

By tuning our discrete parameters we can arrange the cosmological constant and moduli

masses to produce a hierarchy of scales between the KK scale of the compactification and

the curvature scale in four dimensions as well as the moduli mass scales:

Λtuned, m
2
moduli ≪ Λuntuned (4.12)
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Anti de Sitter examples

Although we have focused on de Sitter minima, similar methods lead to anti-de Sitter

vacua. For example, in situations where the negative 7-brane contribution is sufficiently

strong relative to the RR flux contributions, our minimum may dip below zero.

To obtain de Sitter solutions, a necessary condition is at least three independent

contributions in each direction in an expansion about weak coupling/large volume, with

the middle term negative. More generally, to obtain parts of the discretuum that are

purely anti-de Sitter, we can consider other compactifications which only provide two terms

(negative, positive) in some or all the directions. This allows one to consider products of

Riemann surfaces with spheres or orbifolds of spheres.

4.5. Estimates of subleading corrections and self-consistency checks

In the above analysis, we exhibited metastable minima with small string coupling and

large volumes (relative to the string scale). Although this is a necessary condition for a

controlled solution, there are further self-consistency checks we must make. In the presence

of large flux and brane quantum numbers, it is necessary to check that the effective expan-

sion parameters coming into stringy and quantum corrections are small. These expansion

parameters are somewhat enhanced by the large discrete quantum numbers. Hence in this

subsection, we will systematically estimate the size of the corrections taking these factors

into account.

Curvature corrections

String theory has a generic expansion in α′R where R is the curvature of the spacetime

background. By tuning (4.9) large, we can preclude these large curvature corrections in

our type IIB background. Specifically, in string units,

R ∼ h

V 1/3
∼ h3/2

N
1/2
7

(

q3

n3

)1/2

≪ 1. (4.13)

Keeping in mind that q3/n3 ∼ 1/gs, this requires that N7 be large.

Note that as in [3][1], we are using a large number of 7-branes to obtain a strong

negative contribution in the potential energy. In F-theory (or related M-theory or IIA

backgrounds) this is itself related to an R4 correction. It would be nice to check explicitly

whether there are any other enhanced quartic curvature contributions, and if so if these

are independently tunable. This question also arises in the low energy supersymmetric

models, and we believe it is reasonable to take the approach of [3][1], and assume that
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these other R4 contributions are subdominant since the large number introduced by the

intersecting branes contributing to χ4 need not generally contribute coherently to other

curvature terms. Indeed, this statement was checked for some situations in [48]. Note, as

discussed above, that adding handles to the base in itself adds a small correction to the

χ4 R4 contribution.

NS flux corrections

Next let us consider the expansion in (H3α
′)2 ∼ n2

3/V . To make this small we require

(

h

N7

)3/2

n
1/2
3 q

3/2
3 ≪ 1 (4.14)

which is weaker than (4.13) since we have already insisted that n3q3 ≪ N7.

RR flux corrections

The RR flux vertex operators come with an additional factor of gs. Hence the condition

for control of the higher derivative terms involving a p-form flux is g2
sq2

p/V p/3 ≪ 1. For the

threeform flux F3, this is satisfied in a similar way to that described above for H3 (4.14).

For the 5-form RR flux we obtain the condition

N7gs

V
∼ h3/2

N
1/2
7

(

q3

n3

)1/2

≪ 1 (4.15)

which is the same as (4.13).

Quantum corrections

Finally, we need to consider the expected strength of quantum corrections to our

Lagrangian in this background. At high energy-momentum flowing through the loops,

above the KK scale, the contributions are localized in the compactification and the effective

coupling is the 10d coupling g∗ ∼ n3/q3 (4.10). We therefore choose q3 at least somewhat

larger than n3. At low energies, in the 4d effective field theory, the corrections scale

like g2/V times the number of species running in loops. This number is roughly N7 at

low energies (if we keep the genus h low enough that topological enhancements from the

handles are subdominant). Putting this together with the above scalings, we have

N7g
2
s

V
∼ h3/2

N
1/2
7

(

n3

q3

)1/2

≪ 1. (4.16)

This is weaker than (4.13) by a factor of gs.
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5. Discussion

This class of models provides a perturbative set of de Sitter vacua to a good approx-

imation. It further illustrates the fact that the string theory “landscape” goes beyond

the low energy supergravity sectors most studied to date (though these models may still

permit low-energy supersymmetry in the matter sector).) In particular, in studying the

discretuum of string vacua, it does not suffice to consider only those with a low-energy

supergravity effective Lagrangian in four dimensions.

5.1. Number of Vacua

As anticipated in [4], like other examples of flux vacua our construction leads to the

possibility of mass production of metastable string vacua, by varying over the many possible

flux, brane, and topological quantum numbers. Let us estimate roughly the number of

vacua in our new class of models. As discussed in [4], a rough estimate for the number of

vacua is obtained by counting the volume in a sphere in flux space up to a maximum radius

determined by the strength of the “bare” negative cosmological constant to be cancelled

by the fluxes. In our case, as in [1] the “bare” negative piece is dominated by the 7-brane

contribution in (4.5). Using the relation (4.1), we can trade this for Q · N ≡
∫

H3 ∧ F3.

Let us denote the maximal value of this quantity (determined by the maximal value of

N7 available and by back reaction constraints) by (Q · N)max. Our space of fluxes is

2b3 + b1 + b5 dimensional (where bp are the numbers of noncontractible p-cycles in the

compactification). Putting this together, our estimate for the number of vacua available

here is

Nvac ∼
(

(Q · N)max

b3 + (b1 + b5)/2

)b3+(b1+b5)/2

(5.1)

Note that relative to the Calabi-Yau case, the extra handles enhance the dimension of the

flux space. In general, one might expect that relaxing conditions such as the Calabi-Yau

condition enhances the number of independent ingredients, hence increasing the number

of vacua in the more generic starting points. In (5.1) we see one aspect of that here. Of

course the examples we have studied themselves constitute only a small corner of the space

of compactifications.

It would be interesting to determine the distributions of these vacua in moduli space, as

in [10]. It is clear that the assumption of low energy supersymmetric effective Lagrangians

must be relaxed in order to obtain a representative sample of string vacua, and to answer

related questions about the statistics of the supersymmetry breaking scale [4,2,32]. This

point, already clear from the case of string scale supersymmetry breaking, is reinforced by

the new class of models discussed here.
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5.2. Holographic Duality

The new de Sitter construction may also be of interest for studying the microphysics

of de Sitter space, since the perturbative ingredients involved in the moduli stabilization,

including the volume stabilization, are fairly explicit. As before, the fluxes can be traded

for branes to expose some of the microphysical content of the holographic duals on their

approximate moduli space [49]. In this regard it is interesting that as in the construction

[1], here we required nontrivial NS flux H3, which leads to the presence of NS-branes in

the approximate moduli space of the dual. It would be interesting to know if this is part

of a general pattern.

5.3. String Duality

These compactifications raise interesting questions concerning string-string duality.

One possible way to explore this would be to elucidate more explicitly whether there is a

useful F theoretic description of T 2 fibrations over more generic base manifolds (such as

the Σ3 in the present construction).

Another possibility is to try to understand the small-radius behavior of compactifica-

tions on Riemann surfaces. In the present work, we tuned to obtain a set of large-radius

compactifications in order to maintain general relativity as a good approximation. How-

ever, the small-radius limit of the Riemann surface may remain a well-defined conformal

field theory if we take into account strong worldsheet dynamics (and remain on shell by

including the time dependence arising from the tadpoles, or by including other ingredients

to metastabilize the space). It is even possible that the theory grows dimensions at strong

worldsheet coupling; this possibility is perhaps suggested by the fact that the form of the

tree-level dilaton tadpole in our theory (2.1)

UR ∼ 1

l44
(2h − 2)

g2
s

V 2
ΣVX

(5.2)

is reminiscent of that in dimension D supercritical string theory models [50][2]

UD ∼ 1

l44
(D − 10)

g2
s

Vinternal
(5.3)

In both these formulas there is an integer quantum number in the coefficient–which serves

as the effective central charge which must be soaked up by dilaton time dependence or

higher order balancing of forces. It is related to the first Chern class of the manifold in

the case of Riemann-surface compactifications, and is related to the dimensionality in the

case of supercritical limits of string theory. It would be very interesting to understand if

these two integers are related to each other by a duality, for example in the small radius

regime of the Riemann surface compactifications.
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5.4. Phenomenological applications

Finally, it would be interesting to explore the phenomenology of these models. One

question to ask is whether low-energy SUSY in the particle physics sector may emerge in

some models of the sort we consider here (cf. for example [35]). In particular, gravitational

communication of the SUSY breaking of the gravity sector to the Standard Model leads

to superpartner mass squares of order m4
KK/M2

p . This alone would provide TeV scale

SUSY breaking in the observable sector if mKK ∼ 1011 GeV , though there may be other

mediation mechanisms which dominate this depending on the details. In any case, more

generically, we expect many models with high-scale SUSY breaking in this context; it

would be interesting to check for models of the sort [7]. String-theoretic standard-model

constructions based on intersecting branes on tori might fit into this framework well, as

locally there are products of circles in our Σ3 compactifications.8
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