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ABSTRACT

We propose a novel multivariate Monte Carlo method as an efficient and flexible approach

to analyzing extended X-ray sources with the Reflection Grating Spectrometer (RGS) on

XMM Newton. A multi-dimensional interpolation method is used to efficiently calculate the

response function for the RGS in conjunction with an arbitrary spatially-varying spectral

model. Several methods of event comparison that effectively compare the multivariate RGS

data are discussed. The use of a multi-dimensional instrument Monte Carlo also creates many

opportunities for the use of complex astrophysical Monte Carlo calculations in diffuse X-ray

spectroscopy. The methods presented here could be generalized to other X-ray instruments

as well.
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1. The General Problem of Diffuse X-ray Spectroscopy

Diffuse sources, such as clusters of galaxies, supernova remnants, and the interstellar hot haloes of

elliptical galaxies, comprise some of the most interesting targets for astrophysical X-ray spectroscopy.

Photons from these sources are focused and dispersed by optics and recorded in detectors designed to

measure three interesting quantities: two related to the position on the detector (x, y) and one related

to an intrinsic photon energy measurement (p). These quantities are indirectly related to the sky

coordinates (θ, φ) and the energy of the incident photon (e) that can be predicted from an astrophysical

model with parameters, {η1, η2, η3, . . . } ≡ ηi.

The fundamental goal of data analysis for diffuse X-ray spectroscopy is to calculate the probabil-

ity of a given distribution of photons in the (x, y, p) data-space given the parameters of a particular

astrophysical model. Prior to the launch of the Chandra (Weisskopf et al. 2000) and XMM-Newton

(Jansen et al. 2001) observatories, available instruments were characterized by sufficiently poor spa-

tial and/or spectral resolution that simple one-dimensional spectral fitting techniques applied to data

extracted from the image were sufficient for most applications. However, the grating experiments and

non-dispersive CCD experiments on these two new observatories both have significant imaging and spec-

tral capabilities, making it warranted to develop new techniques that utilize the full dimensionality of

the data. In particular, the Reflection Grating Spectrometers (RGS) on XMM-Newton have a number

of unique characteristics that make them powerful X-ray spectrometers for arcminute-size X-ray sources.

In this paper, we demonstrate that the complex nature of the response function for the RGS requires

new analysis methods that utilize the full dimensionality of the data. We also demonstrate how these

methods might be useful for other X-ray instruments.

The techniques for analyzing an X-ray spectrum of an unresolved source are well-developed and have
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been essentially unchanged since the analysis of early X-ray spectra (Gorenstein, Gursky, & Garmire

1968). For that case, there is only one interesting measured quantity that is related to the energy of

the photon. For non-dispersive spectrometers (e.g. CCDs, calorimeters, and proportional counters), the

photon energy measurement (p) is the useful quantity. For dispersive spectrometers (e.g. gratings and

crystals), the dispersion coordinate, x, or the position along the detector parallel to the dispersion axis,

is the useful measured value. In either case, the detection probability, D, of finding a photon at a given

x or p is then given by

D(x or p | ηi) =

∫

de R(x or p | e) S(e | ηi) (1)

which is an integral over all energies, e. Here, R is the response kernel and S is the input spectral

model, which is a function of both the energy and the input parameters. The response kernel describes

the probability of obtaining a distribution of measured values given a photon with incident energy, e.

The integral is computed numerically by converting the expression into a sum of discrete energies in

well-developed software packages, such as XSPEC (Arnaud 1996) or SPEX (Kaastra et al. 1996).

For an extended source, the probability distribution is described by a three-dimensional function

and its calculation requires an integration over both the sky coordinates (θ, φ) and the intrinsic energy

(e). The three-dimensional detection probability, D, is then given by

D(x, y, p | ηi) =

∫

de dθ dφ R(x, y, p | θ, φ, e) S(θ, φ, e | ηi) (2)

Computing this entire integral directly is often impractical. Nevertheless, some approximations can be

made that are useful in restricted situations. In particular, one can assume: 1) the source spectrum is

independent of spatial position, and 2) the response does not vary as function of the off-axis angle. The

problem can then be reduced to a one-dimensional integral, as for a point source. The former assumption



– 4 –

is sometimes justified, but has become untenable in many recent analyses. For example, modeling an

X-ray cluster of galaxies as a thermal plasma whose temperature varies spatially already violates this

assumption. The second assumption depends on the nature of the X-ray instrument as well as the

angular scale of the problem being investigated. Attempts to circumvent this problem by weighting the

response matrix for Chandra ACIS-S observations can be found in Markevitch & Vikhlinin (2001) and

in Arnaud et al. (2001) for XMM-Newton EPIC data. We demonstrate in §2 that the complex nature of

the response function, R, for the Reflection Grating Spectrometer makes this approximation impossible

to implement without assuming that there is no spectral variation over the entire field of view. Instead,

we are forced to consider new methods that consider the full multi-dimensionality of Equation 2.

Equation 2 can be evaluated directly through a Monte Carlo calculation as we will demonstrate

in §3. It has been known for some time that Monte Carlo methods are efficient for the evaluation of

multi-dimensional integrals (Metropolis & Ulam 1949). Few photons are typically detected in X-ray

observations, so the exact calculation of the full integral is superfluous. After constructing an efficient

Monte Carlo algorithm, we outline a generic approach for the analysis of diffuse X-ray sources with

Monte Carlo calculations in §4. In §5, we discuss several methods of event comparison that can be

used with the photons simulated with the RGS Monte Carlo and real data. In §6, we discuss several

straightforward extensions to these methods.

2. Structure of the RGS Response Function

The Reflection Grating Spectrometers consist of three instrumental components: the mirror module,

the RGS grating array (RGA), and the RGS focal plane cameras (RFC). There are two nearly identical

sets of each of the three components. The full description and calibration of these components has been
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covered in den Herder et al. (2001) and is also documented in the XMM Users Handbook. We briefly

discuss some of the important characteristics of each of the three components for the purpose of data

analysis.

The mirror module consists of 58 concentrically-aligned gold-coated mirrors shells. Photons hit

each Wolter Type I shell twice. The angular resolution is set by surface deformations of the mirrors and

the relative alignment of the shells. The X-rays then arrive at the reflection grating array (RGA) after

exiting the mirror module. The RGA consists of 182 coaligned rectangular reflection gratings. Each

grating has many triangular replicated grooves spaced at 645.6 lines per millimeter. On-axis X-rays hit

the grating at 1.57 degrees and are dispersed between 2 and 5 degrees depending on their wavelength.

The gratings are precisely arranged in an array, which is aligned so that all light hits the gratings at

the same incidence angle (Kahn et al. 1996). If α is the angle of incidence of a photon, then the exit

angle, β, is determined by the dispersion equation:

mλ

d
= cos β − cos α (3)

where d is the grating spacing and m is the integer diffraction order. The derivation of this relation

is straightforward through Fraunhofer diffraction theory. The deviation from this ideal relation is not

simple, however, because it depends on the alignment of the array, the surface imperfections of the

gratings, and the achromatic blurring already induced by the mirror module. The angle of incidence on

the grating, α, is related to the off-axis angle relative to the boresight axis, θ, by

θ =
F

L
(α − α0) (4)

where F is the distance between the RGA and the RFC (6.7m) and L is the focal length of the telescope

(7.5m). For directions perpendicular to the grooves of the gratings, photons that enter at an angle,
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φ, will exit at the same angle, which we will call cross-dispersion and designate by the angle, y. The

cross-dispersion equation is then simply,

y = −φ (5)

The photons are detected by the RFC. Each RFC consists of 9 back-illuminated CCDs placed in a

row that detect individual X-rays. Each CCD measures 1024 by 384 pixels, which are 27 microns on

a side. Each CCD consists of two nodes where the charge is clocked separately for each. The intrinsic

CCD energy resolution, which is set by the ability to fully sample the energy deposited in the charge

cloud, is sufficient to separate the spectral orders for sets of photons. We would otherwise be left with

an ambiguity between wavelength and spectral order. The gain-corrected pulseheight, p, is roughly

proportional to the energy,

p = e (6)

The CCD array is approximately aligned along the Roland circle in the RGS design so that the position

along the detector array, x, is approximately equal to the exit angle for the grating, β, after correcting

for the relative locations of the individual CCDs. For that reason, we will use β and x interchangeably.

The Reflection Grating Spectrometers were designed to have relatively high dispersion (i.e., large

dispersion angles from the focus) in order to compensate for the fact that the mirrors would blur X-ray

sources by 10 arcseconds (Kahn & Hettrick 1985). The soft X-ray spectrum gets dispersed over an

angular range of about 3 degrees. Thus, in principle if the spectral resolution is set mostly by the

blurring of the mirror, spectral resolving powers ( λ
∆λ

) near 3 degrees/10 arcseconds ≈ 1000 are possible.

An important aspect of the high dispersion angle capabilities is that X-ray sources with angular sizes

of order the 10 arcsecond blurring also benefit from the high spectral resolution. If an X-ray source is

larger than the mirror point-spread-function (PSF), then the resolution is obtained by differentiating
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Equation 3 with respect to the off-axis angle,

∆λ =
d

m
sin (α0)

L

F
∆φ

≈ 0.12Å ∆φ (in arcminutes) (7)

The RGS dispersion therefore has resolving powers 10 times higher than the energy resolution of a

typical CCD in the Fe L wavelength band for a source of arcminute size.

Equation 3, 4, 5, and 6 form the basic first-order behaviour of the response function for the RGS

and Equation 7 clearly justifies our use of the RGS with extended sources. The full response function,

however, is far from this simple. We will later use Equations 3-6 to interpolate between elements of

the complete response function. The complete response function is composed of a series of two and

three dimensional functions. These functions take into account the relative alignment of the system, the

optical scattering properties of the gratings and mirrors, and a model for the conversion and diffusion

of charge in the CCDs. The response probability function for the RGS system, R, is given by

D(β, y, p| θ, φ, λ) = [fSA(β|φ, λ) × gSA(y|θ, β) +

fLA(β|φ, λ) × gLA(y|θ, λ)] ×

h(p|λ, CCD node) × i(β, φ) (8)

This probability function predicts the distribution of photons with a given β, y, and p given a model

that predicts the wavelength, λ, and angular distribution (θ, φ). Here β, y, and p are compared with

the event values after they have been corrected for the relative geometry of the CCD locations and

the standard gain, offset, and charge transfer inefficiency corrections. The six functions, fSA, gSA,

fLA, gLA, h, and i, are all either two or three dimensional and have one output variable for either

one or two input variables. The reasons for the particular construction of the RGS response functions
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is the result of extensive calibration efforts both before and after the launch of the XMM-Newton

observatory. A full discussion of the physical theory that is used for the formulation and calibration of

the response function is beyond the scope of this paper (see e.g. Rasmussen et al. 1998 or documentation

at http://xmm.astro.columbia.edu), but we will briefly describe the purpose and general properties of

the six functions below.

f and g represent the convolution of the instrument response of the mirror shells and gratings

together. f encapsulates the dependence of the function perpendicular to the dispersion direction and

g represents the cross-dispersion dependence. They are divided in two parts: the small-angle (SA) and

large-angle (LA) response. The small-angle functions represent the unscattered (coherent) X-rays. Its

width in both the dispersion and cross-dispersion directions is therefore dominated by misalignments of

the gratings and mirror shells as well as correlated errors in the grating’s groove structure. The large-

angle functions represent the scattered light that exits the gratings at large (degree-scale) angles. The

relative normalization between the small-angle and large-angle terms is both wavelength and off-axis

angle dependent. Generally, the small-angle term is two or three times larger that of the large-angle

term.

The pulseheight function, h, is the response of the various CCDs in the RFC. A separate response

function is calibrated for each CCD as well as for each node of the CCD. The exposure map, i, is used

to keep track of where the CCDs are located relative to one another as well as to remove locations of the

angular space where there are bad pixels or columns. Aspect drift is included in its calculation. Its value

is usually either close to one or zero depending on whether there is an active pixel at a given angular

position. In addition to the six functions there is an overall normalization of the total effective area (units

of cm2) and a total exposure time of a given observation. The combination of these normalizations, the
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six functions, and a model spectrum in units of photons per cm2 that can vary spatially, can be used

to predict a given number of photons at a value of β, y, and p. We plot two-dimensional slices of these

six functions in Figures 1-6. These can be calculated from the Science Analysis System (SAS) task

rgsmcrgen (a task we designed explicitly for these Monte Carlo calculations) for the first five functions

and rgsproc (the standard analysis pipeline) for the exposure map.

For an observation of an unresolved source, the calculations of the response function is straightfor-

ward. The substitution of equation 8 into equation 2 results in a integral relation like that of Equation

1. This is obtained after integrating over a given pulseheight and cross-dispersion selection. This inte-

gration only has to be performed once during an analysis. This is routinely done in the Science Analysis

System (SAS) in the construction of response matrices in the task rgsrmfgen (the standard response

generator). Then Equation 1 can be used in standard response matrix manipulations in software pack-

ages, such as XSPEC.

For a spatially-resolved X-ray source, complete integration of Equation 2 is unfeasible. Furthermore,

additional approximations to reduce the dimensionality of Equation 8 are not possible without assuming

that the source spectrum does not change as a function of spatial position, the response function does

not change significantly at off-axis angles, and the lost events outside of a given pulseheight and cross-

dispersion data selection is not significantly different than that of a point source, as we have discussed in

§1. Although those three approximations can been applied in some global analyses of extended sources

with the RGS (see either Rasmussen et al. 2001 (XSPEC model RGSXSRC) or Kaastra et al. 2001

(SPEX function)), we wish to avoid these assumptions in order to allow the spectral model to vary

spatially. This will later give us much more flexibility in astrophysical modeling. The solution to the

general problem presented here is the direct Monte Carlo integration of Equation 2 while using a novel
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scheme for interpolating between elements of the expression in Equation 8. We outline this technique

as applied to the RGS below.

3. RGS Monte Carlo Response Calculation

Monte Carlo codes have always played an important role in the calibration of X-ray space obser-

vatories and in the simulation of complex observations. However, they have not achieved widespread

use in data analysis applications, primarily because of slow computation speeds. Here we describe a

method that generates events at rates of 104 to 105 photons per second per GHz of processor speed and

apply it to the RGS response functions.

A photon can be generated through probability density functions, like the six functions described

in section 2, in the following way. Let the probability of a photon being detected with an output value,

a, given some input variable, b, be represented by a probability density function, P (a | b), normalized to

unity. We want to sample this distribution by obtaining a set of events with various values of a. First

we calculate the cumulative distribution: C(a) =
∫ a

−∞
da′ P (a′ | b). Drawing a random number, u,

between 0 and 1 then gives us a photon with a value of a where C(a) = u. Photons can also be thrown

away in order to maintain the proper normalization if the probability varies as a function of b.

We incorporate the above method in a two step process to compute the integral in Equation 2. First,

photons are chosen using the model function, S, where the input variables, b, are the model parameters

and the output variables, a, are the photon energy and sky coordinates (e, θ, φ). We then use a second

Monte Carlo to predict sets of detector coordinates (x, y, p), using the sets of photon energies and sky

coordinates as the input variables, b, and involving the response function, R, as the multi-dimensional
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probability distribution. The detailed implementation of the first step depends greatly on the type of

astrophysical model, so we do not attempt to cover all cases here. The second step involves only the

RGS instrument response, however, and is used in the same way for all observations and analyses. In

the remainder of this section, we concentrate on ways of maximizing the efficiency of this second step.

The calculation of a single element of the response kernel, R, is computationally intensive, since R

is not described by simple analytic functions as we have discussed in §2. The response kernel can be pre-

calculated, however, and stored at various grid points. This improves the speed of photon generation

by several orders of magnitude over recalculating the response function for every photon. The RGS

response function, however, contains many three dimensional functions requiring billions of elements at

full resolution.

3.1. Interpolation Scheme

Instead of saving the functions in Equation 8 in fine grids, we save the response kernel on coarse

grids and then interpolate between grid points to obtain the intermediate values. Consider first the one-

dimensional case, where we want to know the probability response function, P (a | b), of some variable

a, at some point, b. Assume that the response has been pre-calculated at positions b1 and b2 such that

b1 < b < b2. The response at position b1 can be used as an approximation for the response at b some

fraction of the time and the response function at b2 can be used the other fraction of the time. These

fractions are determined by the distance that b is from b1 and b2. A random number, r, is generated to

determine which function to use. The response at b1 is used if r is greater than (b − b1) / (b2 − b1). In

this way, the intermediate probability function becomes a linear combination of the probability function

at the two grid points after many photons are generated. This procedure is illustrated schematically in
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the top panel in Figure 7.

An additional step is needed if the response functions have sharp peaks that shift as a function of

b. This is clearly the case for the dispersion function in Figure 1. The response peaks, however, can be

shifted by interpolating by the derivative of the response function (i.e., the derivative of Equations 3-6).

Say we choose to use the response at position b1 by the random number r. Then after choosing a value

of a from that response function, we shift a by a → a + da
db

(b− b1). This shifts the response function as

illustrated in the bottom panel in Figure 7. These two interpolation steps are, in general, much faster

than the steps needed to calculate the response function. Such Monte Carlo interpolation methods are

also easily generalized to more dimensions by drawing several random numbers, r, for each dimension

and then shifting by each of the partial derivatives in each dimension. We will repeat this interpolation

scheme several times using the specific RGS response functions in the following section.

3.2. Detailed Response Calculation Procedure

There are several steps in the Monte Carlo calculation that involve manipulating the functions

described in §2 by the method outlined in §3.2. The goal of this calculation is to start with a set of sky

angles (θ, φ) and wavelength, λ, for a given photon and end with a set of detected event coordinates,

(β, y, and p). The first step of the RGS Monte Carlo is to choose one of the two instruments. This is

accomplished by taking the sum of the normalization for fSA and fLA for RGS 1 and 2 separately. Then

we draw a random number between 0 and 1 and choose the instrument based on the relative values of

the two normalizations.

The second step is the correction for the instrument boresight. The RGS instruments are misaligned
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with respect to one another, so the sky coordinates, θ and φ, are not trivially related to the θ and φ

that we use in the instrument response functions. We therefore define θST , φST as the sky angles

relative to the star tracker and then convert these coordinates to a set of coordinates (θ, φ) for each

RGS instrument. This is accomplished by a standard Euler transformation, such that the rotated

coordinates, r′, are related to the input vector, r, by

r′i = Mijrj (9)

where M is an approximately diagonal rotation matrix specified for each RGS. More details of this

transformation can be found in Peterson (2003).

A third step chooses whether the photon follows the small-angle or large-angle response distribution.

This is simply accomplished by taking the relative normalization of the fSA and fLA distribution and

choosing based on that distribution. Assume first that we have chosen the large-angle distribution.

Then, we find a β for that photon by the following procedure. First, find the closest wavelength on

the wavelength grid that defines fSA. Define the difference between the closest wavelength, λ1, and

the desired input wavelength, λ0, as ∆λ10 and the difference between the second closest wavelength,

λ2, and λ0 as ∆λ20. Then we will use the reference wavelength, λ1, if a random number is less than

∆λ20

∆λ10+∆λ20

. Otherwise, we will use the reference wavelength λ2. Define the reference wavelength that we

have chosen as λi.

We repeat the same procedure for finding a reference θ, which we define as θi. Then we look up

the cumulative probability distribution, fSA, which is a function of β, for a given θi and λi. It will have

a monotonically increasing value between 0 and 1 at each β. Note that the maximum value might be
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less than 1 because at a given λ and θ since its value might be lower than at another λ and θ where

the response is higher. Then another random number, r, is chosen and we find the value of β where

r = fSA(β λi, θi). If the value of r is greater than the maximum value for fSA then the photon is

thrown away and we start the procedure over again. We, however, keep track of the number of photons

that have been discarded.

Assume now that we have successfully chosen a value of β=β0. Then, the final value of β that will

be output by the Monte Carlo is defined by

β = β0 −
cos (β0) − cos (α0 + θ0

L
F
)

sin β0

λ − λ0

λ0

+
sin (α0 + θ0

L
F
)

sin (β0)
(θ − θ0)

L

F
(10)

This equation is derived by differentiating the dispersion equation. A final step that avoids some aliasing

is to shift that value of β on to a uniform β grid according to the same procedure where we found the

reference θ and λ.

The fourth step consists of choosing the cross-dispersion value, y, based on the function, gSA. We

first choose the reference φi based on the same procedure we used to get the reference λ or θ in the

previous step. We also use the value of β we obtained from the previous step. Then a random number,

r, is chosen between 0 and 1 where we will find a value y such that r = gSA(y φi, β). There is some

possibility that we will throw out this photon for sufficiently high values of r. Otherwise, we will end

up with a value y0. This value is shifted according to the equation,

y = y0 + (φ − φi) (11)

Finally, we align y according to a predefined reference grid according to the same procedure we have

used to find our reference θi. We now have a prediction for both the dispersion variable, β, and the

cross-dispersion variable, y.
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If we had chosen the large-angle distribution instead of the small-angle distribution at the beginning

of step 3 the procedure is nearly identical. We first use the distribution fLA instead of fSA to get the

value of β. Then we use gLA instead gSA to get the value of y. fLA depends on wavelength, however,

rather than β. We then have a prediction for the values of β and y for the photons that are produced

from the large angle part of the response as well.

The fifth step consists of using the exposure map to determine if the particular value of β and y

corresponds with an active region of one of the CCDs. Each value of the exposure map, e will have a

value between 0 and 1. We then simply find the value of i(β, y) and throw the photon away if the value

of the exposure is less than a given random number chosen between 0 and 1. Otherwise, the photon is

considered detected and we proceed to the final step.

The last step consists of choosing the CCD pulseheight distribution. The distribution is different

for each of the two nodes for each CCD. Therefore using the chosen value of β we determine which

CCD node for the photon using a simple linear function. This is correct in the limit that the CCDs

are approximately aligned in β, which is a good approximation although they are slightly rotated.

Then, we choose a reference wavelength, λi, based on the wavelength grid for the function h using

the same procedure used in step 3 and 4. A random number, r, is chosen between 0 and 1. The

predicted CCD pulseheight is then chosen by finding the value of the pulseheight distribution such that

r = h(p λi, CCD node). We then shift the value of the pulseheight by

p = p0 −
hc

λ
+

hc

λi

(12)

If r is greater than the value of h then we throw the photon away. Otherwise, we have successfully

predicted a value of β, y, and p.
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The overall normalization is achieved by using the total number of photons we attempted to simu-

late, N , the maximum value of the effective area, A, the maximum value of the exposure map, T , and

the relative normalization, Q, of the model in units of photons cm−2 s−1. If we simulate m photons and

there are n photons in the data set, then the normalization of the spectral model is given by

Normalization =
N

Q A T
× n

m
. (13)

The Monte Carlo generates photons at rates of 5000 photons per second per GHz of processor speed.

An example of a simulation of monochromatic light from a point source is shown in Figure 8 and 9. A

public version of this code is currently being prepared.

4. Towards a General Method for Diffuse X-ray Spectroscopy

Given an efficient instrument response Monte Carlo, how can it be used with the measured data to

constrain an astrophysical model? Schematically, the following steps are required:

• Models are formulated in terms of a set of parameters. These parameters predict probability

distributions for the spectral and spatial distributions.

• Photons are then drawn from these probability distributions and assigned an energy and two sky

coordinates (θ, φ).

• The detector coordinate and pulseheight values (x, y, p) are predicted from the instrument Monte

Carlo.

• The simulated events are compared with the measured photon events via a comparison statistic.



– 17 –

• Finally, an iteration is performed to optimize this statistic subject to variation of the input pa-

rameters. When the iteration converges, the best fit has been found.

These steps are also outlined in Figure 10 and are similar to standard analysis methods practiced in

high energy astrophysics. An example of a simulation and an actual data set for a galaxy cluster is in

Figure 11 and 12.

5. RGS Event Comparison

Following, we discuss several useful methods of comparing the raw RGS data and the simulated

photons from the Monte Carlo calculation like that in Figure 11 and 12. The obvious advantage of

using a Monte Carlo is that we can manipulate and select the data in any way since we can perform the

same operations to the simulated photons. For this reason there are a variety of approaches to event

comparison. We have found that some are more useful depending on the situation.

5.1. Wavelength, Order, and Cross-dispersion Assignment

After simulating a set of photons with a set of values of β, y, and p, it is more convenient to

convert those coordinates into a corrected wavelength, λ′, cross-dispersion value, φ′, and spectral order

(the ′ designates that this may not be the true wavelength but the one measured by the RGS). This is

accomplished by using Equation 3 with the value of β and cross-dispersion relation with the value of y

after using the pulseheight p to determine whether the photon falls into first, second, or third order. We

assume a nominal dispersion coordinate, θ, for all of the photons even though for an extended source

we may not have the same input θ for every event. We can do this because we can perform the same
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operations the simulated data. We can interpret a shift in wavelength from a spectral line as either an

actual wavelength shift or a shift caused by the finite extent of the source.

5.2. Data Selection: Order selection and cross-dispersion cuts

A simple yet important step of a Monte Carlo is the selection of data. We can perform the same data

selection cuts that are normally performed on point source observations. A selection in cross-dispersion

is achieved by requiring all values of φ′ between an arbitrary φ1 and φ2 such that φ1 < φ′ < φ2.

Similarly, a joint pulseheight-dispersion cut is achieved by requiring that the pulseheight, p, falls within

the window hc
λ′

±
√

a + bhc
λ′

for some arbitrary constants a and b. With extended sources, the joint

dispersion-pulseheight cut is also broadened by calculating the above formula based on two values of

θ and then making sure the pulseheight value in within in the window for both values of θ. These

selection cuts are important to reduce the number of background events. The advantage of using the

Monte Carlo is that events can quickly be sorted and removed if they do not satisfy the selection criteria.

The selection can be changed arbitrarily without re-running the simulation. Cross-dispersion cuts, in

particular, can be used to compare different spatial regions.

5.3. Two-Sample χ2

Various statistics can be constructed to determine the quality of the model used in the simulation.

In particular, a useful specific form of the χ2 statistic for two samples of data can be computed. This

is given below for binned data where the number of events in the jth bin for the data photons is V1j

and for the model photons is V2j. If there are n total events in the data and m simulated events in the
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model then the χ2 statistic is given by

χ2 =
∑

j

| V1j − n
m

V2j | 2

n
m

(V1j + V2j)
. (14)

Note that the two sample χ2 value approaches the familiar continuous form of χ2 when V2j is replaced

with mP where P is the probability model and m → ∞.

The two-sample χ2 is used to compare both the extracted spectra (a binned histogram of λ′) and the

cross-dispersion distribution (a binned histogram of φ′). They are both extremely useful in comparing

the spectrum to the model spectrum and the cross-dispersion distribution compared to the predicted

one. In Peterson et al. (2001) and Peterson et al. (2003) this method was employed to compare several

spectra and the cross-dispersion distribution iteratively. It is also possible to compute a two-dimensional

χ2 statistic on the binned wavelength-cross-dispersion data space. This is only possible with extremely

bright sources, however, since there are usually a few counts per bin.

5.4. Two-Sample Cramér von Mises

We have also found an alternative statistic useful when using comparing RGS data. The Cramér-von

Mises statistic, W 2 (Anderson and Darling 1952), which is a more robust version of the Kolmogorov-

Smirnov statistic (Smirnov 1948), is determined by computing the cumulative distribution of the data

values, C1, and the model values, C2, and then evaluating the following sum at each of the model and

data values,

W 2 =
mn

(m + n)2

∑

data and model values

|C1 − C2|2. (15)

The statistic is most easily computed by sorting the data and model values. The statistic can be extended

to multi-dimensional distributions by comparing values that are a linear combination of the value in
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each dimension. If we compute the Cramér-von Mises statistic of v where v = a1β + a2y + a3p, then we

can compare the multi-dimensional distribution. The Cramér-von Mises statistic is computed for a set

of several (a1, a2, a3) so that the value in one-dimension is emphasized more than other dimensions in

each computation. If enough combinations are used, the statistic is relatively insensitive to our choice

of ai. We have used this method to compare the multi-dimensional distribution of the background. It

works well for this purpose since few photons fill each bin of the three-dimensional (β, y, p) space. It

may be possible to construct other useful two-sample multi-dimensional statistics as well and clearly

there is more progress to be made in this area.

6. Extensions of the Method

Below we discuss several extensions to the method.

6.1. Iteration Scheme

We have not yet discussed methods for iterating the model parameters after the photons have been

simulated and the statistics have been calculated. One method involves changing the parameters of the

model after all the photons have been simulated. The standard techniques for the iteration of a set of

model parameters without using a Monte Carlo are applicable here as well. Simplex (O’Neill 1971),

simulated annealing, Markov chain Monte Carlo techniques, or robust grid searches may be the best

methods since they all avoid using derivatives of the fitting statistic and therefore avoid the statistical

√
m fluctuations of the Monte Carlo.

A more advanced form of iteration involves selecting individual photons produced from a set of
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parameters that improve the statistic. The statistic is evaluated after every photon is produced instead

of after the entire set is simulated. This is then the Monte Carlo analog to deconvolution as opposed

to model fitting. Further discussion of this technique is described in Jernigan and Vezie (1996) and

Jernigan, Peterson, & Kahn (2004).

6.2. Error Analysis

Systematic errors dominate over statistical errors in many of the multi-dimensional global fits we

have considered here. Additionally, the statistics we have discussed in §5.1 usually have a non-universal

distribution. Our focus in using these statistics is merely for model iteration and not for hypothesis

testing or for constructing parameter confidence regions.

Standard parameter estimation techniques, however, can still be applied when dealing with the

one-dimensional spectrum or a specific feature in the data. For example, one can first calculate χ2 on

the one-dimensional extracted spectrum of both the data and simulation as in §4.2. Then the difference

in χ2 when a parameter is varied can be estimated. This method is identical to standard parameter

estimation techniques in X-ray astronomy (Lampton, Margon, & Bowyer 1976). A simple example of

this is shown in Figure 13 and 14. In some other circumstances, however, bootstrapping techniques

(Efron 1979) could be used to construct the distribution of these multivariate statistics when statistical

errors dominate.
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6.3. Other Instruments and Background

Although we have focused on a number of multivariate Monte Carlo methods for the Reflection

Grating Spectrometer, there is little in our discussion that could not be generalized to analysis of

data from other instruments as well. The three dimensional structure of the response calculation is

not unlike the structure of a non-dispersive instrument response that has an energy-dependent point-

spread function, vignetting function, CCD response function, and an exposure map. The flexibility in

astrophysical modeling of this approach may outweigh the advantages of the simplicity of traditional

one-dimensional spectral extraction techniques at least in some situations. We have also applied this

method to a Monte Carlo of the RGS background induced by charged particles and other instrumental

sources. The background Monte Carlo has its own response function that differs from equation 8. For

more details about this Monte Carlo see Peterson (2003).

6.4. Further Astrophysical Modeling

After the instrument response is formulated as a Monte Carlo it is reasonable to consider more

complicated astrophysical modeling that could involve a Monte Carlo approach. A flexible method is to

formulate the astrophysical models always in three dimensions and then project the photon velocity shifts

and spatial positions to the two dimensional sky coordinates. Radiative transfer also becomes a straight-

forward problem since individual photons can have their frequency shifted or trajectory altered. Monte

Carlo techniques for this are well-developed, but these techniques can be used naturally in conjunction

with a Monte Carlo treatment of the instrument model as in Xu et al. (2001). We expect that many of

the methods discussed here could allow a closer connection between future observational and theoretical
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work.
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Fig. 1.— Response for the small-angle part of the RGS dispersion response. The plot shows input

wavelengths (vertical axis) and β (horizontal axis). Each line corresponds to a spectral order (first

through fifth), the brightest one being the first order response. This plot is only the on-axis response.

It varies as a function of off-axis position. The red region is where the response function is the highest,

whereas the black regions are where the response function is low.



– 27 –

Fig. 2.— Response for the large-angle part of the RGS dispersion response. The plot shows input

wavelengths (vertical axis with wavelength increasing) and β (horizontal axis). Each peak corresponds

to a spectral order (first through fifth), the brightest one being the first order response. Contrast this

with the previous plot. This plot is only the on-axis response. It varies as a function of off-axis angle.

The red region is where the response function is the highest, whereas the black regions are where the

response function is low. The complex nature of the response function at the bottom of the plot is due

to the gold M shell edge, which affects the reflectivity dramatically.
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Fig. 3.— Response for the small-angle part of the RGS cross-dispersion response. The plot shows input

β (vertical axis with β increasing) and cross-dispersion, y (horizontal axis). This plot is only the on-axis

response. It varies as a function of off-axis angle. The red region is where the response function is the

highest, whereas the black regions are where the response function is low.
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Fig. 4.— Response for the large-angle part of the RGS cross-dispersion response. The plot shows input

wavelength (vertical axis with wavelength increasing) and cross-dispersion, y (horizontal axis). This

plot is only the on-axis response. It varies as a function of off-axis angle. The red region is where the

response function is the highest, whereas the black regions are where the response function is low.
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Fig. 5.— Response for the CCD pulseheight redistribution for a particular CCD node. The plot shows

input wavelength (vertical axis with wavelength increasing) and pulseheight (horizontal axis). The red

region is where the response function is the highest, whereas the black regions are where the response

function is low. The horizontal shift in the response near the bottom of the plot corresponds with the

silicon K shell edge.
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Fig. 6.— CCD exposure map showing the positions of the 9 CCDs. Unexposed areas included areas

where there are hot pixels (points), hot columns(lines), and a failed CCD (missing area three from the

left). The exposure map does not have sharp edges due to the correction of the small aspect drifts of

the telescope. The exposure map is close to 1 in the red regions, whereas the exposure map is close to

0 in the black regions.



– 32 –

Fig. 7.— Schematic of the Monte Carlo interpolation method outlined in the text. In each of the

two panels, we show a hypothetical response probability for a variable, a, that is dependent on some

input variable, b. Instead of calculating the response probability for all possible values of b, we assume

we have only calculated the response probability at b1 and b2 and then use an interpolation scheme

to approximate the response probability at b0. If the response peaks line up, we can simply use the

probability distribution at b1 and b2 some fraction of the time as shown in the top panel and get

a combined probability curve shown by the purple curve. The probability distributions can also be

shifted if the response probability peaks do not have a common value as shown in the second panel.
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Fig. 8.— Flowchart of the Monte Carlo method used in this paper. See section 4 for a detailed

explanation of each step.

Fig. 9.— Simulation of a set of 10 Å photons. The plot shows the cross-dispersion vs. dispersion

histogram. The left peak is the first order spot and the right peak is the second order spot. Large

scattering wings are present off a sharply peaked core. Red shows the high intensity regions, and green

shows the low intensity regions.
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Fig. 10.— Simulation of a set of 10 Å photons. The plot shows the pulseheight vs. dispersion histogram.

The left peak is the first order spot and the right peak is the second order spot. Large scattering wings

are present off a sharply peaked core along the dispersion direction and the partial event tails of the

pulseheight distribution extend vertically. Red represents the high intensity regions, and green represents

the low intensity regions.

Fig. 11.— Raw RGS data for the galaxy cluster, Sérsic 159-03. The plot consists of three panels for

each of the two-dimensional projections of the three dimensional data. The dispersion coordinate vs.

cross-dispersion coordinate shows the dispersed spectral image. It is blurred in the cross-dispersion

direction due to the size of the source. The three curved lines in the dispersion coordinate vs. CCD

energy plot show the first, second, and third order dispersed spectra. The four horizontal lines are the

Al K and F K calibration sources. Most of the photons in this image are due to Bremsstrahlung. A

darker region in the first order curved line is due to Fe L lines. The red regions are high intensity

regions, and the green regions is low intensity regions.
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Fig. 12.— The same plot as Figure 11 except the photons are simulated by a model using a Monte

Carlo. Details of the simulation can be found in Peterson et al. (2003a). The green represents low

intensity regions, and the red represents high intensity regions.

Fig. 13.— (Three panels) Three simulations of a thermal plasmas at electron temperatures of 0.5, 1.0,

and 1.5 keV emitted from an unresolved source using the RGS Monte Carlo. Each plot is segmented in

the same way as in Figure 11 and 12. The bright spots represent photons from strong emission lines.

The simulations are compared in Figure 14. Each simulation has approximately 30,000 photons.
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Fig. 14.— The two-sample χ2 and the Cramér-von Mises statistic, W 2, (see text) calculated on the

one-dimensional extracted spectrum by comparing the 1 keV simulation in Figure 13 with various other

simulations at other temperatures. The statistics correctly achieve the minimum at 1 keV and fluctuate

around their 50th percentile values (1.0 for χ2 and 0.12 for W 2). The fluctuations can be diminished if

more events are simulated.


