
SLAC-PUB-10847
hep-ph/0411073

Symmetry relations for heavy-to-light meson form factors at large recoil ∗

Richard J. Hill
Stanford Linear Accelerator Center, Stanford University,
Stanford, CA 94309, U.S.A.

The description of large-recoil heavy-to-light meson form factors is reviewed in the framework of soft-collinear
effective theory. At leading power in the heavy-quark expansion, three classes of approximate symmetry relations
arise. The relations are compared to experimental data for D → K∗ and Ds → φ form factors, and to light-cone
QCD sum rule predictions for B → π and B → ρ form factors. Implications for the extraction of |Vub| from
semileptonic B → ρ decays are discussed.

1. Introduction

Form factors describing heavy meson decays
into energetic light mesons are an essential ingre-
dient for extracting CKM parameters from ex-
perimental B decay measurements. The QCD
description in this kinematic regime is compli-
cated by the existence of multiple energy scales,
and by the competition of different scattering
mechanisms. The methods of effective field the-
ory can be used to disentangle the different en-
ergy scales, and to provide a systematic heavy-
quark expansion. The soft-collinear effective the-
ory (SCET) has been developed to accomplish
this task [1,2,3,4,5],[6,7].

This talk reviews the description of form factors
in SCET. The following Sec. 2 outlines the repre-
sentation of weak current operators in the effec-
tive theory, and the resulting form factor expres-
sions. Sec. 3 introduces three classes of symmetry
relations which emerge from the effective theory
at different levels of approximation. These pre-
dictions are compared with existing experimen-
tal data on D meson decays, and with light-cone
QCD sum rules (LCSRs) for B decays. The im-
plications for extracting |Vub| from semileptonic
B → ρ decays are briefly discussed. Sec. 4 com-
ments on possible scaling violations of the form
factors relative to the naive q2 dependence de-
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rived from power counting in perturbation theory.
A summary is presented in Sec. 5.

2. Form factors in SCET

The decay of a heavy B-meson into an energetic
light meson necessarily involves the interplay of
soft partons in the heavy meson, with momen-
tum ps of order ΛQCD, and “collinear” partons
in the light meson, which carry a large energy E
in the direction of the outgoing meson but have
small virtuality, p2

c ∼ Λ2
QCD. The QCD ampli-

tudes are parameterized by matrix elements of
local currents, e.g.

〈π(p′)|q̄γµb|B̄(p)〉
= F+(q2)(p + p′)µ + F−(q2)(p − p′)µ ,

(1)

where q = p − p′. SCET describes the large-
energy/heavy-quark expansion of such quantities
in the limit E ∼ mb ≫ ΛQCD.

It is convenient to work with light-cone coordi-
nates, (n ·k, n̄ ·k, k⊥), where in the B rest frame
(with velocity vµ = (1, 0, 0, 0)), and with the
light meson emitted in the +z direction, nµ =
(1, 0, 0, 1) and n̄µ = (1, 0, 0,−1). Upon integrat-
ing out hard momentum modes, k2 & m2

b , QCD
currents are matched onto two types of SCET op-
erators relevant at leading order: 2

2The notation and conventions are as in [8,9]. See also the
references before (5).

Work supported in part by the Department of Energy Contract DE-AC02-76SF00515

http://arxiv.org/abs/hep-ph/0411073


2

q̄ Γ b = CA
i (E)JA

i

+

∫ 1

0

du CB
j (E, u)JB

j (u) + . . . , (2)

where

JA
i = X̄(0)ΓA

i h(0) ,

JB
j (u) =

∫

ds

2π
e−iu(2E)s

X̄(sn̄)A⊥µ(0) ΓBµ
j h(0) .

(3)

Here h is the heavy quark field in HQET [10]. X

and A are fermion and gluon fields in SCET con-
taining “hard-collinear” momenta, p2

hc ∼ (ps +
pc)

2 ∼ mbΛQCD. In JB(u), X and A carry
fractions u and 1 − u, respectively, of the large-
component momentum n̄ · p = 2E.

Upon taking matrix elements, the A-type
SCET currents yield the soft-overlap form factor
contributions (evaluated at renormalization scale
µ),

〈M(p′)|X̄ Γ h|B̄v〉
2E

≡ −ζM (E, µ) tr
{

MM (n)ΓM(v)
}

,

(4)

where M = P , V⊥ or V‖ denotes a light pseu-
doscalar or vector meson (with transverse or lon-
gitudinal polarization). MM (n) and M(v) are
spinor wavefunctions for M and B correspond-
ing to the large-energy and heavy quark limits.
The single function ζM (E) in (4) describes all
soft-overlap contributions to form factors involv-
ing the same final-state meson [11].

The B-type SCET currents in (2) yield factor-
izable hard-scattering contributions to the form
factors. After integrating out hard-collinear
modes in a second matching step, these contri-
butions may be expressed in terms of a pertur-
batively calculable hard-scattering kernel convo-
luted with light-cone wavefunctions, φB and φM ,
for the heavy and light mesons, respectively.

At leading order in the ΛQCD/mb expansion,
the form factors are therefore expressed as the
sum of two terms [12,13,14,15]:

FB→M
i (E) = CA

i (E, µ)ζM (E, µ)+∆FB→M
i (E) .

(5)

The hard-scattering term is given by

∆FB→M
i (E) =

mBfBfM (µ)

8EKF (µ)

∫ ∞

0

dω

ω

∫ 1

0

du

× φB(ω, µ)φM (u, µ)

×
∫ 1

0

du′JΓ

(

u, u′, ln
2Eω

µ2
, µ

)

CB
i (E, u′, µ) .

(6)

Here JΓ is the Wilson coefficient for the second
step of matching, with JΓ = J‖ for M = P, V‖

and JΓ = J⊥ for M = V⊥ [8]. fB and fM

are decay constants, and KF = 1 + O(αs) re-
lates the QCD and HQET heavy-meson decay
constants [10]. The perturbative expansions of
CB

i and of JΓ in (6) involve logarithms of the
ratios µ/E and µ2/2Eω, with ω ∼ ΛQCD, so
that large logarithms are unavoidable in fixed-
order perturbation theory. These logarithms may
be resummed using renormalization-group (RG)
methods [1,16,17,8].

3. Symmetry relations

Eqs. (5) and (6) can be used to relate any two
B → M form factors. 3 Given the meson LCDAs,
these relations are perturbatively calculable up
to ΛQCD/mb corrections. However, since the B-
meson LCDA is poorly constrained at present, it
is useful to find relations which are independent
of detailed assumptions for φB(ω). Three types of
relations arise, which for descriptive purposes will
be called “first-”, “second-” and “third-class”.

Two relations describing B → V⊥ decays hold
to all orders in αs [8,12,18],

First class relations:

A1(q
2) =

(

1 − q̂2
)

(1 + m̂V )−2 V (q2) ,

T2(q
2) =

(

1 − q̂2
)

T1(q
2) .

(7)

Here q ≡ p− p′ for the B(p) → M(p′) transition,
and hatted variables are in units of mB: m̂V =
mV /mB, q̂2 = q2/m2

B, etc. Kinematic factors
linear in the light mass are retained, and q2 =
m2

B −2EmB +O(m2
V ) is used to express the form

factors as a function of q2.

3Form factor conventions are as in [12,8].
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At tree level the coefficients CB
i in (6) are inde-

pendent of momentum fraction u′. When radia-
tive corrections at the hard scale are neglected,
the convolutions then yield a universal function
HM (E) [8],

∆FB→M
i (E) ≈ −

(mB

2E

)2

HM (E)C
B(tree)
i (E) .

(8)

Eq. (8) is exact to all orders in the perturbative
expansion of the jet function JΓ, neglecting only
hard-scale radiative corrections in CB

i . In this ap-
proximation, the two hadronic functions, ζM and
HM , may be eliminated to yield relations between
the three B → P and B → V‖ form factors,

Second class relations:

F+(q2) = F0(q
2) + (1 + m̂P )

−1
q̂2FT (q2) ,

(1 + m̂V )
−1 [

V (q2) − A2(q
2)
]

= 2m̂V A0(q
2) + q̂2

[

T1(q
2) − T3(q

2)
]

.

(9)

Finally, neglecting the hard-scattering terms
∆Fi in (5) altogether yields the “large-energy”
symmetry relations obeyed by the soft-overlap
terms [11],

Third class relations:

F+(q2) =
(

1 − q̂2
)−1

F0(q
2)

= (1 + m̂P )
−1

FT (q2) ,

A0(q
2) =

(

1 − q̂2
)

(2m̂V )−1 (1 + m̂V )−1

×
[

V (q2) − A2(q
2)
]

= (2mV )−1
(

1 − q̂2
) [

T1(q
2) − T3(q

2)
]

,

T1(q
2) = (1 + m̂V )−1 V (q2) .

(10)

All relations in (7), (9) and (10) are expected
to receive O(ΛQCD/E) corrections, of order 10 −
20%. Symmetry-breaking corrections in (9) and
(10) due to CA

i could be included trivially, but
this effect is . 5% in all cases [12,9]. From
current estimates of the hard-scattering terms,
H/ζ ∼ 0.1 − 0.2, 4 radiative corrections to CB

j

4Estimates are based on LCSR form factor predictions
(cf. Sec. 3.3), or directly from sum rule analyses of the
B-meson wavefunction [19,20].

Table 1
Experimental values for form factor ratios rV , r2

and r3 (see text), taken from [21].

D → K∗ Ds → φ

rV 1.62 ± 0.08 1.92 ± 0.32

r2 0.83 ± 0.05 1.60 ± 0.24

r3 0.04 ± 0.33 ± 0.29 —

also have very little effect on symmetry relations.
The second-class relations (9) should then hold
with similar accuracy to the first-class ones (7),
whereas the third-class relations (10) ignore the
hard-scattering terms entirely and so may receive
larger corrections.

3.1. D decays

D mesons, to the extent that the heavy quark
expansion in ΛQCD/mc is valid, can be ana-
lyzed in precisely the same way as B mesons.
Table 1 lists current experimental data for
rV ≡ V (0)/A1(0), r2 ≡ A2(0)/A1(0) and r3 ≡
Ã3(0)/A1(0). 5 For instance, rV is determined by
a first-class relation, (7), which in terms of energy
becomes,

2Ê V (E) = (1 + m̂V )
2
A1(E) . (11)

A similarity in measured values rV for D → K∗

and Ds → φ could suggest that this ratio is de-
termined largely by kinematic factors, as would
be the case if a relation such as (11) were valid.
In contrast, the ratio r2 appears to exhibit a
large SU(3) symmetry-breaking. At q2 = 0 for
D → K∗ decay, (11) yields

rD→K∗

V ≈(mD+mK∗)2/(m2
D+m2

K∗)=1.78 . (12)

The apparent agreement of (12) with the ex-
perimental value was counted as an early success
of the large-energy symmetry relations [11]. How-
ever, before taking this agreement seriously, it is
important to realize that quadratic meson-mass
effects shift the prediction considerably. For in-
stance, directly from the definitions of form fac-
tors V and A1 in terms of QCD matrix elements,

5Ã3 ≡ A2/2+ m̂V (1+ m̂V )(A0 −A3)/q̂2, with 2m̂V A3 =
(1 + m̂V )A1 − (1 − m̂V )A2. This form factor contributes
only when lepton masses are relevant.
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Figure 1. Predictions for rV using the relations
(1 + m̂V )2A1/V = { 2Ê (solid), 2k̂V (dashed),

Ê + k̂V (dotted) }.

it is most natural to assume the symmetry rela-
tion,

2k̂V V (q2) = (1 + m̂V )2A1(q
2) , (13)

where kV ≡
√

E2 − m2
V = (n̄ · p′ −n · p′)/2 is the

3-momentum of the light meson. In this case,

rD→K∗

V ≈ (mD+mK∗)/(mD−mK∗) = 2.81 . (14)

Alternatively, it is convenient to express SCET
quantities in terms of the large momentum com-
ponent, n̄ · p′ = E + kV . 6 The quantities E, kV ,
and (E + kV )/2 differ by terms of order m2

V /E2,
and coincide in the large-energy limit. As shown
in Fig. 1, the resulting difference in symmetry
predictions for rV is very small for B decays to
light mesons, e.g. at m̂V = mρ/mB = 0.15,
but is large for typical D decays, e.g. at m̂V =
mK∗/mD = 0.48. Unless such effects can be
reliably accounted for, the application of large-
energy symmetry relations to D decays appears
problematic. This issue could be further investi-
gated experimentally, for instance by measuring
rV (q2) ≡ V (q2)/A1(q

2) and comparing to the q2

dependences predicted by (11) or (13).
SCET symmetry relations may also be used to

relate B and D decay form factors involving the
same final state meson. For example, in decays to
pseudoscalar mesons, at the level of second-class
relations,

FB→P
+

FD→P
+

=

√

mB

mD

ζ̂P +
(

4E
mB

− 1
)

ĤP

ζ̂P +
(

4E
mD

− 1
)

ĤP

. (15)

6In [8,9], n̄ · p′ is simply denoted by 2E.

Here ζ̂M and ĤM are quantities independent of
the heavy-quark mass,

ζM ≡ √
mB ζ̂M ,

(mB

2E

)2

HM ≡ √
mBĤM . (16)

Similarly, for decays to vector mesons,

V B→V

V D→V
=

√

mD

mB

mB + mV

mD + mV

,

AB→V
1

AD→V
1

=

√

mB

mD

mD + mV

mB + mV

,

(V −A2)
B→V

(V −A2)D→V
=

√

mD

mB

mB + mV

mD + mV

ζ̂V‖
+
(

4E
mB

− 1
)

ĤV‖

ζ̂V‖
+
(

4E
mD

− 1
)

ĤV‖

.

(17)

Relations (15) and (17) hold at the same value of
the light meson energy E, or equivalently at the
same value of the recoil parameter v ·v′ = E/mM ,
where p′ = mMv′. These are generalizations of
corresponding relations in HQET, which counts
v · v′ as order unity; when hard-scattering correc-
tions HM are neglected, the leading order predic-
tions of HQET [22] are recovered. In contrast,
the SCET power counting allows v · v′ = E/mM

to be a large parameter. This is not very relevant
for D decays to vector mesons, e.g. v · v′ < 1.3 in
D → K∗ decays, but is important near maximum
recoil in D → π decays, where v · v′ ≈ 6.

It is possible that the heavy-quark symmetries
relating B and D decays (17) might still be valid,
even if the large-energy symmetry predictions ap-
plied directly to the D system, as in (11) and
(13), are not useful. Using LCSR predictions
for B and Bs decays [23], and neglecting hard-
scattering terms, the predictions from (17) for
the ratios rV , r2 and r3 for D → K∗ are 1.71,
0.75 and 0.38, respectively, while the predictions
for the ratios rV and r2 for Ds → φ are 1.74
and 0.87. These numbers are expected to receive
∼ 30% corrections proportional to 1/mc, in addi-
tion to the & 15% uncertainties from the B decay
form factors. The agreement with experimental
values in Table 1 is reasonable with the possi-
ble exception of rDs→φ

2 . It would be interesting
to test these relations more precisely when more
data becomes available.
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3.2. Semileptonic branching fractions

The differential rate for semileptonic B decay
to a vector meson (e.g. V = ρ) is, neglecting
lepton masses,

dΓ(B̄0 → V +l−ν̄)

dq̂2d cos θ
= |Vub|2

G2
F m5

B k̂V q̂2

128π3

×
[

(1 − cos θ)2
|H+|2
2m2

B

+ (1 + cos θ)2
|H−|2
2m2

B

+ sin2 θ
|H0|2
m2

B

]

, (18)

where θ is the angle between the charged lepton in
the virtual W rest frame, and the direction of the
W in the B rest frame. The helicity amplitudes
may be expressed in terms of form factors,

H±

mB

=
(1 + m̂V )2A1 ∓ 2k̂V V

1 + m̂V

,

H0

mB

=
(1 + m̂V )2

(

Ê − m̂2
V

)

A1 − 2k̂2
V A2

m̂V (1 + m̂V )
√

q̂2
,

(19)

where as usual, hatted variables are in units of
mB. H+ vanishes at leading order in ΛQCD/E,
by the first-class symmetry relation (13). 7 In the
large energy limit, the remaining helicity ampli-
tudes are 8

H−

mB

= 2
(

1 − q̂2
)

ζV⊥
,

H0

mB

=
1
√

q̂2

(

1 − q̂2
)

ζV‖
,

(20)

so that the differential rate satisfies

dΓ(B → V lν)

dq̂2
∝ (1 − q̂2)3

∫ 1

−1

d cos θ

×
[

2(1 + cos θ)2q̂2|ζV⊥
|2 + sin2 θ|ζV‖

|2
]

= (1 − q̂2)3
[

4q̂2|ζV⊥
|2 + |ζV‖

|2
]

. (21)

7Note that (13) is the “exact” form of the symmetry re-
lation (cf. the discussion in Sec. 3.1). In the same way,
H0 involves the “exact” version of the combination pro-
portional to V − A2.
8Corrections to the large-energy limit can in principle be
computed, but for simplicity they are not included in the
following discussion.

It is apparent from (21) that without angular dis-
crimination, the contribution from |ζV⊥

|2 is sup-
pressed relative to that from |ζV‖

|2 at q̂2 . 0.25,

or q2 . 7 GeV2. Unfortunately, it is ζV⊥
that can

be most cleanly constrained by other measure-
ments. For example, the value of ζV⊥

at q2 = 0
can be related to the B → ργ branching frac-
tion. 9 Reducing the uncertainty due to ζV‖

re-
quires a restriction either to small θ or to larger
values of q2. The latter case, using q̂2 ∼ 0.6−0.7,
has been proposed to extract |Vub| using con-
straints imposed by D → K∗ and D → ρ de-
cays [24], although a good understanding of power
corrections is required for this approach to yield
a precision measurement.

Using the naive scaling prediction ζV⊥
∝ ζV‖

∝
(1 − q̂2)−2 in (21) gives some indication of the
small q2 behavior of dΓ/dq̂2:

dΓ

dq̂2
∝ 1 +

(

4
|ζV⊥

|2
|ζV‖

|2 − 1

)

q̂2 + . . . , (22)

where |ζV⊥
|2/|ζV‖

|2 is evaluated at q2 = 0. As
discussed in the next section, LCSRs suggest that
this ratio is close to unity, but also that the scal-
ing of ζ could receive significant corrections. De-
termining this residual q2 dependence from first
principles is an important problem. For example,
when combined with the extraction of ζV⊥

(q2 = 0)
from B → ργ, it could provide a largely model-
independent determination of |Vub/VtdVtb| [25].

3.3. Light cone sum rules

LCSRs give predictions for all B → π and
B → ρ form factors at large recoil, and it is in-
teresting to compare these predictions with the
symmetry relations (7), (9) and (10). Figs. 2, 3
and 4 show the LCSR predictions for B → P ,
B → V‖ and B → V⊥ decay form factors, re-
spectively, using the results of [23,26]. Ten-
sor form factors are evaluated at renormalization
scale µ = mb = 4.8 GeV. Normalizations are cho-
sen such that at leading power, FB→M

i = ζM up
to hard-scattering and radiative corrections. Ac-

9If corrections to SU(3) symmetry can be brought under
control, the branching fractions for B → K∗γ and B →

K∗l+l− could also be used to obtain both ζV⊥
and ζV‖

.
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Figure 2. LCSR predictions for B → π form fac-
tors, taken from [26]
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Figure 3. LCSR predictions for B → ρ‖ form
factors, taken from [23].

cording to the power counting obtained in per-
turbation theory, the soft form factors scale as
1/E2 ∝ (1− q̂2)−2, and this factor is extracted in
the plots.

For the cases B → P and B → V‖, the form
factors obey only third-class relations, so that
the deviation of the curves is a measure of hard-
scattering terms. In particular, since the hard-
scattering corrections to A0 and V −A2 are posi-
tive, while that to T1−T3 is negative [8], the devi-
ations from the symmetry relations may be par-
ticularly large for these curves. For the B → V⊥

case, both A1 and V , and T1 and T2, obey first-
class symmetry relations, whereas A1 and T1 obey
only third-class relations.

Figs. 5 and 6 show the form factors in (9) obey-
ing second-class symmetry relations. Compari-
son of the corresponding curves in Figs. 2 and 5,
and in Figs. 3 and 6, shows that in both cases
the second-class relations are satisfied more accu-
rately than the third-class relations, as expected.
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Figure 4. LCSR predictions for B → ρ⊥ form
factors, taken from [23].
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Figure 5. LCSR predictions for B → π form fac-
tors obeying second-class symmetry relations.

4. Scaling violations

The LCSR results in Figs. 2 - 6 show a signif-
icant deviation from the 1/E2 dependence pre-
dicted from naive power counting. In fact, us-
ing first and second class relations to isolate the
soft-overlap terms, the sum rule results give in
all cases, d(ln ζ)/dq̂2 ≈ 1.3 at q2 = 0, to be
compared with the naive scaling prediction of
d(ln ζ)/dq̂2 = 2.

Perturbative contributions to scaling violations
can be investigated by considering the RG evolu-
tion equation [1,16,15],

d ln ζ(E, µ)

d lnµ
= −Γcusp(αs) ln

2E

µ
− γ̃(αs) , (23)

where at one-loop order, Γcusp(αs) = CF αs/π
and γ̃(αs) = −5CF αs/4π. The solution of (23)
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Figure 6. LCSR predictions for B → ρ‖ form
factors obeying second-class symmetry relations.

relates ζ(E, µ) at different scales,

ζ(E, µ)

ζ(E, µ0)
=

(

2E

µ

)a(µ,µ0)

× exp

[

S(µ, µ0)−
∫ µ

µ0

dµ′

µ′
γ̃(αs(µ

′))

]

,

(24)

where

a(µ, µ0) = −
∫ µ

µ0

dµ′

µ′
Γcusp(αs(µ

′)) ,

S(µ, µ0) = −
∫ µ

µ0

dµ′

µ′
Γcusp(αs(µ

′)) ln
µ

µ′
.

(25)

For instance, up to hard-scale radiative correc-
tions, ζ(E, µ = 2E) describes the soft-overlap
part of the physical form factors, 10 and may
be related to ζ(E, µ0), for a lower, energy-
independent, scale µ0 (say µ0 = 1 GeV). The
slope at q2 = 0 then satisfies:

d

dq̂2
ln ζ(E, µ = 2E)

∣

∣

∣

∣

q2=0

− d

dq̂2
ln ζ(E, µ0)

∣

∣

∣

∣

q2=0

=

∫ mb

µ0

dµ

µ
Γcusp(αs(µ)) + γ̃(αs(mb))

≈ 0.28 − 0.13 ,

(26)

where the last line is evaluated at µ0 = 1 GeV.
The first term on the right-hand side of (26) is
10In fact, taking the hard scale µ = 2E (as opposed to µ =
mb), the remaining dependence of the Wilson coefficients
on energy is very mild [9], so that e.g. ζP (E, µ = 2E)
should accurately describe the energy-dependence of the
soft-overlap contribution to F+.

positive for all µ0 < mb, while the second is
independent of µ0. Any large deviation of the
form factor slope from the naive scaling predic-
tion, particularly any negative correction, must
therefore arise from the nonperturbative function
ζ(E, µ0).

The situation is analogous to that for heavy-
heavy meson transitions at large recoil. At lead-
ing order in the heavy-quark expansion, B → D
form factors are described by the single Isgur-
Wise function,

〈Dv′ |h̄(c)
v′ Γh

(b)
v |Bv〉√

mBmD

=−ξ(v·v′, µ)tr
{

M(v′)ΓM(v)
}

,

(27)

which obeys the evolution equation,

d ln ξ(v · v′, µ)

d lnµ
= −Γcusp(φ, αs) . (28)

Here Γcusp(φ, αs) is the universal cusp anoma-
lous dimension [27], and φ = arccosh(v · v′) is
the angle between initial and final meson ve-
locities. At one loop order, Γcusp(φ, αs) =
(CF αs/π) (φ coth φ − 1). 11 Considering large re-
coil v · v′ ∼ mb/ΛQCD ≫ 1, the Isgur-Wise func-
tion ξ behaves similarly to the soft SCET form
factor ζ. In particular, ξ ∝ (v · v′)−2 up to
logarithms [19]. 12 Perturbative scaling viola-
tions may again be calculated using (28), but a
nonperturbative dependence on v · v′ remains in
ξ(v · v′, µ0).

5. Summary

Symmetry relations in the heavy-quark/large-
energy limit for heavy-to-light meson form factors
provide a valuable handle on otherwise poorly
understood hadronic parameters. Application of

11At large values of the cusp angle, the coefficient of ln v·v′

is defined to be the angle-independent cusp anomalous
dimension [28], Γcusp(αs). In the heavy-light case, the
cusp angle becomes infinite, and the resulting RG equa-
tion takes the form (23), with a non-universal, but energy-
independent, anomalous dimension γ̃.
12Also in this case, competing “hard-scattering” terms
enter at the same order. At still larger recoil v · v′ ≫

mb/ΛQCD, the hard-scattering terms dominate.
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the symmetry relations to D-meson decays, es-
pecially into vector mesons, may be problematic
due to large meson-mass effects; further experi-
mental investigation could clarify this. Such ef-
fects may largely cancel in ratios relating B → M
to D → M transitions at the same light-meson
energy. Here SCET generalizes corresponding
HQET relations to allow for large recoil energy,
and would be important for relating the form fac-
tors near maximum recoil for the semileptonic
D → π decay.

The analysis of semileptonic B → ρ decay be-
comes especially simple in the large-energy limit,
where only two helicity amplitudes contribute.
Extraction of the remaining form factors from
processes such B → K∗γ or B → K∗l+l− (with
an understanding of SU(3) violations) or from
B → ργ (with an understanding of the q2 depen-
dence of form factors) have potential to provide
useful CKM constraints.

A comparison of the symmetry relations to
LCSR predictions shows no sign of symmetry-
breaking power corrections beyond the 10% level.
In addition, the LCSRs show a large correction to
the perturbative scaling behavior of the soft form
factors. A better understanding of such scaling
violations from first principles is an important
problem, as is a study of power corrections for
exclusive decays in the large-energy limit. Im-
proved measurements coming from B decays at
BaBar and Belle, and D decays at CLEO-c, will
provide numerous tests and applications of the
SCET predictions.
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