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Abstract

Review of recent analytic and experimental results on impedance relevant for

the performance of the B-factories are overviewed.

1 Introduction

Impedance budget is one of the main characteristics of the high-current storage rings
such as B-factories affecting the beam stability and the thermal conditions of the vacuum
chamber. PEP-II luminosity exceeds now the design by a factor of three. That became
possible, in particular, due to careful design of the vacuum chamber. Nevertheless, several
weak components were identified and cured. Today, however, there are plans to upgrade
the machine to luminosity 1036 cm−2s−1 with beam currents up to 6× 18 A. That is good
time to summarize what we learned from the operational experience and recent progress
in theory and simulations since the first impedance budget was estimated [1].

The main contributors to the impedance responsible for the multi-bunch instabilities,
the RF cavities and the resistive wall impedance, are well understood and can be reliably
defined. Here, we concentrate on small vacuum components in the ring such as bellows,
tapers, collimators, masks, flanges, BPMs, valves, screens, pumping slots, etc. They define
the broad-band impedance driving the single-bunch instabilities and are responsible for
heating of the vacuum chamber. The power deposited to the higher order modes (HOMs)
is

P = (
eNbc

sb

)2
∑

p

Zl(pnbω0)e
−p2(

2πσb

sb
)2
, (1)
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where ω0 is the revolution frequency, nb is number of bunches, Nb, sb, and σb are the bunch
population, the bunch spacing and the rms bunch length, respectively. Approximately,
the summation can be replaced by integration over frequency giving result in terms the
loss factor κ,

P =
Z0I

2
beamsb

4π
κ, (2)

where Z0 = 120π Ohm. Here the bunch spacing sb is taken in cm, and κ in 1/cm,
V/pC = 1.11 1/cm.For 3 A beam current and the total κ ' 15 V/pC, the power is 0.5
MW for PEP-II sb = 2λRF = 126 cm. This number should be compared with the power
limit Pbell ' 100 W (i.e. 0.5 W/cm2) accepted for a bellows.

Although the loss factor of each vacuum component is small, the number of such com-
ponents can be as large as several hundreds. The electrical stability of such components
may be even more important than heating or beam stability. It has to be emphasized
that the performance of the whole machine may depend on a single small component.
The luminosity of the PEP-II B-factory was limited for a while by excessive heating of a
single bellows near the interaction region (IR).

In this review we summarized results of recent studies of small vacuum components.
We concentrate on issues which are important in the design of the vacuum system as the
operational experience of the PEP-II indicates and, still, sparely described in literature.
Hopefully, that will be useful for the planning upgrades of the machines such as PEP-II
B-factory at SLAC and BEPC in Beijing.

2 General comments

Although some simple estimates can be done sometimes quite easily, accurate calculations
of impedance is difficult and time consuming. Additional problem arises due to possible
cross-talk between different components separated sometimes by tens of meters.

Three basic ideas are used in theoretical modelling of the impedance.
At low frequencies, where the HOM wave length is large compared with the dimension

of the obstacle (radius of a hole, width of a groove, etc) impedance is always inductive. The
inductance can be defined from Maxwell equations in the limit ω− > 0 and components
are characterized by the polarizabilities which define the induced electric and magnetic
dipoles.

At high frequencies, where the rms bunch length is small compared to the dimension
of the obstacle, the generation of the HOMs is essentially the diffraction of the field of
the beam.

For smooth variations of the beam pipe radius (tapers), the constructive approach is
perturbation theory, where tangential component of the HOM on the perfectly conductive
wall is taken equal (with the opposite sign) to the tangential component of the field of
the beam. That, basically, defines the surface impedance of the tilted wall.
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2.1 Symmetry of the beam-pipe

In the cylindrically symmetric structures there are separate TE and TM modes and only
the latter is coupled to the beam. The transverse dipole force in this case is proportional
to the offset of the leading bunch and is independent of the offset of the test particle.
For an arbitrary structure, the longitudinal impedance depends both on the offset of the
leading (xl) and the trailing (xt) particles. For small offsets x << b, the longitudinal
impedance can be expanded in Taylor series:

Zl(ω, xl, xt) = Z1(ω) + (xl + xt)Z2(ω) + (x2
l + x2

t )Z3(ω) + xlxtZ4(ω) + .... (3)

Here we used the symmetry with respect to exchange in xt and xl and have not written
similar terms depending on the offsets in y-direction. For structures with additional
symmetry, some terms may vanish. For example, there are no linear terms in x if the
structure is mirror symmetric with respect x− > −x.

The Panofsky-Wenzel theorem gives the Fourier transform of the transverse wake W̃t

W̃x(ω, xl, xt) =
1

k

∂Zl

∂xt

,

Wx(ω, xl, xt) =
1

k
[Z2 + 2xtZ3 + xlZ4 + ..]. (4)

The terms proportional to Z2 generate an orbit distortion, Z3 give the tune shift, and
Z4 define the beam stability.

To define coefficients, we represent the impedance as a sum of resonance terms,

Zl(ω, xl, xt) =
∑

n

Rn(ω)V ∗
n (ω, xl)Vn(ω, xt), (5)

where the voltage Vn of a mode is, usually, calculated numerically integrating the field
excited in a structure along the trajectory with the same offset for both particles,

Vn(ω, x) =
∫

dzEω
n (x, z)eiωz/c. (6)

Expanding Vn(x) = a + bx + cx2, it is easy to see that four parameters

Z1 = Rna, Z2 = Rnab, Z3 = Rnac, Z4 = Rnb (7)

are given by three coefficients a, b, c which can be defined from Vn(x) calculated for
three different offsets. That allows the full description of the asymmetric structures in-
cluding dipole and quadrupole modes.

Several issues have to be addressed for an asymmetric structures. First, the quadrupole
wakes affect focusing and change the tune dependence on current dQ/dI, see Figs. ( 1),

3



( 2). This issue is discussed in more details later. Second, the modes in asymmetric
structures are usually the hybrid HOMs and have both TM and TE components. Third,
such structures may lead to mode conversion of the wakes generated somewhere else
generating TE modes which can penetrate screens and cause local heating problems.
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Figure 1: Variation of the tune Qy with the beam current due to asymmetry of the beam
pipe.

It is worth noting that the mode conversion is roughly proportional to the number
of asymmetric components within the absorbtion length of a mode (of the order of 200
m) and can become large even if the conversion coefficient of each component is only few
percent.

2.2 Cross-talk of components

An HOM with the frequency ω above the beam pipe cut off propagates along the beam
pipe and can produce heating far away from the component where it was generated.
Absorbtion length of the mode depends on the type of the mode but is of the order of
l ' 2Qλ, where λ = 2πc/ω and Q-factor is Q ' b/(2δ). At typical frequencies ω/c ' 1/σB

for the bunch with the rms length σB = 1 cm and the beam pipe radius in the straight
sections b = 4.5 cm, the skin depth δ ' 1 µm, and l ' 250 m.

The wake field is, usually, generated at the wall and starts interacting with the parent
bunch some distance downstream. The catch-up distance l ' (b − a)2/σ. For small σ,
that distance can be longer than the distance between impedance generating components.
An example of that gives the periodic array of cavities as in a linac structure. The real
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Figure 2: Variation of the tune Qx with the beam current due to asymmetry of the beam
pipe. The sign of the slope is opposite to the slope in Fig. 1

part of the impedance of such structure may roll off as ReZl ∝ (1/ω)3/2 and ImZl ∝ 1/ω
while the impedance of a single pill-box cavity rolls off as Zl ∝ (1 + i)/

√
ω.

The numerical analysis of the impedance of a long mask made as two tapers (up and
down) separated by a flat section shows that the cross-talk between tapers is negligible
for the flat sections sufficiently long compared to the catch-up distance defined by the
bunch length. In this case, the inductive parts of both tapers are additive. The real part
though is defined by the cavity formed by two tapers (not the case for collimators).

The cross-talk of well separated vacuum components was observed in PEP-II and is
discussed below.

2.3 Trapped modes

Trapped modes closed to the cut-off of the beam pipe can cause the local heating. Such
modes can be expected where the pipe bulges from the radius r = a to r = b > a, within
|z| < l. The localization of the mode E ∝ e−q|z| depends on the volume Vb of the bulge

q = ζ
k2

cVb

2S
, (8)

where kc = ωc/c0, ωc is the cut-off frequency, S is the beam pipe cross-section, ζ = |H(r =
b)|2/ < |H|2 >. For a round pipe, ζ = 1.

The frequency shift δω is given by the difference Vb[H
2 − E2] of the energy stored in

magnetic and electric fields within the additional volume Vb of the bulge. To generate a
trapped mode, the frequency shift
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δω =
q2c2

0

2ωc

(9)

has to be larger than the width of the resonance ωc/Q ' ωcδ/b where δ is the skin
depth at frequency ωc.

The shunt impedance Rs of the trapped mode is given by the resistivity of the wall.
For a round beam with radius b,

Rs =
Z0

2π

ν

J2
1 (ν)

b

δ
(
αm

πb3
)3. (10)

The estimate for 40 slots with l = 9 cm and w = 3.26 mm in the beam pipe b = 4.5
cm gives the shift ∆ω/ωc = 3.5 10−4 below the cutoff frequency fc = 2.58 GHz. That is
larger than the resistive wall width ∆ω/ωc ' δ/2b = 0.36 10−4. The latter is of the order
of the revolution frequency ωrev/ωs ' 0.52 10−4, the frequency separation of the of couple
bunch modes. Hence, one of the coupled bunch mode can be affected by such a trapped
mode.

The trapped modes potentially dangerous and should be avoided. As an example we
consider the recess of the BPM button. Such a recess is desirable to shield the button from
the SR but may be limited by the possibility to have a trapped mode. Other examples
are discussed below.

The bulging beam pipe is not the only way to generate the trapped mode. The trapped
modes were found also both in gasket and momentum collimators [2]. We describe this
result below considering trapped modes in collimators.

2.4 Bunch spacing resonances

The resonance can occur if the HOM frequency is close to the resonance frequency ωr,
ωrsb/c0 = 2πn, where n is integer and sb is bunch spacing. In this case, the wake fields
generated by individual bunches within the coherence length L ' 2QL(c/ωr) in the train
are build up.

The energy loss in this case is

∆U = N 2
b e2κ

1

2πnQL

1

(∆ω/ωr)2 + 1/(2QL)2
, (11)

where QL is loaded Q-factor of the HOM, and ∆ω = ωHOM − ωr is the detuning
of the mode from the resonance. The width of the resonance ∆ω/ωr = 1/(2QL). The
enhancement takes place provided ∆ω << c/(QLsB). The enhancement factor

Dn =
4QL

ωrsb

. (12)
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The resonances are separated by ∆f = c/sB (250 MHz for by-two fill). The width of
the resonance usually is larger than the revolution frequency, but additional heating due
to coupled-bunch (CB) motion depends on the amplitude of the CB oscillations.

The paper [4] maybe gives an example of such a resonance. The mode f = 2.384 GHz
has the largest amplitude in the spectrum. The HOM excited in the 5.5 m long pumping
section penetrates to the LER ante-chamber and then to the TSP. It was measured with a
short wire antenna at the TSP feedthrough outside the pumping section. With the bunch
spacing sb = 126 cm, the mode corresponds to the bunch spacing resonance n = 10.

It is worth noting that heating may produce the detuning mechanism from the res-
onance. The detuning is due to the change of the dimensions of the structure with
temperature T . Typically,

∆f

f
' ∆L

l
,

∆L

L
' 10−5∆T. (13)

For the beam pipe with the length L ' 5 m attached to a bellows with the length
l = 10 cm, the heating by 10 Ko provides detuning for the modes with QL > 200.

The bunch spacing resonances enhance heating of the vacuum components. They
affect the beam stability only if the width of the resonances is large enough to overlap
with the sidebands frequencies.

2.5 Excitation of the cavity behind the slots and fingers

In many cases there is a cavity-type structure linked with the beam pipe by a slots or
holes. That is true for bellows, screens separating distributed ion pumps (DIP) from the
beam, ante-chamber in LER, screens of the vacuum ports, etc, see an example in Fig. ( 3).

Radiation through the slots at low frequencies can be described as radiation of an
electric d = αeEr and magnetic m = αmHφ dipoles induced by the field E,H of a
bunch [5]. The energy U radiated by a Gaussian bunch through a longitudinal slot with
the length l and width w in a beam pipe with radius b is [6]

U =
N2

b e2

3π(2πb)2
(α2

e + α2
m)

∫ dω

c
(
ω

c
)4e−(ωσb/c)2 . (14)

For a slot in a wall with the thickness d > w, the radiated energy is reduced by a
factor e−2πd/w. Polarizabilities αe,m for a long slot are given in Appendix.

For the TE modes, the ratio of the radiated power P to the incident power of the
mode is [7]

P

Pin

=
2

3π
(
ω

c
)3 (

ω2
cα

2
m

qabc2
), (15)

where ωc is the cut-off frequency in a rectangular beam pipe a × b, and q is propagating
constant.
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Figure 3: Shielded vertex bellows cavity. It can be heated by the TE modes penetrating
through the fingers.

For TE modes, αm ∝ l3. The main contribution is given by the modes with frequencies
ω/c ' 1/σb. For b2 << a2, we get

P

Pin

=
2

3π
(

π

24
)2 σb

a ln2(4l/w)
(

l2

σbb
)3. (16)

The ratio is P/Pin ' 1 with l = 10 cm, a = 10 cm, b = 5 cm, w = 3 mm, and σb = 1
cm.

In the case of the high-frequency TE HOM, kb >> 1, kl >> 1 where k = ω/c,
and polarization perpendicular to the slot, the fraction of the power flowing through the
slot is proportional to the surface area of the slot wl and the ratio k⊥/k. The fraction
of the power flow through the slot in a cylindrical beam pipe is given by Stupakov [8].
For example, for the TE11 mode, the fraction of the power penetrating through nsl slots
between bellows fingers with the width and length of a slot w and l, respectively, is

P

Pin

= nsl
wlν

πqb3
τ. (17)

Here ν ' 1.84 is the root of the Bessel function dJ1(ν)/dν = 0, q is propagating

constant of the mode, k = ω/c =
√

q2 + (ν/b)2, and

τ =
π2

2k
[(ln

kw sin α

8
+ 0.577)2 +

π2

4
]−1, sin α =

ν

kb
. (18)

The ratio is about 4.5% for nsl = 50 slots with l = 1.25 cm, b = 4.5 cm, w = 0.075
cm, and k = 2.0 cm−1.
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Figure 4: Correlation between distance of the beam to momentum collimator with the
heating of the pumping section.

Generally, radiation back to the beam pipe has to be taken into account to find the
equilibrium stored energy in the cavity. The energy U stored in a cavity with the surface
area Scav and volume Vcav is related to the power P = ηinPTE penetrating through the
slot,

U =
QL

ω
P, (19)

where the loaded Q-factor 1/QL = 1/Q0 + 1/Qext and Q0 defines the wall power,
Pw = ωU/Q0,

Pw =
QL

Q0

P =
P

1 + Q0/Qext

. (20)

The field in the cavity can be decomposed to the waves to the slot and in the opposite
direction. The power of the wave going toward the slot is P+ = (c/4π)|E+|2Scav can be
written in terms of the stored energy

P+ = (c/2Vcav)UScav. (21)
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If the radiated power to the beam pipe Pext = ηoutP+Sslot/Scav, then the external
Q-factor

1

Qext

= PextωU = ηout
c

2ω

Sslot

Vcav

. (22)

Hence, the wall power is

Pw

PTE

=
ηin

1 + ηoutQ0(c/ω)(Sslot/2Vcav)
. (23)

Excitation of the HOMs in a gap between the flange and the RF gasket of a vacuum
valve was observed in experiment [9].

The excessive heating of the shielded vertex bellows 20 cm from IP was a limiting
factor for PEP-II [10]. The m = 0, 1, 2 modes were found in 2D simulations of the cavity
behind the fingers of the shielded vertex bellows, Fig. ( 5). Calculated frequencies are in
the range 4.75 to 9.8 GHz. These modes can be coupled with the HOMs in the beam pipe
and were detected in the BPM 50 cm away from the bellows. The coupling is inversely
proportional to the polarizibility of the slot [ln(4L/w)− 1]−1. (w = 0.81 mm, L = 13 mm
).

Figure 5: Q-factors of the modes in the spectrum of the BPM signal taken in the gap
between trains. The BPM is 50 cm away from the the IR bellows. The circles show modes
with amplitudes correlated with the thermocouple temperature.

Another example is given by the pumping section where heating was detected at the
absorber installed in the chamber. The heating is strongly correlated with the position
of the collimator 15 m upstream from the pumping chamber, see Fig.( 4). That indicates
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the collimator as the source of the HOMs. That is supported by the linear dependence of
the HOM power with the RF voltage, (i.e. 1/σ2

b dependence), Fig.( 6). Such dependence
corresponds to real part of the impedance approximately linear with ω within the bunch
spectrum contrary to the impedances of resistive wall or cavities.

Figure 6: Linear dependence of the power deposited in the pumping section with the RF
voltage. Beam current 1400 mA.

3 Impedance budget

3.1 Resistive wall

Resistive wall is an old problem which is under constant development. The classic formula
for the impedance of the ring gives

Zl(n)

n
= Z0

1 − i

2

δw

b
,

Wl(s) = − c0

2πb

√

Z0

πσw(ω)s
,

kl =
Γ(3/4)

2πσb

δσ

σb

2πR

b
, Γ(

3

4
) = 1.225. (24)

Here the skin depth δw(ω) = c/
√

2πσwω, δσ = δw(c/σb), and n = ωR/c0 is the
revolution harmonic number.
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The form-factor was found for a non-circular beam pipe and formulas obtained for
multi-layer walls (Burov, Fermilab).

The transverse kick can be written as

c∆px = −Nbe
2(a′xl + axt)W⊥, c∆py = −Nbe

2(b′yl + byt)W⊥, (25)

where (x, y) and (x′, y′) are transverse offsets of the test and leading particles, respec-
tively,

W⊥(s) = −4δ0

b3

√

2πR

s
, (26)

and δ0 is the skin depth at the revolution frequency. The coefficients are a′ = 1, a = 0,
b′ = 1, b = 0 for a circular beam pipe, and a′ = π2/24, a = −π2/24, b′ = π2/12, b = π2/24
for two parallel with the vertical separation of 2b.

The classic formula is also has to be corrected at small frequencies where the skin
depth is larger than the wall thickness due to the leak of the field through the wall.
For the B-factories the classic formula with proper form factors should work pretty well
because the bunch length will remain about 1 cm (with bunch lengthening) even for the
upgraded design.

The resistive wall impedance gives major contribution to the tune shift with current.
However, the tune shift measured in a train of bunches in the PEP-II HER gave un-
expected result: the slope dQ/dIb in the train of bunches had opposite signs in x and
y-planes, Fig. (1), (2). The effect [11] is explained by the asymmetry of the beam pipe
which leads to quadrupolar wake fields excited in the beam pipe. Contrary to the wake
in a cylindrically symmetric pipes, the transverse wake in this case depends on the offset
of both leading and trailing particles. The wake proportional to the offset of the trailing
particle changes the tune. Such a wake builds up for the number of turns defined by the
diffusion of the fields through the beam pipe wall of the finite thickness.

It is worth noting that the classic formula has to be corrected at small distances [12]

s ' s0 = (
b2δ2

σ

σb

)1/3. (27)

3.2 Inductive impedance

The broad-band impedance of small vacuum components is traditionally described as a
single HOM mode impedance with Q = 1 and the mode frequency equal to the cut-off
of the beam pipe ω/c = π/a. At PEP-II we tried to build the broad-band impedance
as the sum of the impedances of all vacuum components. Inductance and loss factor of
each of them were estimated or calculated numerically. The total broad-band impedance
obtained in that way is mostly inductive but the total loss factor is not zero and has to
be taken into account. We do that using a simple model of inductive-like impedance [13]
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Z(ω) = − iωL

(1 − iωT )3/2
. (28)

That gives the loss factor

κl =
3

8
√

π
(
La

σ3
b

). (29)

Such impedance with parameters L = 80 nH and κ = 3 V/pC gives reasonable pre-
diction for the bunch lengthening, dσ/dIbunch ' 1 mm/mA.

It is worth noting that the same vacuum component may change from mostly inductive
to resistive with shorter bunch length. It is also important to remember that for the single
bunch instabilities such as microwave instability the figure of merit may be the length
several times smaller than the rms bunch length σb if the instability is due to quadrupole
or sextupole modes.

The pure inductive impedance stabilizes the microwave instability. On the other hand,
the inductive impedance leads to the bunch lengthening and affects luminosity through
the hour-glass effect.

The inductive impedance ZL = −iωL/c2 may lead to the energy-position correlation
at IP

δ ' NbreL

γbσ3
b

√
2π

(30)

although it does not change the uncorrelated energy spread in the storage ring below
the threshold of the microwave instability.

The typical example of a small vacuum discontinuity is the misalignment of two sec-
tions of the beam pipes with radius b. Impedance of a small misalignment δ is inductive
with inductance

L =
4

3

δ2

b
. (31)

300 hundred of δ = 2 mm misalignments of the beam pipes with radius b = 2.5 cm
give L = 7 nH, about 10% of the total inductance of the machine. That set the acceptable
limit on δ < 2 mm.

3.3 Ceramic coating and rough surface

Absorbers were introduced to reduce the heating, Fig. ( 7). Ceramics of the absorber has
very have high ε ' 30. For thick dialectric layers, b − a >> a/(2ε) and ε > 1, the wake
potential per unit length is equal to the filed on the beam pipe axis is [14]

E(z) = − 4

a2
[e−z/s0 − 1

4ε(1 + z2/(2a2(ε − 1))
], s =

a

2ε

√
ε − 1. (32)
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Figure 7: Absorber installed in Q2 bellows.

The energy loss by bunch per unit length is

∆E =
2N2

b e2

a2
, σb << s

∆E =
2N2

b e2

a2

s

σb

√
π

, s << σb << a
√

ε − 1. (33)

At very large distances, z > zm = (b− a)
√

ε, the field is, approximately, periodic with
the wave length equal to 4zm.

Transverse force can be found in [14].
A rough surface of the beam pipe can be considered as a thin dialectric layer with

ε ' 2 [15]. The main effect of the rough surface is generation of the wave which can be
synchronous with the beam. The frequency of the mode ω0/c = k0 can be estimated from
the wave equation

k2
0 =

2ε

aδ(ε − 1)
, ε

δ

b
<< 1. (34)

The longitudinal wake [16]

wl(s) = Wc cos(k0s), Wc =
Z0c

πa2
(35)

For B-factories, k0σ >> 1. In this case, the wake potential

W (s) =
∫

ds′ρ(s′)wl(s − s′) = −Wc

k2
0

dρ(s)

ds
(36)
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corresponding to small inductive impedance.
The thin coating of the ceramic such as in kickers can affect the wake [17]. Results

depend on the parameter

V =
σb

Z0σcwt
, (37)

where σc is conductivity of the coating (1/σc = 43µ Ohmcm for Ti coating), w is thickness
of the ceramic, and t is the thickness of the coating. For V << 1 the wake is mostly
resistive and follows the bunch density ρb(s),

W (s) =
2l

Z0σcbt
ρb(s). (38)

That gives the loss factor

κl =
2R

√
π

Z0σb

, where R =
l

2πσcbt
. (39)

4 Individual components

4.1 IR

The heating is a serious problem at IR because the cooling here is extremely difficult.
Several issues has to be address in modelling IR. First, it is the narrow-band impedance
due to HOMs in the Be beam pipe (±20 cm from IP) and modes trapped between crotches
(”Y-shapes”). Simulations [1] show about 12 pill-box like HOMs within the frequency
range from 4.6 to 5.92 GHz. Both TM and TE modes were found [18]. The impedance
was analyzed using MAFIA in time domain. The Q-factor of the modes in the Be pipe is
given by the coupling to the propagating modes due to tunnelling of the modes through
the masks. It was estimated that only 10% of the power loss goes to the Be pipe walls [1].
The power deposited by HOMs in Be pipe was estimated as 2.5 W, less than 12 W resistive
wall heating.

The broad-band loss factor 0.12 V/pC of the total structure was found with MAFIA.
The main source of it is caused by the broad band HOMs generated at the crotches. Such
a loss factor corresponds to 1.5 kW of the generated power within the bunch spectrum
with Ib = 1.5 A beam current. Most of this power goes outside of the IR to the walls, in
particular, to the IR bellows. The TE component of the generated HOMs goes through
the fingers and causes excessive heating in the IR bellows. The heating corresponding to
several kW of the generated power, indeed, was observed and it was a serious limitation
on the maximum stored current.

To reduce heating, additional cooling and ceramic absorbers was used. However, the
absorbers have to be carefully placed not to introduce additional impedance.

In PEP-II IR, there is is a cut in the crotch from one side of the IR in PEP-II, see
Fig. ( 8), Fig. ( 9). Such a cut may work as a taper and reduce the generated power. The
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length of the cut is limited to avoid additional parasitic crossing of two beams. It would
be important to carry out more simulations of such a design.

Figure 8: Cross-section of the crotch at IP at the distance 2503 mm from IP.

Another issue is the interference of the wakes generated by two beams simultaneously
in the Be pipe. If the IP is at the distances l1 and l2 from the end of the pipe, l1 + l2 = 40
cm, then the amplitudes of the even and odd modes is proportional to the factor

A± ∝ (N+ + N−)[sin(kl1) ± sin(kl2)] + (N+ − N−)[cos(kl1) ± cos(kl2)], (40)

where N± is the population of two colliding bunches. The power in the even modes scales
as (N+ + N−)2. For the asymmetric collision point, l1 6= l2, the odd modes can be excited
even for equal number of particles in both beams.

The fields excited in IR region by one bunch were experimentally detected in the beam
pipe of another bunch (A. Novokhatski).

Some ports in the beam tube are introduced for diagnostics and have structure similar
to the crotches. For example, the SR monitor in PEP-II uses a long (1.8m, diameter
2a = 3.5 cm) round pipe to deliver the SR from the beam to the monitor. The pipe goes
at a shallow angle α = 0.1 to the beam tube (the radius b = 4.5 cm). At the joint there
is a long elliptical opening in the beam tube wall with the length 14a. The issue here is
to limit the power propagating to the monitor which can not take a lot of the heating.
We estimate the loss factor using the code ABCI for a cylindrically symmetric structure
scaling result down with azimuthal factor proportional to the ratio a/b and taking into
account only part of the bunch spectrum above the cut-off frequency of the pipe.
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Figure 9: Cross-section of the crotch at IP at the distance 2810 mm from IP.

4.2 Screens

Here there are several issues. First, penetration of the fields into a hole produces an
effective bulge. In a thin screen with holes of the radius a, the field penetrates to the
distances ' a down to the hole (for a slot, the field leaks into a slot by the distance w/2).
The mesh with the surface area S = 2L × b of nh = S/(8a2) holes placed in a checkered
fashion, can be considered as the additional volume Vb ' nhπa3 generating a trapped
mode. The localization length l of the mode in the rectangular beam pipe a × b, a > b
due to a randomly placed slot is

1

l
= αm

(2π)2

4ab3
. (41)

l < L provided L > (b/π)
√

24b/a. In the case of a slot in a thin wall, radiation from
a slot can give additional to the resistivity of the wall width of the resonance.

At PEP-II, there are two types of screens which differ by the screen thickness. The
thin screens, indeed, give problems with excessive heating.

That can be avoided if the the grid with the mesh is bowing into the beam pipe
generating a negative bulge or introducing a shallow tapered bump on the inner surface
of the screen. Another way is to cover the mesh with bars with the hight d along the
beam pipe axes. That makes channels d cm deep. If the bar spacing w is small, the TM
HOMs are attenuated by a factor e−2πd/w [1].

17



Secondly, the system of induced dipoles at each hole can be considered as a thin
dialectric coating. Such a coating give for long bunches inductive impedance if σb > d/π,
where d is hole separation. For shorter bunches, the dialectric coating may produce a
mode which can be synchronous with the beam and give a substantial loss factor [19].

The third issue is penetration of the HOMs excited by the beam through the screen.
While bars attenuate TM modes, they do not help with the TE modes. The latter may
require additional bars or a thick mesh on the outer side of the mesh in transverse to the
beam direction. Such bars do not produce beam impedance but prevent penetration of
the TE modes and excitation of the cavities which may exist behind the screen.

Finally, the holes (or slots) placed periodically produced reflected waves propagating
in the beam pipe. The amplitude of the waves can be enhanced coherently at frequencies
equal multiple of the hole spacing a, ωa/c = 2πn.

4.3 Tapers and collimators

Tapers are used to reduce the impedance generated by the variation of the beam pipe
radius.

Shallow tapers a < r < b with the length l are inductive L = (b− a)2/l. The real part
is non-zero above cut-off ω/c > π/a.

For a shallow taper the inductive part is given by Yokoya [20] and (applicability was
corrected later [22])

Zl = −i
ωL

c2
0

L =
∫

dz[b′(z)]2, (provided kb2/l << 1 )

Zt(ω) = −i
Z0

2π

∫

dz(
b′(z)

b(z)
)2. (42)

Yokoya’s analytic formula is valid for small angles.
The real part [21]

ReZl(ω) =
Z0k

4πb2

∑

m

1

k0m

[|b′(k − k0,m)|2 + |b′(k + k0,m)|2]. (43)

Here, k = ω/c, k0,m =
√

k2 − k2
0,m, J0[k0,mb] = 0, b′(k) is Fourier transform of b′(z).

The sum is taken over k0,m < k.
Results is generalized to smooth but not necessarily shallow tapers [22].
The kick factor

κ⊥ = − 1

π

∫ ∞

0
dω|ρ(k)|2ImZt(ω),

kt = − c

2σb

√
π

ImZt. (44)
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Note Zt(ω) = Zt(0).
Tapers in PEP-II used to match the large aperture of the RF cavities to the adjacent

beam pipe radius. The total loss factor can, actually, larger than of the cavities on the
beam pipe with radius equal to the aperture of the cavities, see [19].

Tapers are also used as transition sections between octagonal beam pipes of the arcs
and the round beam pipes of straight sections and to reduce the impedance generated in
some collimators.

Two type of collimators were studied for PEP-II. The purpose of the gasket collimator
was to reduce background in HER. It was a thin iris, Figs. ( 10), ( 11). Such a collimator
would have the length of 1 cm, the edge of the jaw is about 1 cm from the beam axis, and
collimators are about 6 m apart. The LER momentum collimators, Fig. ( 12), ( 13), are
long two sided tapers with the 10 cm long flat region in the center, the the taper length
32 cm, and the thickness of the collimator 1 inch. The flat region is 12 mm from the beam
axis.

Figure 10: TE-like mode at the gasket collimator: electric field pattern.
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Figure 11: TE-like mode at the gasket collimator: electric field along the beam pipe axis.
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Figure 12: TE-like mode at the LER momentum collimator: electric field pattern.
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Figure 13: TE-like mode at the LER momentum collimator: electric field along the beam
pipe axis.

The trapped modes in collimators are hybrid modes. They are mostly TE modes and
were found in both cases [2] and were confirmed in measurements [3]. Similar modes exist
in movable collimators. For a gasket collimator, the mode with frequency 1.94 GHz and
the transverse shunt impedance Rs = 26.7 KOhm is located at position of a jaw. At the
momentum collimator the 1.512 GHz mode and Rs = 0.23 KOhm is located in the flat
region and decays to the ends of the tapers. The beam impedance in the last case is due
to the longitudinal TM components of the mode at the ends of the tapers and strongly
depends on the transient time along the collimator. The transverse impedance is affected
by the thickness of the collimator: increasing the thickness from 1 inch to 2 inches the
transverse impedance can be reduced by more than an order of magnitude. The field
pattern near the beam axis remains essentially the same but the frequency shift changes
the transient time and the impedance substantially for a long collimator. The absorbers
placed sidewise on the collimator may substantially reduce the heating [3].

Additional to the trapped modes, the TM-like modes were found between two adjacent
gasket collimators. They are slightly above the TM01 cutoff frequency of the beam pipe
and have the frequency separation about 30-40 MHz. Most of them are strongly coupled
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to the propagating modes and have low Qext factor. The highest Qext = 1500 but the
shunt impedance is low and such modes are not dangerous for the beam stability.

4.4 Flanges

The joint of two flanges leave, on average, a 100 µm wide slot which is terminated by
a vacuum seal at the radius b + l from the beam line where b is the beam pipe radius.
Here we estimate the power which goes into a slot of flanges [2]). The method we give
for illustration and can be used for similar problems. We assume b = 3.5 cm and l = 1
cm. Actually, there is an RF gasket but we ignore it considering a slot as a terminated
quarter wave waveguide. A mode with the frequency f = 4l/c can be excited in the slot
depositing Pd power to the wall of flanges. We assume that the amplitude of the azimuthal
component of the magnetic field of the mode is H0 and Ez = H0. The tangential to the
flanges electric field is given by the surface impedance Et = (1 − i)(kδ/2)H0 where δ is
the skin depth of the stainless steel flanges at the frequency f and k = ω/c.

The dissipated power is given by the Pointing vector

Pd =
S

Z0

kδ

2
< |H0|2 > (45)

where S = 2 × (2πbl) is the surface area of the flanges and angular brackets mean time
average.

The stored energy in the mode in the volume of the slot 2πblw is

< U >=
2πblw

4π
< |H0|2 > . (46)

The voltage across the slot V = wE0, where E0 = H0 (in CGS units). That defines
the shunt impedance Rs = |V |2/(2Pd) and the Q0-factor of the mode Q0 = ωU/Pd,

Rs =
Z0

2π2

w2

bδ
, Q =

w

δ
. (47)

Here we neglected radiation from the slot back to the beam pipe assuming that coupling
is small. Otherwise, we have to take into account the external Qext factor, and use the
loaded QL-factor, 1/QL = 1/Q0 + 1/Qext.

The loss factor is κ = (πf)(Rs/Q0).
The power loss of the beam due to excitation of the mode is

P =
Z0I

2
beamsb

4π
κ. (48)

That can be enhanced by factor D = 4Q/(ksb) if frequency is on the bunch spacing
resonance fsb/c = integer.

It is instructive to consider a flange as LCR contour. The image current equal to
the beam current Ib splits into current IC through the parasitic capacitor C and the
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current Ir which goes through the resistor r and inductance L, Ib = IC + Ir. The eigen-
frequency of the contour (ω0/c0)

2 = 1/(LC) and the Q-factor 1/Q = ω0rC. The induced
voltages on the capacitor and L − r chain are the same, VC = IC/(iωC) = IrZL, where
ZL = r + iωL/c2

0. Hence, IC = iωCV , Ir = (V/r)(1 + iQω/ω0)1 , and for Q >> 1,

V = −i
IbrQ

ω/ω0 − ω0/ω − i/Q
. (49)

The shunt impedance Rs is given by the maximum voltage Rs = Vmax/Ib = rQ2 at the
resonance ω = ω0.

The maximum field induced in the gap

E0 = (
V

w
)max =

IbRs

w
. (50)

Estimating

C =
S

4πw
=

bl

2w
, r =

2l

2πbδσwall

=
2l

b
(
ω0

c2
0

) δ, (51)

we get again Rs = Z0w
2/(bδ), 1/Q ' δ/w, and

E0 ' Z0Ib
w

bδ
. (52)

With parameters given above, δ ' 1 µm. For the beam current Ib = 3A, E0 = 45
kV/cm and can exceed the electric stability.

The reciprocity theorem Re(VbI
∗
b ) = Re(V I∗

r ), gives that the maximum beam impedance
is also equal to Rs.

4.5 BPMs

The PEP-II BPMs are 4-button BPMs with the 1.5 cm diameter of a button. The
MAFIA calculations show that there is an HOM mode along the annular gap. One of
the questions here is the voltage across the annular gap. Estimate can be done using
reciprocity theorem [23].

The voltage across the gap with the width w around the button with radius a is
Vg = IgZg. The gap impedance

1

Zg

=
1

ZC

+
1

R + ZL

. (53)

Here impedance of the parasitic capacitor ZC = 1/(iωC), C = S/(4πw), and the
surface area S = 2πad, where d is the depth of penetration of the field in the gap. For
small w the mode with frequencies within the bunch spectrum ω/c < 1/σB, the field
decays exponentially, d ' w/π. Hence, ZC = −(i/ω)(4πw)/(2aw) = −iZ0/(2ωa/c). The
resistance of the path across the gap R = d/(σW Sω), where σW is conductivity of the wall,
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and Sω = 2πaδω depends on the skin depth δω. Finally, ZL = −iωl/c2, where l ' w/π
gives the main contribution,

Zg ' i
Z0

4π2

wω

c
. (54)

The voltage across the gap

Vg ' Z0Ig

4π2

w

σB

. (55)

For the gap current Ig ' Ib, with the beam current Ib = 3 A, Vg ' w/σB volt, and
the field Eg = Vg/w ' 30 volt. The beam coupling impedance Zcp,g generated by the
current across the gap can be found from the reciprocity theorem: VbIb = VgIg, and
the definition Vb = Zcp,gIb. For Ig ' Ib that gives Zcp,g ' Zg, much smaller than the
impedance of the annular gap in the beam pipe with radius b. Tha latter is inductive
with the inductance [24]

L =
πa3

2b2[ln(32a/w) − 2]
(56)

and is generated mostly by the current around the gap. More accurate estimate of the
current across the gap can be found in the note [23].

4.6 CSR and impedance of the undulator

A bunch in free space radiates wave at low frequencies ωσb/c < 1 coherently. The coherent
synchrotron radiation (CSR) introduces the energy spread in a bunch and may lead to
instabilities.

The steady-state CSR impedance per unit length for a dipole is [25]

Z(ω) = −i
Z0A

2
(

ω

cR2
)1/3, A = 3−1/3Γ(

2

3
)(i

√
3 − 1). (57)

The longitudinal wake function per unit length in a week undulator K << 1 due to
CSR (additional to Coulomb force) is [26]

Wl(s) = K2(
ω

c
)2(

sin 2s

s
+

3 cos(2s)

2s2
), (58)

where s = ωz/c, z is distance from the source particle to the test particle, and K =
eB/(mc2ku) is the undulator parameter.

The wake of a strong undulator can be found in [27].

Fortunately, radiation of the modes with frequencies ω/c =
√

q2 + k2
⊥ is suppressed in

the beam pipe with radius b if k⊥ < π/b. The synchrotron radiation from the bean with
the bend radius ρ at the harmonic n = ωρ/c goes in the angle θ ' n−1/3. In the beam
pipe radiation of such modes is possible only if k⊥ = (ω/c)θ > π/b. That gives the limit
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ω

c
> (

π

b
)3/2ρ1/2. (59)

For a bunch with the rms length σb that condition is consistent with ωσb/c < 1 only
for short bunches,

1

σb

>
π

b

√

πR

b
. (60)

However, if the bunch profile has a high-frequency modulation with the wave length
small compared with σb, the modulation can radiates coherently and the instability can
take place. Such instability was observed experimentally. The stabilizing mechanism is
given by the energy spread in a bunch.

5 Numerical methods

There are several method used to calculate the impedance of the vacuum components.
The Kroll-Yu method [28] gives Q-factor of a HOM in a cavity connected to a damping

waveguide which is assumed to be terminated by a matched load. The method uses as
input the frequency of the mode calculated with MAFIA with lossless walls and assumes
that there is a single propagating waveguide mode. The Q-factor is determined from
calculations with 4 different length of the wave guide (4-point method). Fitting of the
spectrum with the Breit-Wigner formula can be useful. When there are several close
modes, the identification of the modes in the runs with different waveguide lengths is
difficult.

Time domain calculations define the field excited by a bunch going through the struc-
ture. The wake is obtained by integration the longitudinal electric field over the pass of
the bunch (direct method, preferable for collimators) or along the ports (indirect method
for couplers and up-and-down tapers). The calculations for collimators can be simpli-
fied closing the structure with the beam pipes and calculating the wakes twice, with and
without collimators. The difference gives the result provided the artificial beam pipes are
sufficiently separated.

The Fourier analysis of the wake gives impedance. For a narrow-band impedance, the
width of the peaks of the impedance gives, in principal, the Q-factor.

The transmission coefficient as function of frequency can be calculated with MAFIA.
Deviation of the transmission coefficient from one indicates the losses within the structure
and frequencies of the trapped modes. In this way the radiation through the screen slots
was detected [18].

The further study of the HOM in the structure can be done with an antenna (a dipole)
within the bandwidth of the mode.

The time domain method requires a long downstream beam pipe and a fine mesh with
the step 1/5−1/6 of σB. To determine the wake function W (s) within the range s < smax,
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the downstream beam pipe has to be longer than the catch-up distance ' smax/(1−vg/c),
where vg is the group velocity of the scattered waves. Limitations on these method comes
from discreteness of the mesh, final resolution of the Fourier transform, and large number
of mesh points. The very long downstream pipes are required to determine the long-range
wakefields and computation may become not feasible. Analysis of individual propagating
modes may give better results in this case.

Much better results can be obtained in the time domain calculations with the moving
frame. That allows effective analysis of long structures and short bunches [29]. At the
present time, the method is limited to 2D structures.
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6 Appendix 1. Polarizabilities

Impedances of small holes and slots are mostly inductive. Generally, the longitudinal
impedance is given [30] by the surface integral over the hole of the harmonics of the
azimuthal current Iφ(ω) excited by the charge q

Z(ω) = − 1

2πbq

∫

dSe−ikzIφ(ω). (61)

At low frequencies,

Zl = −i
Llω

c2
0

, Zt = −i
Lt

b2
. (62)

The inductances are [24]

Ll =
αm + αe

πb2
,

Lt =
4(αm + αe)

πb2
cos(φh − φb). (63)

Transverse kick is directed to the hole in the cross-section containing the hole, φ are
azimuthal angles to the beam and the hole in this cross-section. For a circular hole

αm =
4a3

3
, αe = −2a3

3
. (64)
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For thick walls t > a polarizabilities have to be multiplied by 0.56. For an elliptic hole
with the angle θ of the ellipse major axes and the beam pipe axes,

αm = αm,l sin
2(θ) + αm,t cos2 θ, (65)

where

αm,l =
πl31e

2

3[K(e) − E(e)]
,

αm,t =
πl31e

2(1 − e2)

3[K(e) − (1 − e2)E(e)]
,

αe = −πl31(1 − e2)

3E(e)
. (66)

The eccentricity e =
√

1 − (l2/l1)2, l1 > l2 are ellipse semi-axes, K(e) and E(e) are
complete elliptical integrals of the first and second kind.

For the longitudinal slot

αm ' −αl = −πw2l

16
αm + αe = constw3(1 + o(w/l)), (67)

const = 0.184 for a rectangular slot and 0.133 for a rounded slot.
For transverse rectangular slots (w/l < 0.2, magnetic field is along the slot)

αm =
πl3

24[ln(4l/w) − 1]
, (68)

and αe is negligibly small. In the thick wall

αm =
πl3

24 ln(8l/w) + πt
2w

− 7
3

, (thick wall). (69)

7 Appendix 2. Transition from a cavity to a step

regime

The high-frequency tail of a cavity with the longitudinal dimension g and beam pipe
radius a in the case g << (ω/c)a2, g << a2/σ can be described [31]
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Zl(ω) =
Z0(1 + i)

2π

√

cg

πωa2
, Zl(−ω) = Z∗

l (ω),

kl =
Γ(1/4)

πa

√

g

πσ
,

Γ(1/4)

π
= 1.15,

kbot =
1

a3

√
πgσ. (70)

In this case, the diffracted wave can not reach the outer wall of the cavity at r = b
and the results are independent of b. Note that the contribution of the high-frequency
tail to the transverse kick is small and the kick is dominated by the low frequencies.

In the opposite case of a long step, g >> (ω/c)a2, g >> a2/σ,

Zl(ω) =
Z0

π
ln

b

a
,

kl =
2√
πσ

ln
b

a
,

kbot =
2

a2
√

π
ln

b

a
ln

b

σ
. (71)

Transition form the cavity-regime to a step-regime takes place at σg ' a(b − a).
We can try to get a rough estimate the loss factor of a crotch considering the crotch

as a step. If the radius of the beam pipe at IP is the same as radii of the pipe joining at
the crotch, the simple consideration of the geometry shows that the maximum variation
of the distance of the beam from the wall is 2/

√
3. Taking that as the ratio b/a and using

the formula for the loss factor of a step, see Appendix 3, we can expect the loss factor

κl =
2√
π

ln(
2√
3
). (72)

That gives κl = 0.16 V/pC for a bunch with the rms length σ = 1.0 cm (0.11 V/pC
for σb = 1.5 cm).
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