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Abstract

A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated

beam dynamics study in linear particle accelerators and beam transport lines is developed. The

program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-

uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses,

solenoids and bending magnets. The programming method includes hierarchical program design

using program-independent modules and a flexible combination of modules to provide the most

effective version of the structure for every specific case of simulation. Numerical techniques as

well as the results of beam dynamics studies are presented.
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1  INTRODUCTION

The design of particle accelerators with high brightness beams requires careful control of

particle dynamics with space charge forces of the beam. The particle-in-cell (PIC) method is a well

established technique for space charge dominated beam study. Numerous codes cover a wide range

of problems connected with the simulation of beam transport and acceleration in linacs and circular

accelerators using 2- and 3- dimensional approach. Among others the well-developed codes are

PARMILA [1], PARMTEQ [2], WARP3D [3], SIMPSONS [4], ACCSIM [5], SAMBA [6],

ORBIT [7], TRACK3D [8], TOPKARK [9]. In spite of the many years of experience in high-

current beam dynamics simulation, the number of problems to be solved and their complexity are

increasing. The BEAMPATH code has been developing since the beginning of 1980's as a many-

purpose tool for studying beam dynamics with space charge in linear accelerators and beamlines

[10]. The scope of the program includes beam transport in a channel with arbitrary order

multipoles, solenoids and bending magnets, beam acceleration with space charge in radio-

frequency (RF) cavities, waveguides and radio-frequency quadrupole (RFQ) structures (see Table

1). The aim of the project was to create a flexible software, which could be adjusted for frequently

changeable problems. As a result, this single code covers many issues, typically distributed among

different codes:

- 2D and 3D space charge effects for different beam geometry,

- spin depolarization effects,

- beam loading in accelerating waveguides,

- particle tracking in commonly used beamline elements and accelerating structures,

- symplectic integration of particle trajectories,

- generation of typical beam distributions as well as dealing with user specified distribution.

 In this paper a detailed description of numerical algorithms as well as data on accuracy and

efficiency of the program are presented.

2  SELF-CONSISTENT PROBLEM FOR NUMERICAL BEAM DYNAMICS STUDY

WITH SPACE CHARGE

Consider the propagation of an intense charged particle beam in an accelerating-focusing

channel. For the beam dynamics study, the particle-in-cell method is used [11]. The beam is

represented as a combination of a large number, N >>1, of modeling particles (macropaticles) with

the same charge-to-mass ratio, q/m, as in the real beam.

The transported beam is substituted by a combination of charged lines (strings). The bunched

beam consists of charged clouds. The dynamics of particles in the RF field is simulated inside a

quasi-period of the structure with the length of Λ = vc λ, where v = βc is the average longitudinal

velocity of the accelerated particles, c is the velocity of light, λ = 2πc/ω is the wavelength and ω is



the circular frequency. The quasi-period moves in the longitudinal direction with the velocity v.

The quasi-period is limited transversely by an aperture of the structure. The simulation is

performed in 6-dimensional phase space of particle positions x, y, z, and mechanical momenta px,

py, pz.

At the initial moment of time, phase-space is filled with macroparticles using a random

number generator (see Section 5). Particle trajectories are integrated in the field which is a

combination of external field and self space-charge field of the beam. During simulations the

macroparticle is stopped if it touches an aperture boundary (transverse loss). If the particle leaves

the quasi-period in the longitudinal direction (longitudinal loss), its trajectory is integrated, but the

Coulomb influence on the other particles is neglected.

The single-particle Hamiltonian in curvilinear coordinates x, y, z (see Fig. 1) is given by:

H = c m2c2 + ( Pz

1 + x
R(z)

  -  qAz)2 + (Px - qAx)2 + (Py - qAy)2 + qV ,               (2.1)

where Px, Py, Pz are components of the canonical-conjugate momentum of the particle, Ax, Ay, Az

are components of the vector-potential, V is a scalar potential of the structure and R(z) is a the

radius of curvature of a reference trajectory. The Hamiltonian equations of motion are

dx
dt

 = 
∂H
∂Px

,                    
dy
dt

 = 
∂H
∂Py

,                       dz
dt

 = 
∂H
∂Pz

 ,                        (2.2)

dPx
dt

 = -  
∂H
∂x

 ,              
dPy

dt
 = -  

∂H
∂y

 ,                  dPz
dt

 = -  
∂H
∂z

 .                    (2.3)

Instead of vector potential A and scalar potential V it is more convenient to use an electric

field E = - q ∂A/∂t - grad V and a magnetic field B = rot A. The transformation from canonical

momentum P to mechanical momentum p = P - qA  gives a set of equations of motion:

dx
dt

 = 
  px 

 m γ
,

dy
dt

 = 
  py 

 m γ
 ,                                                                       γ  = 1 + 

px2 + py2 + pz2

m2 c2
 ,

dz
dt

 = 
pz

 m γ (1 + x
R

 ) 
,

(2.4)
dpx

dt
 = 

pz2

 mγ (R + x)
   + qEx  + 

q
mγ

  (py Bz - pz By),

dpy

dt
 = qEy  + 

q
mγ

  (pz Bx - px Bz),

dpz

dt
 = - 

pz px

 mγ (R + x ) 
   + qEz  + 

q
mγ

  (px By - py Bx).



Integration is performed with a fixed time step, δt, utilizing the integrator of Section 3. Time t is

selected as an independent variable rather than a longitudinal coordinate, z, because in the latest

case the right - hand sides of equations of motion have to be divided by the square of the velocity,

vz2. Because the particle velocity, vz = pz/γ, is a dependent variable and is defined with some error,

the integration of the equations of motion in this case is less accurate.

Electrical and magnetic fields acting on the particle are a combination of external fields,

Eext, Bext, and space charge fields of the beam, Esc, Bsc (see Fig. 2):

E = Eext + Esc,                                                                  (2.5)

B = Bext  + Bsc.                                                                 (2.6)

The external fields are given functions of coordinates and time (see Section 6). The space

charge field of the beam is renewed at every elementary integration step via solution of the

Poisson's equation in the moving frame (see Section 7). This approach provides self-consistent

treatment of the problem, because particles move in the field, which depends on particle dynamics.

In subsequent Sections the numerical algorithms and results of numerical simulations will be

discussed.

3  NUMERICAL INTEGRATION OF RELATIVISTIC PARTICLE TRAJECTORIES  IN

CURVILINEAR COORDINATES

The numerical integrator of particle trajectories in PIC models has to keep as many properties

of the original physical system, as possible, and, to be effective, stable and accurate [11]. The main

properties of a Hamiltonian system are symplecticity (preservation of phase space volume) and

conservation of energy (for systems with time-independent Hamiltonian). The numerical solution

depends on the arbitrary value of the integration step and is not equivalent to the exact solution of

differential equations of motion. The integrator cannot keep all the properties of the original

physical system [12]. In the BEAMPATH code the well-known integration scheme [11] with

modifications for a curvilinear system of coordinates is used.

3.1. Integrator of particle trajectories

Let us introduce dimensionless variables:

τ = 
δt·c

λ
,   R → R

λ
,   x → x

λ
,    px → 

px
m c,   Ex → 

q λ Ex

m c2
,    Bx → 

q λ Bx
m c  ,            (3.1)



analogously for y and z components. As seen in Eqs. (2.4), the increment of particle momentum is

a combination of that in the electric field, in the magnetic field and due to curvilinear acceleration.

The integration procedure at every step τ is divided in the five stages. At each stage, integration

schemes of the first order are used with neglected terms of the order of o(τ2). They require

calculation of the space charge field of the beam only once per integration step, which saves

computational time.

A. At the first stage, the particle performs a half-step acceleration in the electric field

px,n*  = px,n + τ
2

 Ex,n
 ,   py,n*  = py,n + τ

2
 Ey,n

  ,   pz,n*  = pz,n + τ
2

 Ez,n
 .                      (3.2)

B. After that, the vector of the particle momentum accomplishes rotation in the magnetic

field, utilizing an implicit centered scheme:

pn+1
*   -  pn

*

τ
  = [ 

(pn+1
*   +  pn

*)

2 γn
*

   x  Bn ], or, in explicit form,                  (3.3)

px,n+1 
*

py,n+1 
*

pz,n+1 
*

 = C 

[1+ τ2

(2γn
*)2

 (Bx
2 -By

2 -Bz
2)]     τ(Bz

γ n
*
 + BxBy τ

2(γn
*)2

 )     τ (BxBz τ
2(γn

*)2
  - 

By

γ n
*
)

 τ (BxBy τ
2(γn

*)2
  - Bz

γ n
*
)     [1+ τ2

(2γn
*)2

 (By
2 -Bx

2 -Bz
2)]      τ(Bx

γ n
*
 + ByBz τ

2(γn
*)2

 ) 

   τ(
By

γ n
*
 + BzBx τ

2(γn
*)2

 )     τ (ByBz τ
2(γn

*)2
  - Bx

γ n
*
)  [1+ τ2

(2γn
*)2

 (Bz
2 -By

2 -Bx
2)]  

   

px,n 
*

py,n
*

pz,n
*

 ,   (3.4)

C  =   1

1+ ( τ
2γn

*
 )

2
 (Bx

2 + By
2 + Bz

2)
 .                                               (3.5)

C. At the third stage, the particle performs curvilinear acceleration. The value of py is

conserved at this stage, py, n+1
**  = py, n+1

* . The difference equations for radial and longitudinal

momentum with curvilinear acceleration are

px, n+1
**  - px,n+1

*

τ
  = 1

γn
* (Rn + xn)

 (
pz, n+1

*  + pz, n+1
** 2

2
),                              (3.6)

pz, n+1
**  - pz, n+1

*

τ
  = - 1

γn
* (Rn + xn)

 (
pz, n+1

**  + pz, n+1
*

2
) (

px, n+1
**  + px, n+1

*

2
) .            (3.7)

Equations (3.6) and (3.7) are coupled. The increment of the radial and the longitudinal components

of the particle momentum at this stage consists of several steps.

C.1. Advance of radial momentum:



px, n+1
**  = px, n+1

*   + 
(pz, n+1

* )2

γn
*  (Rn + xn) 

  τ .                                            (3.8)

C.2. Advance of longitudinal momentum:

pz, n+1
**   = pz, n+1

*  
1 -  s·(px, n+1

*  + px, n+1
** )

1 +  s·(px, n+1
*  + px, n+1

** )
 ,                   s = τ

4 γn
*  (Rn + xn)

 .           (3.9)

C.3. Correction of radial momentum:

px, n+1
**  = px, n+1

*  + τ
γn

*  (Rn + xn)
  (

pz, n+1
*  + pz, n+1

**

2
)2 .                             (3.10)

The total momentum under curvilinear acceleration is conserved, as follows from Eqs. (2.4):

 1
2

 d(px2 +pz2) = px dpx + pz dpz  = ( px 
pz2

  γ (R+ x) 
  - pz 

pzpx

  γ (R+ x) 
)τ = 0 .              (3.11)

To achieve reasonable accuracy in the conservation of momentum, the steps C.2 and C.3 are

iteratively repeated 3-4 times.

D. At the fourth stage, the particle again performs a half-step acceleration in the electric

field:

px,n+1
  = px,n+1

**  + τ
2

 Ex,n
  ,       py,n+1

  = py,n+1
**  + τ

2
 Ey,n

 ,       pz,n+1
  = pz,n+1

**  + τ
2

 Ez,n
  .     (3.12)

E. At the final stage, the particle performs the advancing of position:

xn+1
  = xn + τ 

px,n+1
 

γn+1
,   yn+1

  = yn + τ 
py,n+1

 

γn+1
,   zn+1

  = zn + τ 
pz,n+1

 

γn+1 (1 + xn+1
Rn

)
 .        (3.13)

The scheme presented here accomplishes the general-purpose integration of the particle trajectories

in 6-dimensional phase space. Let us consider some special important cases.

3.2. Particle motion in electric field

Many low energy injectors utilize electrostatic quadrupole lenses and radio-frequency

quadrupole linacs. The reference orbit in such structures is a straight line 1/R = 0 and the magnetic

field is B = 0. In this case the integrator is reduced to the following scheme:



pn+1
  = pn + τ En

 
 ,                   xn+1

  = xn + τ 
pn+1

 

γn+1
 .               (3.14)

This scheme is symplectic, i.e. phase space volume is conserved [13]. Actually, the Jacobian of

transformation from "old" variables, xn, pn, to "new" variables xn+1, pn+1 is equal to unity (for

simplicity consider only the one-dimensional case, but the result is valid for the multi-dimensional

case as well):

J =    
 
∂xn+1
∂xn

       
∂xn+1
∂pn

 

  
∂pn+1
∂xn

      
∂pn+1
∂pn

  

    =   
 1                   0 

  τ 
∂Ex,n

∂xn
      1  

   =  1 .                      (3.15)

At the same time, this scheme does not conserve the total energy of the particles [14]. For

analysis consider the non relativistic case (γ = 1). The first of equations of (3.14) can be rewritten

as
pn+1

  - τ
2

 En
 
 = pn + τ

2
 En

 
 .                                    (3.16)

Square of both sides of Eq. (3.16) gives

pn+1
2  - τ pn+1 En

 
 + τ

2

4
 En

2
 = pn

2 + τ pn En
 
 + τ

2

4
 En

2
 .                   (3.17)

Combination of Eq. (3.17) with the second equation of (3.14) is [14]

pn+1
2

2
 - 

pn
2 
2

  =  En
 
 (xn+1 - xn-1

2
) .                                (3.18)

The left-side of Eq. (3.18) is the change of kinetic energy of the particle, while the right side is only

an approximation of the change in potential energy:

E dx
xn

xn+1

  ≈  En
 
 (xn+1 - xn-1

2
) .                                 (3.19)

For a one-dimensional harmonic oscillator En = - ω2xn, equation (3.18) becomes

pn+1
2  + ω2 xn+1

2  - τ ω2xn+1 pn+1 = pn2 + ω2 xn2 - τ ω2xn pn .                (3.20)

In a harmonic oscillator the energy invariant is E = p2 + ω2x2, whereas the application of a

symplectic integrator results in the appearance of an additional term - τ ω2xp [12]. Therefore, the

symplectic integrator, Eq. (3.14), conserves energy up to the order of τ.



A more general theorem [12] states that the symplectic integrator of the m-th order describes

the evolution of an associated Hamiltonian H:

H = H + τmHm + o (τm+1) ,                                            (3.21)

where H is an original Hamiltonian and the other terms are

H1 = 1
2

 
∂H
∂p

 
∂H
∂x

,   H2 = 1
12

 [ 
∂2H

∂p2
 (

∂H
∂x

)
2
 + 

∂2H

∂x2
 (

∂H
∂p

)
2
],   H3 = 1

12
  

∂2H

∂p2
 
∂2H

∂x2
 
∂H
∂p

 
∂H
∂x

 , ...         (3.22)

Eq. (3.21) indicates that the symplectic integrator corresponds to a physical system, which is

slightly different from the original one. For an integrator of the first order, Eq. (3.14), the error in

energy remains of the order of τ, which coincides with the estimation of Eq. (3.20). Meanwhile, if

the integration step τ is small enough, the difference between the original Hamiltonian, H, and the

associated Hamiltonian, H, is not significant.

3.3. Particle motion in magnetic field

Consider the rotation of a particle in a uniform magnetic field B = {0, 0, Bz}. The

transformation from "old" variables to "new' variables is given by formulas (3.4), (3.13), which are

reduced to the following scheme [14]:

px,n+1 =  px,n 
(1 - Φ2

) 

1 +  Φ2
  + py,n

  2 Φ
1 +  Φ2

 ,

(3.23)

py,n+1
  =  py,n

  
(1 - Φ2

) 

1 +  Φ2
  - px,n 2 Φ

1 +  Φ2
 ,   Φ = τ Bz

2γ
 .

The transformation, Eq. (3.23), conserves the total momentum of the particle [11]:

px, n+1
2 + py, n+1

2  = px, n
2 + py, n

2  ,                                                           (3.24)

which is essential, otherwise the particle trajectory would be unphysically swept into a spiral [14].

Also, phase space volume is conserved by Eqs. (3.23). But in an arbitrary magnetic field, the

integrator (3.4), (3.13) is not symplectic. In general, mechanical momentum and particle

coordinates, are not canonical - conjugate variables.

These examples demonstrate that for particle tracking it is necessary to find a reasonable

compromise between the different properties of integration schemes. With the appropriate choice

of the value of the integration step, τ, the beam parameters become insensitive to the variation of τ.



Usually the value of integration step with respect to RF period or plasma oscillation period

is τ = 10-2 - 10-3, which is enough to insure good accuracy of the calculations.

4.  SPIN MATRIX FORMALISM

The rotation of spin S of a particle with charge q, mass m, velocity β = v/c and energy γ is

described by the Bargmann-Michel-Telegdi (BMT) equation [15]:

dS
dt

 = 
q

mγ
 S x [(1 + Gγ)B⊥ + (1+G)BII + (Gγ + 

γ
1 + γ

) 
E x β

c  ] ,              (4.1)

where G is an anomalous magnetic momentum of the particle, E is an electrical field, and B⊥ and

BII are components of magnetic field, perpendicular and parallel to particle velocity, respectively:

B⊥ = 1
v2

 (v x B) x v ,                                                        (4.2)

BII = 1v (v · B)  vv  .                                                          (4.3)

Assuming electromagnetic field is constant over a small distance δz, the solution of the BMT

equation can be written in matrix form as [16]

Sx
Sy

Sz

  = 

1- a(B2+C2)     ABa + Cb         ACa - Bb

ABa -Cb          1- a(A2+C2)      BCa + Ab

ACa + Bb            BCa - Ab      1- a(A2+B2)

 
Sx,o

Sy,o

Sz,o

  ,                       (4.4)

A = Px
Po

,    B = 
Py

Po
,    C = Pz

Po
,                                                 (4.5)

a = 1 - cos ϕ,   b = sin ϕ,    ϕ = Po δz ,                                      (4.6)

where parameters Px, Py, Pz are given by the following expressions:

Px = 
q

m γ v
 [(1+Gγ)(Bx - x' Bz) + (1+G)x'Bz + v

c2
 (

γ
1+γ

 + Gγ)(Ey - y' Ez)] ,                              (4.7)

Py = 
q

m γ v
 [(1+Gγ)(By - y' Bz) + (1+G)y'Bz + v

c2
 (

γ
1+γ

 + Gγ)(x' Ez - Ex)] ,                              (4.8)



Pz = 
q

m γ v
 [(1+Gγ)(-x' Bx - y' By) + (1+G)(x'Bx+Bz + y'By) + v

c2
 (

γ
1+γ

 + Gγ)(y' Ex - Eyx')]  . (4.9)

and prime means derivative over longitudinal coordinate, ' = d/dz . Matrix equations (4.4) are

integrated simultaneously with particle tracking.

Matrix (4.4) describes spin precession in Cartesian coordinates. If particle travels in a

bending magnet, spin is corrected at every integration step according to the matrix

Sx
Sy

Sz

  = 
 cosθ        0        -sinθ 

0            1            0

 sinθ        0       cosθ 

 
Sx,o

Sy,o

Sz,o

  ,                                       (4.10)

which describes rotation of system of coordinates for angle θ = -(zn+1 - zn)/Rn at every integration

step.

5  BEAM DISTRIBUTION GENERATOR IN PHASE SPACE

At the initial moment of time every particle occupies a starting position in 6-dimensional

phase space depending on the specific particle distribution. In most cases the longitudinal

distribution corresponds to a z - continuous beam with a finite spread of longitudinal momentum

∆pz. Simulation of longitudinal phase space for a z-uniform beam is performed as a generation of a

uniform particle distribution within the interval - βλ/2 ≤ z ≤ βλ/2 and a Gaussian distribution in

longitudinal momentum around the average value of pz:

dN
dpz

  = N
2π  ∆pz

 exp[- 
(pz - pz)2

2(∆pz)
2

] .                                          (5.1)

The generation of a bunched beam distribution in longitudinal phase space is described below, see

Eq. (5.22).

For the simulation of particle distribution in transverse four-dimensional phase space x, x', y,

y', consider a class of distributions with elliptical symmetry [17]. The distribution function

f (x, x', y, y') depends on parameter F, which has a meaning for the value of the radius-vector in 4D

phase space:

f (x, x',y, y') = dN
dx dx' dy dy'

 = f(F) ,                                     (5.2)

F = ζx
2
 + νζy

2
 ,                                                      (5.3)

where ν = ∋x / ∋y is a ratio of beam emittances. Parameters ζx, ζy describe a family of ellipses:



ζx
2
 = (axx' - ax' x)2 + ( x

ax
)2 ,                                            (5.4)

ζy
2
 = (ayy' - ay' y)2 + (

y
ay

)
2
 ,                                            (5.5)

where ax,  ax' , ay,  ay'  are defined by the values of the semi-axes X1, X2, Y1, Y2 and tilts of the

beam ellipses αx, αy  at the phase planes, see Fig. 3, [18]:

ax = X1
X2

 cos2αx + X2
X1

 sin2αx  ,                                    (5.6)

ax'  = 1
2 ax

 (X1
X2

 - X2
X1

) sin 2αx ,                                         (5.7)

with analogous expressions for ay, ay' . The distribution function is normalized under condition:

 
- ∞

∞

 
- ∞

∞

 
- ∞

∞

 
- ∞

∞

 f (x, x',y, y') dx dx' dy dy' = 1  .                       (5.8)

Equation F = const defines a hyperellipsoid surface in phase space x, x', y, y'. From Eq. (5.2) it

follows that phase space density is constant at the hyperellipsoid surface and varies from the

surface to surface. For a fixed value of F, the projection of distribution, Eq. (5.2), at phase planes

(x, x') , (y, y') are ellipses with unequal areas:

ζx
2
 = F,                      ζy

2
 = F

ν
 .                        (5.9)

Different beam distributions are compared by root-mean-square (rms) values

<x2> =  
- ∞

∞

 
- ∞

∞

 
- ∞

∞

 
- ∞

∞

 x2 f (x, x',y, y') dx dx' dy dy'   ,                  (5.10)

with analogous expressions for <x' 2> , <x x'> , <y2>, etc. The projection of the beam on phase

plane (x, x')  is described by an rms ellipse (see Fig. 3)

(4<x'2>
∋x

)x2 - 2 (4<x x'>
∋x

) x x' + (4<x2>
∋x

)x' 2 = ∋x ,                   (5.11)

with analogous expression for the plane (y, y'). The area of the rms ellipse is π∋x, where ∋x is a

natural (non-normalized) rms beam emittance

∋x = 4 <x2> < x' 2> - <x x'> 2  .                                (5.12)



The problem of generating of particle distribution in phase space is to find 4N values

xi, x' i, yi, y' i, i = 1, 2,..., N, which correspond to a given beam distribution function f(F). The

parameters for the rms ellipses X1, X2, αx, Y1, Y2, αy  at phase planes (x, x') , (y, y') are initial

data. To implement the algorithm, the distribution of values of F is required:

g (F) = 
d N(F)

d F
  ,                                        (5.13)

where dN(F) is the number of particles within the interval (F, F + dF). To find the distribution g(F),

let us substitute new variables F, θ, ϕ, ψ     (0 ≤ θ  ≤ 2π, 0 ≤ ϕ ≤ 2π, 0 ≤ ψ ≤ π/2) for the old

variables x, x', y, y' according to the following transformation:

ax x' - ax'  x = F   sin ψ sin ϕ ,

x
ax

    = F  sin ψ cos ϕ ,

(5.14)
ν (ay y' - ay'  y) = F  cos ψ  cosθ  ,

ν 
y
ay

    =  F  cos ψ sin θ  .

The phase space element is transformed as

dx dx' dy dy' = 1
4ν

 F dF sin 2ψ dψ dϕ dθ .                       (5.15)

Then the number of particles in the phase space element is

dN(F, ψ, ϕ, θ) = f(F) 1
4ν

 F dF sin 2ψ dψ dϕ dθ .                       (5.16)

Integration of Eq. (5.16) over the angle variables θ, ψ, ϕ  gives the number of particles dN as a

function of the value F:

dN(F) = f(F)  1
4ν

 F dF dϕ
0

2π

dθ
0

2π

  sin 2ψ dψ
0

π/2

 =  π
2

ν
  f(F) F dF .          (5.17)

From Eq. (5.17) the distribution of the value F is

g (F) = π
2

ν
  f(F) F .                                        (5.18)

The algorithm of particle generation in phase space is  divided into three steps:
A. Calculation of the coefficients ax, ax'  ay, ay'  according to Eqs. (5.6), (5.7) using the given

parameters for the rms ellipses X1, X2, αx, Y1, Y2, αy  at the phase planes (x, x') , (y, y').



B. Generation of the distribution, g(F), using the inverse function method. For that an integral

distribution of the value F is calculated

G(F) = g(F') dF'
0

F

 .                                      (5.19)

Then the inverse function F = F(G) is generated taking the value of G uniformly distributed in the

interval (0, 1).

C. For each value of F, two random numbers ζx, ζy are taken, which satisfy Eq. (5.3). The

values ζx, ζy, define two specific ellipses, Eqs. (5.4), (5.5) among a family of ellipses with fixed

ratios of X1,/X2, Y1/Y2 and angles α x, αy. On each ellipse an arbitrary point is taken with the

following coordinates [18]:

x = ζx ax cos βx ,

x' = ξx (ax'  cos βx - 
sin βx

ax
 ) ,

(5.20)
y = ζy ay cos βy ,

y' = ζy (ay'  cos βy - 
sin βy

ay
 ) ,

where the values of βx, βy are randomly distributed within the intervals:

0 ≤ βx ≤ 2π ,               0 ≤ βy ≤ 2π .                          (5.21)

The values x, x', y, y' obtained from Eqs. (5.20) define the point in 4D phase space which belongs

to distribution f(F). The steps B, C are repeated N times until N points fill in the phase space

volume.

The method described is used in the program as the generator of the following initial

distributions in phase space: KV, "water bag", parabolic, Gaussian. Definition and characteristics of

such distributions are given in Table 2. For Gaussian distribution the random number generator,

presented in Ref. [19] is used because the inverse function method, Eq. (5.19), is too slow in this

case.

The same technique is used for the simulation of a bunched beam distribution in longitudinal

phase space (z-z') utilizing an rms beam ellipse:

(4<z'2>
∋z

)z2 - 2 (4<z z'>
∋z

) z z' + (4<z2>
∋z

)z' 2 = ∋z .                            (5.22)



The results of simulation of different distributions are presented in Fig. 4 and in Table 3. The

error of representation of the rms beam emittances by the generator which was developed is 10-2 -

10-4. For each distribution, the error decreases approximately as 1/ N, which is typical for filling up

an area utilizing a random number generator.

6  CALCULATION OF ACCELERATING AND FOCUSING FIELDS

6.1. Electromagnetic field in RF gap

The field inside an RF gap is represented by the Fourier-Bessel series (see Fig. 5):

Ez(z,r,t) = - cos ( ωt + ϕo) Em Io(µmr) sin (2πmz
L

)∑
m=1

M

,

Er(z,r,t) = cos ( ωt + ϕo) Em 2πm
µmL

 I1(µmr) cos (2πmz
L

)∑
m=1

M

,

(6.1)

Bθ(z,r,t) = 1
c sin(ωt + ϕo) Em 2π

µmλ
 I1(µmr) sin (2πmz

L
)∑

m=1

M

,

µm = 2π
λ

 (mλ
L

)
2
 - 1 .

The electrostatic field of axial-symmetric lenses is described by the formulas (6.1), assuming ω =
0, ϕο=0, and µm = 2πm

L
. Two approaches to define the coefficients, Em, of the series (6.1), are used

in the program.

A. The field inside the gap is calculated separately utilizing an electrodynamics or

electrostatic code. Coefficients Em are derived from the aperture field distribution function

Ez(zi,r=a) at the equidistant points zi = L
2

 i
M

:

Ez(zi,a) = Em Io(µma) sin (πmi
M

)∑
m=1

M - 1

 .                             (6.2)

Multiplying equation (6.2) by sin (πm'i
M

) and applying a discrete Fourier analysis, the coefficients

are:

Em =  2
M·Io(µma)

 Ez(zi,a) sin ( πmi
M

)∑
i = 1

M - 1

 .                           (6.3)

B. The longitudinal aperture field component Ez(z, r = a)  is assumed to be a step function of z

(see Fig. 5):



Ez(a, z) = {  

0,                          0 ≤ z ≤ l
2

Eo,              l
2

  ≤ z ≤  l
2

 + g

0,      l
2

 + g  ≤ z ≤ l
2

 + g + d
2

 ,                          (6.4)

with anti-symmetric extension of the field at the next gap. The lengths of neighboring drift tubes

are supposed to be unequal to each other, l ≠ d. From the expansion, Eq. (6.1), the longitudinal

field component at the aperture radius is:

Ez(a,z) = Em Io(µma) sin (2πmz
L

)∑
m=1

M

 .                                        (6.5)

Multiplication the left and right sides of expression (6.5) by sin (2πm'z
L

) and integration over

period L = l +d+2g gives the following expression for Fourier-Bessel coefficients:

Em = 4 Eo
Io(µma)

 [
πm(l + g)

L
] (

g
L

) 
sin [

πm(l + g)
L

]

[
πm(l + g)

L
]

 
sin (

πmg
L

)

(
πmg

L
)

  .                     (6.6)

In Fig. 6 an example of the field distribution in a gap using method B is presented. The

number of Fourier harmonics in Eq. (6.1) depends on the process and typically is equal to M = 5 -

10.

6.2. Multipole lenses

Electric and magnetic fields of multipole lenses of the order n (n=2 for quadrupoles, n=3 for

sextupoles, n=4 for octupoles, etc.) are represented as a step function in the z-direction with field

components:

Er = - Eo ( r
Ro

)n-1cos(nθ + θo) ,                    Br = - Bo ( r
Ro

)n-1cos(nθ + θo) ,

(6.7)
Eθ = Eo ( r

Ro
)n-1sin(nθ + θo) ,                       Bθ = Bo ( r

Ro
)n-1sin(nθ + θo) ,

where Eo, Bo are pole tip fields, Ro is a pole radius and θo is a skew angle. Another option

available in the program is interpolation of the 3-dimensional grid function of the field components

B(xi, yj, zk), E(xi, yj, zk).



6.3. Axial-symmetric magnetostatic field

The magnetic field of solenoids and axial-symmetric permanent magnets is calculated as

Bz =  B(z) - r
2

4
 d

2B
dz2

 ,            Br  = - r
2

 (dB
dz

 - d
3B

dz3
  r

2

8 
) ,                          (6.8)

where the field at the axis B(z) is given at fixed points. Another option available in the program is

the interpolation of a 2-dimensional grid functions Bz(zi, rj), Br(zi, rj).

6.4. Bending Magnets

The magnetic field inside a bending magnet is described by the Taylor expansion up to the

terms of second order [20]:

Bx(x,y,z) = By (- n 
y
R

 + 2 ξ 
xy

R2
) ,                                                    (6.9)

By(x,y,z) = By [1 - n x
R

 + n
2

 
y2

R2
 + ξ 

(x2 - y2)

R2
] ,                             (6.10)

where By is the vertical component of magnetic field along the reference trajectory with radius of

curvature R, n is the field index and ξ is a nonlinear coefficient in the magnetic field expansion:

n = - [ R
By

 
∂By

∂x
 ]x=0,y=0 ,                 ξ = [ R2

2! By
 
∂2By

∂x2
 ]x=0,y=0 .                      (6.11)

 At the entrance and at the exit of the magnet, the slope of the particle trajectory is changed because

of the pole angle α according to the linear matrix transformation [20]:

x
 x'
y
 y'

 =   

1          0             0            0 
tgα
R

     1           0             0

0          0           1             0

0          0    - 
tg(α -ψ)

R
    1 

  

xo
 x'o
yo

 y'o

  .                              (6.12)

The correction angle ψ is given by  the expression [21]

ψ = K1 (
g
R

) (1+sin2α
cos α

) [ 1- K1 K2 (
g
R

) tgα] ,                                   (6.13)

where g is the gap of the magnet and coefficients K1, K2 are defined by pole geometry.



6.5. Radio Frequency Quadrupole Structure (RFQ)

The acceleration of ions in an RFQ linac is performed in a four-vane structure modulated in

the z-direction with the spatial period of L = βλ. The RFQ field in the i-th cell of the structure is

given by [18]:

Ex = UL
a  [χ xa  + (-1)i 4T I1(µ1r)  ( a

βλ
) (xr ) sin(µ1z)] cos (ωt+ϕo) ,                    (6.14)

Ey = UL
a  [- χ 

y
a  + (-1)i 4T I1(µ1r)  ( a

βλ
) (

y
r ) sin(µ1z)] cos (ωt+ϕo) ,                  (6.15)

Ez = 4 UL

βλ
 (-1)i T Io(µ1r) cos(µ1z) cos (ωt+ϕo) ,       µ1 = 2π

βλ
 ,                          (6.16)

where UL is the potential difference between the electrodes, a is the aperture of the channel, χ is
the focusing efficiency and T is the acceleration efficiency of the structure.

6.6 Accelerating waveguide

Analysis of particle acceleration in waveguide is performed in approximation that particles

interact with the fundamental mode of disk-loaded waveguide with field components:

Ez = Eo e-αz Io(2πr

βλγ
) cosϕ ,                                                      (6.17)

Er = - γEo e-αz I1(2πr

βλγ
) sinϕ ,                                                   (6.18)

Bθ = 
βγ
c  Eo e-αz I1(2πr

βλγ
) sinϕ  ,                                                (6.19)

where α is a waveguide attenuation, ϕ is a phase of particle in RF field

ϕ = 2π 
(z - zi)

βλ
 + ϕs ,                                                  (6.20)

ϕs is a synchronous phase and z is a coordinate of the front of RF wave:

z = zo + β (t')c dt'
o

t

 .                                                (6.21)



Beam loading effect is expressed as superposition of longitudinal, Wz, and transverse, Wt,

wake fields acting at every particle from other particles. Longitudinal wake fields are added to

longitudinal component of electric field, Ez, while transverse wake fields are added to transverse

components of Lorentz force, F⊥= E⊥ + [v x B]⊥:

Ez(x, y, z) = - q ∑
i =1

N

 Wz(z - zi),

Fx(x, y, z) = q ∑
i =1

N

 xi·Wt(z - zi),                                             (6.22)

Fy(x, y, z) = q ∑
i =1

N

 yi·Wt(z - zi),

where summation is performed over particles with zi > z. Wakefields are calculated separately and

tabulated inside program.

7  POISSON'S SOLVERS

The space charge potential of the beam Ub  for an instantaneous space charge density

distribution, ρ, is calculated from the solution of Poisson's equation in a moving system of

coordinates:

∆ Ub = - 
ρ
εo

 .                                                               (7.1)

Calculations are performed for beams propagating along straight line, neglecting curvature of the

beam. It is correct for the beam with transverse sizes much smaller than radius of curvature. For

calculations, three kinds of symmetry are used:

-   z - uniform beam (2-dimensional problem in x-y coordinates),

-   axial-symmetric bunches (2-dimensional problem in r-z coordinates),

- bunches with transverse quadrupole symmetry (3-dimensional problem in x-y-z

coordinates).

Utilizing symmetry in space charge density distributions results in a savings of the required

computer time and memory. Due to the quasi-periodic formation of bunches in RF accelerators, it

is possible to consider the motion of only one bunch. Space charge fields of neighboring bunches

are taken into account by imposing periodic boundary conditions for potential and space charge

density in the longitudinal direction.

For numerical calculations it is convenient to utilize dimensionless variables. Taking the

dimensionless potential as U = Ub q/(mc2) and the dimensionless coordinates as in Eq. (3.1),

Poisson's equation is written as
 ∆ U =  - Q,                                                     (7.2)



where Q is a dimensionless space charge density of the beam:

Q =  
ρ λ2

 q

εo m c2   
   .                                             (7.3)

In Poisson's solver three stages are distinguished:

- the distribution of space charge of macroparticles among grid nodes,

- the solution of Poisson's equation on a grid,

- the differentiation of the potential grid function to determine the components of electrostatic

field in the moving system Ex
' , Ey

' , Ez
' .

After that, a transformation into the laboratory system of coordinates is performed according to the

Lorentz transformation:

Ex = γ Ex
' ,       Ey = γ Ey

' ,          Ez = Ez
'  .                                        (7.4)

Finally, the transverse components of electric field are multiplied by the factor of γ -2 to include the

effect of the self magnetic field produced by the beam:

Ex - vz By = Ex

γ2
,          Ey + vz Bx = 

Ey

γ2
 .                                       (7.5)

7.1. Numerical errors and conservation law

The important aspect of numerical simulations is the balance between accuracy and the

required resources of the computer to get an efficient solution for the problem. Control of accuracy

is required because the solution itself is unknown in advance. To attain good accuracy, the number

of macroparticles per cell has to be large enough, and the mesh size has to be much smaller than

the beam size. But even if these conditions are fulfilled, the following errors are unavoidable: (i)

errors caused by the discrete charge representation used in the macroparticle method, (ii) errors

caused by the approximation formulas used in place of the exact derivatives of the Poisson's

equation; (iii) errors of differentiation of the potential function to obtain values of electric field

components, and (iv) computer round-off errors.

For Poisson's equation the Gauss theorem is valid:

E dS
S

 =   Q dυ
V

 .                                       (7.6)

To control errors of calculations, the following parameter can be used



ϑ = 1 -   

E dS
S

Q dυ
υ

   ,                                       (7.7)

which has a meaning of error of the Gauss theorem. It is clear, that in exact calculations parameter

ϑ = 0. In Eq. (7.7) the denominator is equal to the total charge of the beam, which is known exactly

and does not depend on the numerical method. The numerator in Eq. (7.7) depends on the solution

of the Poisson's equation and includes all of the errors of space charge calculations. Control of

parameter ϑ, Eq. (7.7), gives an integral numerical error. Since the Gauss theorem does not provide

information about the fluctuation of the solution in details, an extra criteria like averaged deviation

from the exact solution is required. Below we consider numerical technique and typical value of the

error in the numerical solution of Poisson's equation in different coordinate systems.

In particle-in-cell simulation the errors in space charge forces are of random character. It

results in an unphysical increase of effective beam emittance, even when a symplectic integrator is

used. To establish a quantitative measure of this effect on beam dynamics, consider the linear

oscillator x + ω2x = 0, affected by random errors in space charge field calculations. The matrix for
the particle transformation in coordinates (x, p = 1

ω
 dx
dt

) at every elementary step, δt, is given by

xn+1

pn+1
 = cos θ        sin θ

- sin θ          cos θ
  

xn 

pn + ∆pn

 ,                               (7.8)

where θ = ω δt is a tune shift of particle oscillation per integration step and ∆pn is a random kick

due to error δEn in space charge field:

∆pn = 
q δEn δt

m ω
  .                                                  (7.9)

For a circular beam of radius R, the error of Gauss theorem, ϑ, Eq. (7.7), is

ϑ = 
δE(R)
E(R)

  ,                                                   (7.10)

where E(R) is an exact value of the space charge field at the beam boundary:

E(R) = I
2πεoβzcR

 ,                                              (7.11)



and δE(R) is the deviation of space charge field from the value of E(R). The solution of matrix

equation (7.8) after n steps of integration is [22]

xn = R cos (nθ + Ψ)  + ∆pi sin (n-i) θ∑
i=0

n-1

pn = - R sin (nθ+ Ψ)   + ∆pi cos (n-i) θ∑
i=0

n-1
,                               (7.12)

where Ψ is the initial phase of oscillations. The root mean square values of the particle positions in

phase space are

<xn2> = 1
2π

 xn2 dΨ
-π

π

,               <pn2> = 1
2π

 pn2 dΨ
-π

π

  .                     (7.13)

Random kicks ∆pi are not correlated, therefore

∆pk sin (n-k)θ  ∆pi sin (n-i)θ∑
i=0

n-1

 =   { 0,                           k ≠ i

∆p2 sin2(n-k)θ ,    k = i
 ,             (7.14)

where ∆p is the amplitude of a random kick. After n steps, the rms values are

<xn2> = R
2

2
 [1 + (

∆p
R

)
2

n],        <pn2> = R
2

2
 [1 + (

∆p
R

)
2

n] .                      (7.15)

Therefore, the normalized beam emittance after n steps, εn = 4 <xn2> < pn2> , is related to initial

emittance, εo, as

εn
εo

 = 1 + (
∆p
R

)
2

n .                                                    (7.16)

Let us rewrite the value of kick, Eq.(7.9), as

∆p =  
q

mω
 (δE

E
) (δt

T
) E T  ,                                            (7.17)

where T = 2π/ω is a period of the oscillations. Also take into account that the natural beam

emittance is

∋ = R
2 ω

βzc
 .                                                     (7.18)



Therefore, the amplitude of the random kick is

∆p =  2πR (δE
E

) (δt
T

) 2I

Icβz
3

 R
2 

 ∋2
 ,                                        (7.19)

where Ic =  4πεοmoc3/q = A/Z.3.13.107 amp is a characteristic value of the beam current. The

following combination of parameters

b = 2I

Icβz
3

 R
2 

 ∋2
 ,                                               (7.20)

is the ratio of beam brightness, I / ∋2
, to the normalization value, Ic / R2, and can be called the

dimensionless beam brightness. Space charge dominated beam transport is performed when b >>1

while the emittance dominated regime is characterized by b <<1. Finally, beam emittance growth

due to random variations in space charge field calculations is

εn
εo

 = 1 + (2π b τ δE
E

)
2
n ,                                                (7.21)

where τ = δt / T  is the dimensionless integration step. From Eq. (7.21) it follows that emittance

growth is the most essential for high brightness beams. In Fig. 7a an example of beam emittance

growth due to errors in space charge field calculations is presented. After 9000 integration steps

emittance growth for the KV beam with A/Z = 1, I = 4.16 amp, R = 1 mm, βz = 0.015648,

∋ = 6.39 π cm mrad, b = 17, δE(R)/ E(R) = 0.01 is εn / εo = 1.025. Beam was represented by 3·104

particles on the grid Nx x Ny = 512 x 512. Analytical estimation of beam emittance growth

utilizing formula (7.21) gives εn / εo = 1.1. Without space charge forces the effective beam

emittance is conserved (see Fig. 7b).

Let us note that rms beam emittance growth, presented in Fig. 7a and described by Eq. (7.21),

does not violate Liouville's theorem, because it is growth of the effective phase space area

occupied by the beam. Both the numerical integrator, Eq. (3.14) and matrix, Eq.(7.8), are

symplectic, i.e. conserving microscopic phase space of the beam. Effective beam emittance can be

increased while microscopic emittance is conserved (see for example, Ref. [23], Fig. 4.8, page

198). Fig. 8 illustrates evolution of phase space area occupied by the beam. Without space charge

forces beam boundary in phase space remains unchanged. With space charge forces beam

boundary is distorted  due to random fluctuations in space charge field, which results in increase of

effective phase space area. Meanwhile, microscopic phase space area and number of particles

inside the area are conserved.



7.2. Particle weighting on a multidimensional grid

The region occupied by ensemble of particles is divided into uniform rectangular meshes of

dimension Nx·Ny, Nz·Nr or Nx·Ny·Nz (see Fig. 9). Charge of every particle with coordinates (xn,

yn), (rn, zn) or (xn, yn, zn) is distributed among the nearest four (2D problem) or eight (3D problem)

nodes. Every node receives contribution from charge of an individual particle utilizing area

weighting method (see Figs. 10, 11). The charge density at node points, Qi, j, Qk, j, Qi, j, k is a

combination of contributions from all particles which are inside the given elementary mesh:

Qi,j = Qxy (1- 
 xn - xi 

hx
)  (1- 

 yn - yj 
hy

)∑
n=1

N

 ,     x-y problem,                             (7.22)

Qk,j = Qrz (1- 
 rn - rj 

hr
)  (1- 

 zn - zk 
hz

)∑
n=1

N

 ,      r-z problem,                               (7.23)

Qi,j,k = Qxyz (1- 
 xn - xi 

hx
)  (1- 

 yn - yj 
hy

) (1- 
 zn - zk 

hz
) ∑

n=1

N

 ,  x-y-z problem,   (7.24)

where Qxy, Qrz, Qxyz are dimensionless space charge density of individual particle and hx, hy, hr,

hz are mesh sizes.

Beam of transported particles has a current of I = Ql βc, where Ql  is a beam charge per unit

length. In grid weighting method, Eq. (7.22), one particle occupies area of hx·hy. Space charge

density of individual particle is Ql /(N hx hy). Dimensionless space charge density of individual

particle in Eq. (7.22) is given by

Qxy = 
Ql

N hx hy
  

 λ2
 q

εo m c2   
  =  4 π

βN
 I
Ic

 λ2

hx hy
 .                                   (7.25)

Current of bunched beam is I = Qbunch / T , where Qbunch is a charge of one bunch and T = λ/c is a

RF period. Therefore, space charge densities of individual particle in Eqs. (7.23), (7.24) are

Qrz = 1
N

 
Qbunch

2πr hr hz
  

 λ2
 q

εo mc2   
 = 2

N
 I
Ic

 λ3

rj hr hz
 ,                                (7.26)

Qxyz = 1
N

 
Qbunch

hx hy hz
  

 λ2
 q

εo mc2   
 = 4π

N
 I
Ic

 λ3

hxhyhz
 ,                             (7.27)

where rj = (j-1) hr is a radius of j-th node.

Utilization of grid and distribution of charge of every particle among grid nodes is equivalent

to charged clouds model instead of point charges model. It results in smoothing of particle

distribution and suppression of particle-particle collisions in the model.



7.3. Space charge solver in 2D Cartesian coordinates

Space charge field of a z-uniform beam is calculated from the Poisson's equation in two-

dimensional Cartesian coordinates

∂2U

∂x2
 + ∂

2U

∂y2
   = - Q (x,y),        U(Γ) = 0 ,                              (7.28)

with Dirichlet boundary condition for potential U at the surface Γ  of an infinite pipe with

rectangular cross section of a x b (see Fig. 9a). Unknown potential of the beam and space charge

density at grid points are represented as Fourier series:

Uij = ∑
n=1

Nx-1

∑
m=1

Ny-1

 Unm sin( πni
Nx

 ) sin( 
πmj
Ny

),                                   (7.29)

Qij = ∑
n=1

Nx-1

∑
m=1

Ny-1

 Qnm sin( πni
Nx

 ) sin( 
πmj
Ny

) .                                  (7.30)

As a first step, Fourier coefficients in space charge density expansion (7.30) are calculated:

 Qnm = 4
Nx Ny

 ∑
i=1

Nx-1

∑
j=1

Ny-1

 Qij sin( πni
Nx

 ) sin( 
πmj
Ny

) .                   (7.31)

Calculations are performed utilizing standard routines for Fast Fourier Transformation REALFT,

FOUR1, SINFT [24]. Substitution of expansions (7.29), (7.30) into Poisson's equation (7.28)

provides algebraic relationship between Fourier coefficients of space charge, Qnm, and potential,

Unm:

Unm   = 
Qnm

( πn
a )

2
+ (πm

b
)
2

  .                                              (7.32)

Calculation of Fourier coefficients, Eq. (7.32), is a second step in solution of Poisson's equation. At

the third step the space charge potential is calculated utilizing expansion (7.29). Components of

electrostatic field are found by differentiation of potential grid function:

Ex =  -  
Ui+1,j - Ui-1,j

2hx
 ,                                          (7.33)

Ey = -  
Ui,j+1 - Ui,j-1

2hy
 .                                          (7.34)



In Table 4 results of test problem for different values of grid points, Ng = Nx ·x Ny, are

presented. Initial values of space charge density were generated randomly in two directions within

the interval of (0, 1). The value of error of the Gauss theorem, ϑ, was averaged after 104 different

realizations of random initial data. As seen, error has a value of 10-2 ...10-4 and drops inversely

proportional to the number of grid points, ϑ ~ Ng
-1.

7.4. Space charge solver in 2D cylindrical coordinates

Space charge field of the train of axial-symmetric bunches is calculated from the Poisson's

equation in two-dimensional cylindrical coordinates:

1
r  

∂
∂r

 (r
∂U
∂r

) + 
∂2U

∂z2
  = - Q (r,z)  ,                                            (7.35)

with  Dirichlet boundary conditions at the surface of the tube of radius a, Neumann condition at the

axis and periodic condition in z-direction (see Fig. 9b):

U (a,z) = 0  ,      
∂U 
∂r

 (0, z)= 0  ,          U (r,z) = U (r,z + L)  ,     L = βλ  .                 (7.36)

 Poisson's equation (7.35) is substituted by finite-difference analog:

Uk, j+1(1 + 1
2(j-1)

) - 2Uk, j(1 + hr
2

hz
2
 ) + Uk, j-1(1 -  1

2(j-1)
)

+ Uk+1, j (
hr
hz

)2  +  Uk-1, j (
hr
hz

)2 = - Qk,j hr
2 .                                            (7.37)

The first step of solution of Poisson's equation is Fourier expansion of unknown potential and

space charge density in z-direction

Uk,j = Um(j) exp( - i 
2π (k-1) (m-1)

Nz
)∑

m=1

Nz

  ,                               (7.38)

Qk,j = Qm(j) exp( - i 
2π (k-1) (m-1)

Nz
)∑

m=1

Nz

 .                         (7.39)

Coefficients of Fourier expansion are defined by inverse Fourier transform:

Um(j) = 1
Nz

 Ukj exp (i 
2π (k-1) (m-1)

Nz
)∑

k=1

Nz
 ,                              (7.40)



Qm(j) = 1
Nz

 Qkj exp (i 
2π (k-1) (m-1)

Nz
)∑

k=1

Nz
 .                              (7.41)

Substitution of expansion (7.40), (7.41) into finite-difference analog of the Poisson's equation

(7.37) results in a three-diagonal matrix equation:

αj Um(j+1) + βj Um(j) + γj Um(j-1) = wj,              m =1,....Nz,      (7.42)

wj = - Qm (j) hr
2 ,                                                               (7.43)

with matrix coefficients:

αj = 1 + 1
2(j-1)

 ,         βj = - 2[1+2(hr
hz

 sinπm
Nz

)
2
],            γj = 1 - 1

2(j-1)
  .                 (7.44)

Matrix equation (7.42) is solved utilizing the run method [14]. Solution is represented in a

recurrent form, when unknown value of Um(j+1) is defined via known value of Um(j)  as:

Um(j+1) = Um(j) Xj + Yj ,                                          (7.45)

where Xj, Yj, j =1, .. Nr - 1 are auxiliary vectors. Substitution of Eq.(7.45) into Eq. (7.42) provides

the following recurrent expressions for Xj, Yj :

Xj-1 = - 
γj

αj Xj + βj

 ,                      Yj-1 =  
wj  - αj Yj

αj Xj + βj

 .                              (7.46)

Initial values of XNr -1, YNr -1 are defined by Dirichlet boundary condition at the surface of the

tube XNr - 1 = 0, YNr -1 = Um(Nr). Then recurrent expressions (7.46) are used to determine the values
of Xj, Yj, from the top of the grid, j = Nr - 1, to the bottom, j = 1, for every value of m (straight

run). Neumann boundary condition at the axis is used to define the first value of potential

coefficient

Um(2) - Um(1)
hr

 = 0 ,            Um(1) = Y1
1- X1

 .                                         (7.47)

Other coefficients Um(j), j = 1,.... Nr - 2 are found from recurrent expression, Eq. (7.45) (inverse

run). It gives the solution of three-diagonal matrix equation, Eq. (7.42). After that, the potential at

grid points is calculated using Fourier series (7.38). Components of electrostatic field are

calculated via differentiation of potential function (7.33), (7.34).



In Table 5 results of numerical solution of Poisson's equation for axial-symmetric bunch with

Gaussian distribution

ρ = 1
(2π)3/2 σ2 σz

  exp (- 
x2 + y2

2σ2
 - z2

2σz
2
) ,                   (7.48)

with ratio of semi-axes σ /σz =1/4 are presented. Potential and components of electrostatic field of

the Gaussian bunch in free space are given by [25]

Ub = 
d q

4π3/2εo(2σ2+q) (2σz
2+q)

 exp[- 
x2+y2

(2σ2+q)
 - z2

(2σz
2+q)

]

o

∞

 ,            (7.49)

Ex = - x
 d q

2π3/2εo(2σ2+q)2 (2σz
2+q)

 exp[- 
x2+y2

(2σ2+q)
 - z2

(2σz
2+q)

]

o

∞

 ,        (7.50)

analogously for Ey, Ez. In every point, numerical solution, Enumer
(n)

 (r,z) , is different from the exact

one, Eanalyt
(n)

 (r,z) . To exclude the effect of boundary conditions, the aperture size was chosen to be

a=5σ and  the period  was selected as L = 10  σz. The accumulated error among all particles,

normalized at the maximum value of space charge field, Emax, gives an averaged error (see Table

5):

δ =  1
N

 (
Enumer

(n)
 (r,z)  - Eanalyt

(n)
 (r,z)

Emax

)∑
n=1

N
 .                        (7.51)

In the considered case the error, δ, is within the interval of 10-2 - 10-3.

7.5. Space charge solver in 3D Cartesian coordinates

Space charge field of the bunched beam with 3D quadrupole symmetry is calculated from

solution of the Poisson's equation in three-dimensional Cartesian coordinates (see Fig. 9c):

∂2U

∂x2
 + ∂

2U

∂y2
 + ∂

2U

∂z2
  = - Q (x, y, z)  ,                                   (7.52)

with Dirichlet boundary condition for potential U at the surface of a rectangular pipe, periodic

conditions in longitudinal direction and conditions for quadrupole symmetry:



U (0, y, z) = U (a, y, z) =  U (x, 0, z) = U (x, b, z) = 0,

U (r, θ, z) =  U (r, -θ, z),
(7.53)

U (r, θ,z) =  U (r, θ + π, z)  ,

U (x, y, z) = U (x, y,  z+L) .

The problem is solved in the half of domain 0 ≤ x ≤ a/2. It saves computer memory and CPU time,

but restricts our study by on-axis beams with quadrupole-symmetric cross section. The method of

solution of Poisson's equation is based on 3D Fast Fourier Transform [26].

Unknown potential and space charge density functions are represented as Fourier series:

Uijk = 1
2

 ∑
n=1

Nx-1

∑
m=1

Ny-1

Umno
(c)  sin (πni

Nx
) sin (

πmj
Ny

) +

∑
n=1

Nx-1

∑
m=1

Ny-1

∑
l=1

1
2

Nz-1

[Umnl
(c)

 sin (πni
Nx

) sin (
πmj
Ny

) cos (2πkl
Nz

) + Umnl
(s)

 sin (πni
Nx

) sin (
πmj
Ny

) sin (2πkl
Nz

)]

+ 
(-1)k

2
 ∑
n=1

Nx-1

∑
m=1

Ny-1

U
mnNz

2

(c)
 sin (πni

Nx
) sin (

πmj
Ny

) ,                                                            (7.54)

Qijk = 1
2

 ∑
n=1

Nx-1

∑
m=1

Ny-1

Qmno
(c)  sin (πni

Nx
) sin (

πmj
Ny

) +

∑
n=1

Nx-1

∑
m=1

Ny-1

∑
l=1

1
2

Nz-1

[Qmnl
(c)

 sin (πni
Nx

) sin (
πmj
Ny

) cos (2πkl
Nz

) + Qmnl
(s)

 sin (πni
Nx

) sin (
πmj
Ny

) sin (2πkl
Nz

)]

+ 
(-1)k

2
 ∑
n=1

Nx-1

∑
m=1

Ny-1

Q
mnNz

2

(c)
 sin (πni

Nx
) sin (

πmj
Ny

) .                                           (7.55)

Coefficients of expansion of space charge density are defined by inverse Fourier transformation:

Qmnl
(c)  = 8

NxNyNz
 ∑

i=1

Nx-1

∑
j=1

Ny-1

∑
k=0

Nz-1

Qijk sin (πni
Nx

) sin (
πmj
Ny

) cos(2πkl
Nz

),                (7.56)



Qmnl
(s)  = 8

NxNyNz
 ∑

i=1

Nx-1

∑
j=1

Ny-1

∑
k=1

Nz-1

Qijk sin (πni
Nx

) sin (
πmj
Ny

) sin (2πkl
Nz

) ,               (7.57)

with analogous expressions for potential expansion. After substitution of Fourier expansion (7.54),

(7.55) into Poisson's equation (7.52), coefficients of space charge and potential expansion are

connected by algebraic relationship:

Umnl
(c,s)

  =  
Qmnl

(c,s)

( πn
a )

2
+ (πm

b
)
2
+ (2πl

L
)
2

  .                                 (7.58)

After calculation of coefficients, Eq.(7.58), the potential is found as Fourier series (7.54).

Electrostatic field at the point of every macroparticle is found via numerical differentiation of

polynomial [26]:
E = - grad U (x, y, z) ,                                  (7.59)

U (x, y, z) = a1x + a2y + a3z + a4x2 + a5y2 + a6z2+  a7xy + a8xz + a9yz ,      (7.60)

x = x - xi
hx

 ,      y = 
y - yj

hy
 ,       z = z - zk

hz
 .                             (7.61)

The polynomial, Eq. (7.60), describes potential in the vicinity of each macroparticle. It is a

continuous function of coordinates, which provides “local smoothing” of discrete potential

function, Uikj, defined at grid nodes. Differentiation of Eq. (7.60) also gives continuous function of

coordinates, which is more smoothed than piece-linear function obtained from commonly used

finite-difference method. Differentiation with local smoothing is especially usefull for 3D space

charge problem with limited number of macroparticles and grid nodes.

To provide differentiation of potential, the 27 nearest nodes to each particle are selected with

the closest node (i, j, k). Deviation of the polynomial, Eq. (7.60), from grid values of potential, is

minimized in selected 27 nodes:

∑
n=i-1

i+1

∑
m=j-1

j+1

∑
l=k-1

k+1

 [U (xn, ym, zl)  - Un, m, l ]
2 = min                      (7.62)

From Eq. (7.62), the coefficients ai, i=1,..9 are [26]:

a1 = 
∂U
∂x

 (0, 0, 0)  = 1
9

 ∑
m=j-1

j+1

∑
l=k-1

k+1
1
2

 (Ui+1, m, l - Ui-1, m, l) ,                                              (7.63a)



a2 = 
∂U
∂y

 (0, 0, 0)  = 1
9

 ∑
n=i-1

i+1

∑
l=k-1

k+1
1
2

 (Un, j+1, l - Un, j-1, l) ,                                               (7.63b)

a3 = 
∂U
∂z

 (0, 0, 0)  = 1
9

 ∑
n=i-1

i+1

∑
m=j-1

j+1
1
2

 (Un, m, k+1  - Un, m, k-1 ) ,                                           (7.63c)

2a4 = 
∂2U

∂x2
 (0, 0, 0)  = 1

9
 ∑
m=j-1

j+1

∑
l=k-1

k+1

(Ui+1, m, l - 2Ui, m, l +Ui-1, m, l),                              (7.63d)

2a5 = 
∂2U

∂y2
 (0, 0, 0)  = 1

9
 ∑
n=i-1

i+1

∑
l=k-1

k+1

(Un, j+1, l - 2Un, j, l + Un, j-1, l) ,                                (7.63e)

2a6 = 
∂2U

∂z2
 (0, 0, 0)  = 1

9
 ∑
n=i-1

i+1

∑
m=j-1

j+1

(Un, m, k+1  - 2Un, m, k  + Un, m, k-1 ) ,                          (7.63f)

a7 = 
∂2U
∂x∂y

 (0, 0, 0)  = 1
3

 ∑
l=k-1

k+1
1
4

 (Ui+1, j+1, l - Ui+1, j-1, l - Ui-1, j+1, l + Ui-1, j-1, l) ,           (7.63g)

a8 = 
∂2U
∂x∂z

 (0, 0, 0)  = 1
3

 ∑
m=j-1

j+1
1
4

 (Ui+1, m, k+1  - Ui+1, m, k-1  - Ui-1, m, k+1  + Ui-1, m, k-1 ) ,   (7.63h)

a9 = 
∂2U
∂y∂z

 (0, 0, 0)  = 1
3

 ∑
n=i-1

j+1
1
4

 (Un, j+1, k+1  - Un, j+1, k-1  - Un, j-1, k+1  + Un, j-1, k-1 ) .    (7.63i)

Components of electric field are:

Ex = - (a1 + 2a4x + a7y + a8z) 1
hx

 ,                                                       (7.64a)

Ey = - (a2 + 2a5y + a7x + a9z) 1
hy

 ,                                                       (7.64b)

Ez = - (a3 + 2a6z + a8x + a9y) 1
hz

 .                                                        (7.64c)

In Table 6 results of space charge field calculation of Gaussian bunch with distribution, Eq.

(7.48), are presented. Error δ, Eq. (7.51), is within the interval of (1.5 -5)· 10-2. In contrast with

Table 5, errors are not very sensitive to grid size and number of particles. It is a result of smoothing



of potential grid function utilizing polynomial, Eq. (7.60). Computing time, required for 3D space

charge simulations on Alpha Server 2100 5/250 computer (250 MHz CPU) is

t = (1.3· Ng + 3·N)·10-5 sec,                                     (7.65)

where Ng = 1
2

 Nx·Ny·Nz is a number of grid points. Required computing time is a linear function

of number of grid points, Ng, and number of macroparticles, N, which is typical for fast methods of

space charge calculations [11]. The same dependencies are valid for 2D Poisson's solvers in

Cartesian and cylindrical coordinates.

7.6 Space charge solver for 2D relativistic beam with large energy spread

Considered Poisson's solvers are used for a beam with small energy spread ∆γ/γ<<1. In many

applications, including beam bunching in klystrons and RF photo-injectors, it is required to

simulate dynamics of a relativistic beam with large energy spread ∆γ/γ ∼1. This is achieved via

simulation of particle-particle interaction  utilizing Green function method.

Field created by a relativistic ring (see Fig. 12) with charge density ρ, length h, internal radius

r
1
, external radius r

2
, propagating in an ideally conducted pipe of radius a with longitudinal velocity

vs and energy γs is given by [27] :

Ez = 
ρ

γs εo
 ∑
n=1

N Jo(νn
r
a)

νn
2 J1

2(νn)
 f(r1, r2)·{F1·sgn(z -zs),  z -zs ≥ h/2

F2·sgn(z -zs),  z -zs < h/2
 ,                (7.66)

Er = 
ρ
εo

 ∑
n=1

N J1(νn
r
a)

νn
2 J1

2(νn)
 f(r1, r2)·{F1,  z -zs ≥ h/2

F3,  z -zs < h/2
,                                     (7.77)

Bθ = vs

c2
 Er ,                                                                                              (7.78)

where

F1 = [exp(νnγs
h
2a

) - exp(-νnγs
h
2a

)] exp(-νnγs
 z -zs

a ) ,                                          (7.79)

F2 = [exp(νnγs
 z -zs

a ) - exp(-νnγs
 z -zs

a )]·exp(-νnγs
h
2a

) ,                                    (7.80)

F3 = 2 - [exp(-νnγs
 z -zs

a ) + exp(νnγs
 z -zs

a )]·exp(-νnγs
h
2a

) ,                              (7.81)

f(r1, r2) = r2·J1(νn
r2
a ) - r1·J1(νn

r1
a ) .                                                                   (7.82)



Space charge field acting at every particle is calculated as superposition of fields created by all

other particles. This method is much slower than Poisson's solvers described above, because it

requires number of operations proportional to square of number of particles.

8  CHOICE OF MODELING PARAMETERS AND TEST PROBLEMS  FOR CODE

VALIDATION

Particle-in-cell models are characterized by large number of parameters, which are defined

by compromise between required accuracy and required computing time and memory. Spatial and

time discretization of the self-consistent problem affects stability of numerical solutions.

Combination of model parameters (integration step τ, number of macroparticles N and number of

grid points Ng.) has to provide the most comprehensive and accurate description of the modeling

system using the optimal resources of computer.

For adequate simulations, the size of macroparticle, δr, has to be larger than average distance

between particles ∆r and smaller than characteristic distance, D, where variation of space charge

density is significant. In present model, particle sizes are equal to mesh sizes hx, hy, hz, hr. If

particle size is too large, δr ≈ D, charge distribution in model becomes too smooth. It results in

loosing of effects connected with specific space charge distribution. On the contrary, with δr < ∆r,

unphysical variation of space charge density appears and particle-particle collisions are

overestimated in the model.

Good tests for correct choice of model parameters give calculation of processes, which have

analytical solutions. It is a necessary stage of the project to check the program and to verify the

optimal choice of model parameters.

8.1. Drift of uniform beam in free space

Spread of round uniform beam  in free space is described by KV equation for beam envelope R

[18]:

d2R
dz2

  - ∋2

 R3
 -  2 I

R (βγ)
3
Ic

  =  0 .                                           (8.1)

For space charge dominated beam with negligible emittance, ∋ ≈ 0 and Ro
'  = 0, Eq. (8.1) has an

approximate solution:

R
Ro

 = 1 + 0.25 Z2 - 0.017 Z3,            Z = z
Ro

 4 I 

Ic β
3
 γ3

 ,                   (8.2)

where Ro is an initial radius of the beam. In Fig. 13 results of evolution of envelope of the 150

keV, 1 A proton beam are presented. Deviation of numerically calculated beam envelope from



solution of Eq. (8.1) is less than 10-4. Simulation utilizing 104 particles on the grid Nx x Ny = 256 x

256 with 360 integration steps takes 167 sec (here and below the CPU time is given for Alpha

Server 2100 5/250, 250 MHz CPU).

8.2 Drift of Gaussian beam in free space

If beam is not uniform, its density profile as well as beam sizes are changed in drift space.

Evolution of Gaussian beam with zero emittance in drift space under self non-linear space charge

forces is described by  the expression [28]:

ρ (r) = 
ρo exp (- 2 ξo

2
)

ao + a1F + a2F2  + a3F3 + a4F4 + a5F5 + a6F6
 ,                             (8.3)

where the following notations are used:

ξo = ro
Ro

,  
 
F = 

1 - exp (-2ξo
2)

ξo
2

, 
 
η = 4 I

Ic β
3
 γ3

 z2 
Ro

2 
  ,                    (8.4a)

r = ro (1 + 1
4

 η F2 - 0.017 η3/2 F3)  ,                                                (8.4b)

ao = 1 + η exp (-2ξo
2
),  a1 = - 0.102 η3/2 exp (-2ξo

2
) ,                       (8.4c)

a2 = 1
4

 η2 exp (-2ξo
2
),                                                                         (8.4d)

a3 = 0.017 η3/2 - 0.0425 η5/2 exp (-2ξo
2
) ,                                      (8.4e)

a4 = 1.734·1 0-3 η3exp(-2ξo
2
) - 1

16
 η2 ,                                             (8.4f)

a5 = 0.01275 η5/2,    a6 = - 5.78 ·1 0 - 4  η3 .                                    (8.4g)

Formula (8.3) predicts uniforming of the Gaussian beam at the distance where parameter

η = 3.8. In Fig. 14 results of evolution of 35 MeV, 4.7 A, D+ beam with initial Gaussian

distribution and initial radius of Ro = 1.3 cm are presented. Simulation with 104 particles on the

grid 256 x 256 with 1200 integration steps takes 7.5 min. Numerical results indicate good

agreement with theory.

8.3. Beam equilibrium with space charge

Beam distribution function f (x, y, px, py) is conserved in time-independent focusing field, if

beam is in equilibrium with external field. Stationary self-consistent beam distribution function is a

solution of Vlasov-Poisson's equations:



 

1
mγ

 (
∂f
∂x

 px+ 
∂f
∂y

py) - q(
∂f

∂px
 
∂V
∂x

 + 
∂f

∂py
 
∂V
∂y

) = 0 ,  

1
r
 
∂
∂r

 (r 
∂Ub
∂r

) = - 
q
εo

  
-∞

∞

f (x,px,y,py) dpx dpy
-∞

∞

 ,

                              (8.5)

where V = Ub + γ - 2Uext is a total potential of the structure and Uext is an external focusing

potential. General treatment of the problem (8.5) for arbitrary distribution function was given in

[29]. In Table 7 self-consistent solutions for different beam distributions are presented.

Fig. 15 illustrates equilibrium of a 150 keV, 0.5 Amp, 0.07 π cm mrad proton beam with

distribution function

f = foexp(- 2 
  px2+py2

(ε/R)2
 - 

(x2+y2)2

R4
)  ,                                                                    (8.6)

which propagates  in focusing field

 E(r) = - mc2

q Rγ
 [( ε

R
)
2
( r3

R3
) + 2I

Ic βγ
 (Rr ) erf ( r2

R2
)].                                  (8.7)

The ratio of space-charge-depressed tune shift to undepressed one is ν/νo = 0.05. Simulation

confirms that beam distribution remains constant, while particles perform nonlinear oscillations

within the beam. Conservation of beam distribution  indicates equilibrium condition. Simulations

with 3·104 particles on the grid Nx x Ny =  512 x 512 with 6500 integration steps takes 163 min.

8.4. Drift of  3D uniformly charged ellipsoid in free space

Up to now we have considered 2D tests for transverse space charge forces. Fully 3D test is

available utilizing dynamics of uniformly populated ellipsoid. It is well known that there is no

distribution function in six-dimensional phase space, which leads to a solution of the self-consistent

problem as a uniformly charged 3D ellipsoid in real space. However, self-consistent solution is

valid for a 3D time-dependent ellipsoid with zero phase-space volume [30]. In a free space,

evolution of ellipsoid boundaries, Rx, Ry, Rz, is described by 3D equations:

d2Rx

dz2
 = 3 ro 

Qe

qβz
 2

 
Mx(Rx, Ry, Rz

Ry Rz
,                                                 (8.8)

d2Ry

dz2
 = 3 ro 

Qe

qβz
 2

 
My(Rx, Ry, Rz

Rx Rz
,                                                  (8.9)

d2Rz

dz2
 = 3 ro 

Qe

qβz
 2

 
Mz(Rx, Ry, Rz

Rx Ry
.                                                (8.10)



where Qe is the charge of ellipsoid, ro is  the classical radius of particles, and Mx, My, Mz are defined

by the expressions:

Mx(Rx, Ry, Rz) = 1
2

   
RxRyRz ds

(Rx
2 + s) (Rx

2 + s)(Ry
2 + s)(Rz

2 + s)
o

∞

 ,                        (8.11) 

My(Rx, Ry, Rz) = 1
2

  
RxRyRz ds

(Ry
2 + s) (Rx

2 + s)(Ry
2 + s)(Rz

2 + s)
o

∞

 ,                        (8.12) 

Mz(Rx, Ry, Rz) = 1
2

  
RxRyRz ds

(Rz
2 + s) (Rx

2 + s)(Ry
2 + s)(Rz

2 + s)
o

∞

 .                        (8.13) 

In Figs. 16, 17 numerical results of drift of proton ellipsoid with Qe = 3 nK, initial values of

semi-axes Rx = 2 cm, Ry = 1 cm, Rz = 4 cm, and longitudinal velocity of βz = 0.01 are presented.

Calculations utilizing 2·104 particles on the grid 1
2

 Nx x Ny x Nz = 64 x 128 x 512 with 200

integration steps took 158 min. Difference in analytical and numerical values of ellipsoid sizes are

within the limit of 3%.

8.5. Beam bunching

One-dimensional problem of beam bunching with space charge has an approximate

analytical solution [31]. Consider non relativistic beam of particles with energy qUo and radius R

propagating in a tube of radius a. Injected beam passes through the gap of length d with applied

voltage of U(t) = U1·sinωt. Particle bunching in drift space is characterized by the value of first

harmonic of induced current I1 as a function of bunching parameter X

I1
I

 = 2 J1 (X) ,             X = ( U1 M1
2 Uo

) (ωo z
v ) [ 

sin (
ωq z

v )

(
ωq z

v )
 ] ,               (8.22)

where J1 (X) is the Bessel function, M1 is the coupling coefficient of the beam with modulation

gap:

M1 = 
sin (θ/2)

θ/2
 ,                                                      (8.23)

θ = ωd/v is the transit time angle through the gap, ωq = Fp  ωp is the reduced plasma frequency of

the beam, ωp = 2 (c/R) I / (βIc) is the plasma frequency for an unbounded beam and Fp is the

form factor of reduction of plasma frequency due to finite radius of the beam and tube:



Fp = 2.56 
J1

2 (2.4 Ra )

1 + 5.76
(ωR /v)2

 .                                               (8.24)

Numerical value of the first harmonic of bunched beam is calculated as follow:

I1(z)
I

 = 2
N

 [ cos ωtn(z)∑
n=1

N

]
2

 + [ sin ωtn(z)∑
n=1

N

]
2

,                        (8.25)

where tn(z) is the time when the n-th particle reaches the point z. Numerical example of bunching

of 150 keV, 1 A, R/a = 0.8 proton beam is given in Fig. 18. Simulations with 5·103 particles on the

Nr x Nz = 256 x 256 grid with 4000 steps takes 13 min.

9  EXAMPLES OF BEAM DYNAMICS  SIMULATION WITH SPACE CHARGE

9.1. Low energy beam transport

Beam quality in accelerator essentially depends on injection part. Many low-energy beam

transport system employ axial-symmetric lenses (both electrostatic and magnetostatic). Such lenses

are characterized by high values of spherical aberrations, which results in over-focusing of particles

with radius. Effect of emittance growth  due to spherical aberrations is estimated as [32]:

∋
∋o

 = 1 + K δ2
,                                                         (9.1)

δ = Cs R4

∋ f4
 ,                                                             (9.2)

where Cs is the spherical aberration coefficient, f is the focal length of the lens and parameter

K=0.1...0.5  depends on beam distribution. Another source of beam emittance distortion is

nonlinear space charge field of the beam. Emittance growth in drift space between lenses due to

nonlinear space charge of the beam is estimated by the same Eq. (9.1) with K ≈ 0.014  and

parameter δ [32]

δ = 4 z
∋

 I

Ic β
3
 γ3

 .                                                        (9.3)

In Figs. 19, 20, 21 results of 50 keV, 20 mA, 0.075 π mm mrad proton beam dynamics in

transport line [33] are presented. Low Energy Beam Transport line (LEBT) consists of two axial-

symmetric magnetic lenses with longitudinal field distribution presented in Fig. 19a. Magnetic field

of the LEBT was interpolated on the grid Nz x Nr = 432 x 15. Beam simulations with N = 104

particles on the grid Nx x Ny = 256 x 256 with 7540 integration steps takes 60 min. Simulations



clearly indicate beam redistribution in phase space due to nonlinear space charge forces and lens

aberrations.

9.2. Effect of random errors  in RFQ electrodes  on beam transmission efficiency

Most of low energy ion injector lines are equipped with RFQ linacs, which allow to accelerate

high current beams. RIKEN heavy ion injector employs frequency tunable RFQ [34]. Random

errors in manufacturing of RFQ vane tips result in amplitude growth of transverse and longitudinal

oscillations. To obtain accurate estimation of this effect on beam dynamics, simulations were

performed with the following parameters randomly distributed at every cell within the maximum
error of ± ∆: cell lengths Li, aperture radius ai, maximum distance from axis to electrodes mai, and

axis displacement δroi. Results of simulation of 1 mA Ar+8 beam dynamics are presented in Fig.

22. In Table 8 comparison is done for beam transmission efficiency Nf / No, and for the ratio of

final and initial transverse phase space densities of the beam

jf
jo

 = Nf / εf
No / εo

 ,                                                             (9.4)

where No is the initial number of particles and Nf is the number of accelerated particles.

Simulations with No = 5000 and 1600 integration steps takes 2 min without space charge forces
and 140 min with space charge forces  on the grid  1

2
Nx x Ny x Nz = 32 x 64 x 256.

Random errors in the RFQ geometry induce particle losses in longitudinal and transverse

directions. Transverse losses are defined as a fraction of particles which are stopped during

simulations due to reaching boundary of the channel. Longitudinal particle losses are defined as a

fraction of particles which are behind the accelerated bunch. From the results of simulations it

follows that the error of 50 microns does not create any serious degradation of the beam

parameters while an error of 100 microns could cause notable decreasing of beam transmission

efficiency and reduction of phase space density. During machinery, the engineering tolerance of 50

microns was adopted for vane tips fabrications. Operation of RIKEN RFQ linac indicates that 90%

of transmission efficiency is obtained steadily [34].

CONCLUSIONS

Software for beam dynamics study with space charge in 2D and 3D geometry is developed.

Program BEAMPATH covers most of the problems for intense beam simulations in linear

accelerators and beamlines. Developed algorithms provide high accuracy with reasonable

consuming of computer time. Given numerical examples demonstrate efficiency of calculations.
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Table 1. Characteristics of the BEAMPATH code

Types of beam symmetry for space charge calculation:

z - uniform beam

- axial symmetric beam

- quadrupole symmetric beam

Accelerating and focusing elements

- arbitrary order multipole lenses

- axial-symmetric magnetic lenses (solenoids, permanent magnets)

- RF gaps and cavities

- radio frequency quadrupoles (RFQ)

- bending magnets

- accelerating waveguides

- user defined element

Typical CPU running time (for Alpha Server 2100 5/250 computer, 250 MHz CPU)

Without space charge, 2D interpolation of external
field on the grid Nr x Nz = 15 x 432                                   

  
10 -5 second

particle step

Space charge problem:
On 2D grid Nx x Ny = 256 x 265                                      

  
4·10  -5 second

particle step

On 2D grid Nx x Ny = 512 x 512                                      
  
5·10  -5 second

particle step

On 3D grid  1
2

Nx x Ny x Nz = 32 x 64 x 128                      
 
10 -3 second

particle step

On 3D grid  1
2

Nx x Ny x Nz = 128 x 256 x 128                   10 -2 second
particle step



Table 2. Characteristics of different phase space distributions, ζ2  = ( x
ax

)2  + ν (
y
ay

)
2
.

__________________________________________________________________________________________________________
KV                      "Water bag"                       Parabolic                    Gaussian

__________________________________________________________________________________________________________

Definition                                      ν
π2 Fo

 δ (F -Fo)        2 ν
π2 Fo

2
 , F ≤ Fo               6 ν

π2 Fo
2
  (1 - F

Fo
 )              ν

π2 Fo
2
  exp ( - F

Fo
)

Rms emittance ∋x                                Fo                              2
3

 Fo                                   Fo
2

                                2 Fo

Rms emittance ∋y                                Fo
ν

                             2
3ν

 Fo                                 Fo
2ν

                                 2 Fo
ν

Projection 
π Fo axay

ν
 ρ(x,y)         1,  ζ

2  ≤1                      2 (1 - 
ζ2

Fo
)                     

  
3 (1 - 

ζ2

Fo
)
2

                      exp ( - 
ζ2

Fo
)

Projection π Fo ρ(x, x')               1,  ζx
2
 ≤Fo                   2 (1 - 

ζx
2

Fo
)                        3 (1 - 

ζx
2

Fo
)

2

                      exp ( - 
ζx

2

Fo
)

Projection   π Fo
ν

 ρ(y, y')            1, ζy
2
 ≤Fo

ν
                   2 (1 - ν 

ζy
2

Fo
)                      3 (1 - ν 

ζy
2

Fo
)

2

                   exp ( - ν 
ζy

2

Fo
)

Equation  F=F(G)                            F = Fo                     F = Fo G             2F3- 3Fo F2+ GFo
3 = 0        (1 -G) - (1 + F

Fo
) ·exp ( - F

Fo
) =0

___________________________________________________________________________________________________________



Table 3.  Error δ = ∋numerical - ∋
∋

  of generation of rms beam emittance

_____________________________________________________

Distribution                                         Number of particles, N

103                 104                 105

_____________________________________________________

KV                                         1.10-2           5.10-3          6.10-4

"Water Bag"                          9.10-3           5.10-3          5.10-4

Parabolic                               2.10-2          7.10-3           1.10-3

Gaussian                              3.10-2           7.10-3           3.10-3

____________________________________________________



Table 4. Error of Gauss theorem, ϑ, and required time, t, sec (Alpha Server 2100 5/250) for 2D test

problem with random initial data.

_____________________________________

   Grid                      t                              ϑ
Nx  x Ny

_____________________________________

16 x 16                  1.·10-3                   1.9·10-2

32 x 32                 3.3 ·10-3                 1.01·10-2

64 x 64                 1.2·10-2                  5.3·10-3

128 x 128             4.7·10-2                  2.7·10-3

______________________________________



Table 5. Error in calculation of the field of Gaussian bunch in 2D cylindrical coordinates.

______________________________________________

 Grid                                     Number of particles

Nr x Nz                  5.103              5.104                  5.105

______________________________________________

32  x 32             7.6.10-2          7.4.10-2             7.3.10-2

64  x 64             2.9.10-2          2.6.10-2             2.5.10-2

128 x 128          1.9.10-2          1.3.10-2              1.10-2

_____________________________________________



Table 6. Error δ and time t, sec (Alpha Server 2100 5/250) for space charge calculation

of Gaussian bunch in 3D Cartesian coordinates.

____________________________________________________________

Grid                                          Number of macroparticles, N

                                 5.103                     5.104                           5.105

Nx
2

·Ny·Nz          δ             t                δ            t                    δ                t
____________________________________________________________

16·32·64        4.8.10-2    0.5        3.5.10-2     1.6          3.5.10-2       12.0

16·32·128      4.7.10-2    0.9        3.2.10-2     2.3          3.2.10-2       16.0

32·64·64        3.7.10-2    1.6        2.1.10-2     3.1          2.0.10-2       16.0

32·64·128      3.7.10-2    3.2        1.9.10-2     4.7          1.8.10-2       20.8

32·64·256      3.8.10-2    6.5        2.0.10-2     8.7          1.8.10-2       30.5

64·128·128    3.9.10-2    13.5      1.9·10-2    15.9         1.6.10-2       37.0

64·128 ·256  4.2.10-2     28         2.0.10-2    30.6         1.6.10-2       58.0

___________________________________________________________



Table 7. Self-consistent beam equilibrium with space charge (ε -normalized beam emittance, R- beam
radius).

_____________________________________________________________________________________

Distribution function              Definition                                                           Required focusing field
_____________________________________________________________________________________

KV                          f = fo  δ (
px2 + py2

(ε/R)2
  +  

x2  + y2

R2
 - Ho)                 E(r) = - mc2

qR
 1γ( r

R
)[( ε

R
)2+2 I

βγIc
]

Gaussian                 f = fo exp ( -2 
px2  + py2

(ε/R)2
 - 2 

x2  + y2

R2
)            E(r) = - mc2

q Rγ 
 r
R

 [ ε2

R2
 + 4 I

βγIc
 
(1-exp(-2r2/R2)

2(r2/R2)
]

Water bag               f = fo,     2
3

  (
 x2+ y2 

R2
  + 

  px
2 + py

2 

(ε/R)2
) ≤ 1         E(r)  = - mc2 r

q R2γ
  [ ε2

R2
 + 8 I 

 3 Ic βγ
 (1- r2

3 R2
)]

Parabolic                 f = fo (1 -  
 x2+ y2

 2 R2
  -  

 px
2 + py

2 

2 (ε/R)2
 )        E(r) = - mc2 r

q R2γ
  [  ε2

R2
  + 3 I

Ic βγ
 (1 - r2

2 R2
 + r4

12 R4
 )]

Extended Gaussian f = fo exp ( - 2 
  px2  + py2

(ε/R)2
  - 

(x2 + y2)2

R4
)       E(r) = - mc2

q Rγ
 [( ε

R
)2( r3

R3
) + 2I

Ic βγ
 (Rr ) erf ( r2

R2
)]

_____________________________________________________________________________________



Table 8. Beam transmission efficiency and reduction of phase

space density in RFQ due to errors in vane fabrication.

_______________________________________________________________

             δ , microns              I = 0                             I = 1 mA

                                       Nf
No

         
jf
jo

                        Nf
No

          
jf
jo

_____________________________________________________

       1.       0                   0.94       0.75                     0.87        0.58

       2.      50                  0.92       0.73                     0.85        0.56

       3.     100                 0.80       0.57                     0.70        0.46
_____________________________________________________
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Fig. 1. Curvilinear system of coordinates. 
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Fig. 2. Layout of code BEAMPATH for particle-in-cell beam dynamics simulation: 

1) generation of initial particle distribution in phase space 
2) calculation of external field 
3) calculation of space charge field 
4) integration of particle trajectories.  
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Fig. 3. Root-mean-square ellipse at phase plane (x, x'). 
 



 
Fig. 4. Generation of particle distribution in phase space: (∋x / ∋y = 2.6):  

(a) KV, (b) "water bag", (c) parabolic, (d) Gaussian. 
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Fig. 5. Drift tube linac and approximation of field at the aperture boundary. 
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Fig. 6. Field distribution in RF gap: 1) ra = 0, 2) ra = 0.5 , 3) ra = 0.9 . 
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Fig. 7. Emittance growth of circular beam, τ = 1/300: a) b = 17, δE(R)/ E(R) = 0.01, b) b = 0. 
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n = 103 
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Fig. 8. Evolution of phase space area of the circular beam after 103 integration steps 
with and without space charge forces. 
 



                    
 
Fig. 9. Grid for solution of Poisson's equation: (a) z-uniform beam, (b) axial-symmetric 
beam, (c) beam with 3D particle distribution. 
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Fig. 10. Particle weighting on 2 dimensional grid: every node receives dashed fraction of 
particle charge. 
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Fig. 11. Particle weighting on 3 dimensional grid. 
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Fig. 12. On space charge calculation by Green function method. 
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Fig. 13. Envelope of round uniform beam in free space. 
 



 
 
 
 
 

 
Fig. 14. Redistribution of Gaussian beam in drift space: a, b - PIC simulation, c - 
analytical solution, Eq. (8.3).  
 

 
 
 
    



                 
 
 
 
                   Fig. 15. Equilibrium  of  non-uniform beam in nonlinear focusing field. 
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Fig. 16. Envelopes of uniformly populated ellipsoid in drift space: solid lines - PIC simulation, dotted 
lines - analytical solution of Eqs. (9.19) - (9.21). 

 



 
 
 
 
 
 
 
Fig. 17. Uniformly populated ellipsoid with charge of 3 nK and longitudinal velocity of 
βz = 0.01 in drift space: (a) t = 0, (b) t = 1.2·10-7 sec. 
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Fig. 18. Beam bunching: dotted line - analytical solution; solid line - numerical values. 
 



              
 
 
Fig. 19. (a) Magnetic field distribution and (b) particle trajectories of 50 keV, 20 mA, 
0.075 π cm mrad proton beam. 
 



           
 
 
 
                  Fig. 20. (a) Initial and (b) final particle distributions in LEBT. 
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Fig. 21. (a) Initial and (b) final beam phase space density distribution in LEBT. 
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Fig. 22. Phase space trajectories and x-trajectories in RFQ with different values of errors in vane 
tips fabrications: a) 0 microns, b) ± 50 microns, c) ± 100 microns. 

 


