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Abstract

The light-front quantization of gauge theories in light-cone gauge provides a frame-
independent wavefunction representation of relativistic bound states, simple forms for
current matrix elements, explicit unitarity, and a trivial vacuum. In this talk I review
the theoretical methods and constraints which can be used to determine these central
elements of QCD phenomenology. The freedom to choose the light-like quantization
four-vector provides an explicitly covariant formulation of light-front quantization
and can be used to determine the analytic structure of light-front wave functions
and define a kinematical definition of angular momentum. The AdS/CFT correspon-
dence of large NC supergravity theory in higher-dimensional anti-de Sitter space with
supersymmetric QCD in 4-dimensional space-time has interesting implications for
hadron phenomenology in the conformal limit, including an all-orders demonstration
of counting rules for exclusive processes. String/gauge duality also predicts the QCD
power-law behavior of light-front Fock-state hadronic wavefunctions with arbitrary
orbital angular momentum at high momentum transfer. The form of these near-
conformal wavefunctions can be used as an initial ansatz for a variational treatment
of the light-front QCD Hamiltonian. The light-front Fock-state wavefunctions en-
code the bound state properties of hadrons in terms of their quark and gluon degrees
of freedom at the amplitude level. The nonperturbative Fock state wavefunctions
contain intrinsic gluons, and sea quarks at any scale Q with asymmetries such as
s(x) 6= s̄(x), ū(x) 6= d̄(x). Intrinsic charm and bottom quarks appear at large x in the
light-front wavefunctions since this minimizes the invariant mass and off-shellness of
the higher Fock state. In the case of nuclei, the Fock state expansion contains “hidden
color” states which cannot be classified in terms of nucleonic degrees of freedom. I
also briefly review recent analyses which shows that some leading-twist phenomena
such as the diffractive component of deep inelastic scattering, single-spin asymme-
tries, nuclear shadowing and antishadowing cannot be computed from the LFWFs of
hadrons in isolation.
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1 Introduction

A central problem in nonperturbative quantum chromodynamics is to determine not
only the masses but also the wavefunctions of hadronic bound states. Relativity and
quantum mechanics requires that a hadron fluctuates not only in coordinate space,
spin, and color, but also in the number of quanta. The light-front Hamiltonian for-
mulation of quantum chromodynamics provides a comprehensive formulation for de-
termining not only the spectrum of the theory, but also the complete set of light-front
Fock state wavefunctions ψn/H(xi, ~k⊥i, λi) which encode the bound state properties
of hadrons in terms of their fundamental quark and gluon degrees of freedom at the
amplitude level.

Formally, the light-front expansion is constructed by quantizing QCD at fixed
light-cone time [1] τ = t + z/c and forming the invariant light-front Hamiltonian:

HQCD
LF = P+P−− ~P 2

⊥ where P± = P 0±P z [2]. The momentum generators P+ and ~P⊥
are kinematical; i.e., they are independent of the interactions. The generator P− =
i d
dτ

generates light-cone time translations, and the eigen-spectrum of the Lorentz

scalar HQCD
LF gives the mass spectrum of the color-singlet hadron states in QCD

together with their respective light-front wavefunctions. For example, the proton
state satisfies: HQCD

LF |ψp〉 = M2
p |ψp〉.

The light-front (LF) quantization of QCD in light-cone gauge A+ = 0 has a num-
ber of remarkable advantages, including explicit unitarity, a physical Fock expansion,
the absence of ghost degrees of freedom, and the decoupling properties needed to
prove factorization theorems in high momentum transfer inclusive and exclusive reac-
tions. Prem Srivastava and I have given a systematic derivation [3] of LF-quantized
gauge theory using the Dirac method of constraints. The free theory gauge field is
shown to satisfy the Lorentz condition as an operator equation as well as the light-
cone gauge condition. Its propagator is found to be transverse with respect to both
its four-momentum and the gauge direction. The interaction Hamiltonian of QCD
has a form resembling that of covariant theory, except for additional instantaneous
interactions which can be treated systematically. The QCD β function computed
in the light-cone gauge agrees with that known in the conventional framework. In
the case of the electroweak theory, spontaneous symmetry breaking is realized in LF
quantization by the appearance of zero modes of the Higgs field. Light-front quanti-
zation leads to an elegant ghost-free theory of massive gauge particles, automatically
incorporating the Lorentz and ’t Hooft conditions, as well as the Goldstone boson
equivalence theorem [4].

The expansion of the proton eigensolution |ψp〉 on the color-singlet B = 1, Q = 1

eigenstates { |n〉} of the free Hamiltonian HQCD
LF (g = 0) gives the light-front Fock

expansion:

∣∣∣ ψp(P
+, ~P⊥)

〉
=

∑
n

n∏

i=1

dxi d
2~k⊥i√

xi 16π3
16π3 δ

(
1−

n∑

i=1

xi

)
δ(2)

(
n∑

i=1

~k⊥i

)
(1)
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× ψn/H(xi, ~k⊥i, λi)
∣∣∣ n; xiP

+, xi
~P⊥ + ~k⊥i, λi

〉
.

The light-cone momentum fractions xi = k+
i /P+ and ~k⊥i represent the relative mo-

mentum coordinates of the QCD constituents. The physical transverse momenta are
~p⊥i = xi

~P⊥ + ~k⊥i. The λi label the light-cone spin projections Sz of the quarks and
gluons along the quantization direction z. Each Fock component has the invariant
mass squared

M2
n = (

n∑

i=1

kµ
i )2 =

n∑

i=1

k2
⊥i + m2

i

xi

. (2)

The physical gluon polarization vectors εµ(k, λ = ±1) are specified in light-cone gauge
by the conditions k · ε = 0, η · ε = ε+ = 0. The gluonic quanta which appear in the
Fock states thus have physical polarization λ = ±1 and positive metric. Since each

Fock particle is on its mass shell in a Hamiltonian framework, k− = k0−kz =
k2
⊥+m2

k+ .
One cannot truncate the LF expansion; the expansion sum runs over all n, beginning
with the lowest valence state. The probability of massive Fock states with invariant
mass M falls-off at least as fast as 1/M2.

Because they are defined at fixed light-front time τ = t + z/c (Dirac’s “Front
Form”), LFWFs have the remarkable property of being independent of the hadron’s
four-momentum. In contrast, in equal-time quantization, a Lorentz boost mixes dy-
namically with the interactions, so that computing a wavefunction in a new frame at
fixed t requires solving a nonperturbative problem as complicated as the Hamiltonian
eigenvalue problem itself. The LFWFs are properties of the hadron itself; they are
thus universal and process independent.

The light-front Fock state expansion provides important perspectives on the quark
and gluon distributions of hadrons. For example, there is no scale Q0 where one
can limit the quark content of a hadron to valence quarks. The nonperturbative
Fock state wavefunctions contain intrinsic gluons, strange quarks, charm quarks, etc.,
at any scale. The internal QCD interactions lead to asymmetries such as s(x) 6=
s̄(x), ū(x) 6= d̄(x) and intrinsic charm and bottom distributions at large x since
this minimizes the invariant mass and off-shellness of the higher Fock state. In the
case of nuclei, the Fock state expansion contains hidden color states which cannot
be classified in terms of nucleonic degrees of freedom. However, some leading-twist
phenomena such as the diffractive component of deep inelastic scattering, single-spin
asymmetries, nuclear shadowing and antishadowing cannot be computed from the
LFWFs of hadrons in isolation. These issues are reviewed in Section 5 below.

One of the important aspects of fundamental hadron structure is the presence of
non-zero orbital angular momentum in the bound-state wave functions. The evidence
for a “spin crisis” in the Ellis-Jaffe sum rule signals a significant orbital contribution
in the proton wave function [5, 6]. The Pauli form factor of nucleons is computed from
the overlap of LFWFs differing by one unit of orbital angular momentum ∆Lz = ±1.
Thus the fact that the anomalous moment of the proton is non-zero requires nonzero
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orbital angular momentum in the proton wavefunction [7]. In the light-front method,
orbital angular momentum is treated explicitly; it includes the orbital contributions
induced by relativistic effects, such as the spin-orbit effects normally associated with
the conventional Dirac spinors. Angular momentum conservation for each Fock state
implies

Jz =
n∑

i

Sz
i +

n−1∑

i

Lz
i (3)

where Lz
i is one of the n− 1 relative orbital angular momenta.

One can also define the light-front Fock expansion using a covariant generalization
of light-front time: τ = x·ω. The four-vector ω, with ω2 = 0, determines the orienta-
tion of the light-front plane; the freedom to choose ω provides an explicitly covariant
formulation of light-front quantization [8]: all observables such as matrix elements
of local current operators, form factors, and cross sections are light-front invariants
– they must be independent of ωµ. In recent work, Dae Sung Hwang, John Hiller,
Volodya Karmonov [9], and I have studied the analytic structure of LFWFs using
the explicitly Lorentz-invariant formulation of the front form. Eigensolutions of the
Bethe-Salpeter equation have specific angular momentum as specified by the Pauli-
Lubanski vector. The corresponding LFWF for an n-particle Fock state evaluated at
equal light-front time τ = ω · x can be obtained by integrating the Bethe-Salpeter
solutions over the corresponding relative light-front energies. The resulting LFWFs
ψI

n(xi, k⊥i) are functions of the light-cone momentum fractions xi = ki · ω/p · ω and
the invariant mass of the constituents Mn, each multiplying spin-vector and polariza-
tion tensor invariants which can involve ωµ. They are eigenstates of the Karmanov–
Smirnov kinematic angular momentum operator [10, 8].

~J = −i[~k × ∂/∂~k ]− i[~n× ∂/∂~n] +
1

2
~σ, (4)

where ~n is the spatial component of ω in the constituent rest frame ( ~P = ~0). Although
this form is written specifically in the constituent rest frame, it can be generalized to
an arbitrary frame by a Lorentz boost.

Normally the generators of angular rotations in the LF formalism contain inter-
actions, as in the Pauli–Lubanski formulation; however, the LF angular momentum
operator can also be represented in the kinematical form (4) without interactions.
The key term is the generator of rotations of the LF plane −i[~n × ∂/∂~n] which re-
places the interaction term; it appears only in the explicitly covariant formulation,
where the dependence on ~n is present. Thus LFWFs satisfy all Lorentz symmetries of
the front form, including boost invariance, and they are proper eigenstates of angular
momentum.

In principle, one can solve for the LFWFs directly from the fundamental theory
using methods such as discretized light-front quantization (DLCQ) [11], the trans-
verse lattice [12, 13, 14], lattice gauge theory moments [15], Dyson-Schwinger tech-
niques [16], and Bethe–Salpeter techniques [9]. DLCQ has been remarkably success-
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ful in determining the entire spectrum and corresponding LFWFs in one space-one
time field theories [17], including QCD(1+1) [18] and SQCD(1+1) [19]. There are
also DLCQ solutions for low sectors of Yukawa theory in physical space-time dimen-
sions [20]. The DLCQ boundary conditions allow a truncation of the Fock space
to finite dimensions while retaining the kinematic boost and Lorentz invariance of
light-front quantization.

The transverse lattice method combines DLCQ for one-space and the light-front
time dimensions with lattice theory in transverse space. It has recently provided the
first computation of the generalized parton distributions of the pion [13]. Dyson-
Schwinger methods account well for running quark mass effects, and in principle
can give important hadronic wavefunction information. One can also project known
solutions of the Bethe–Salpeter equation to equal light-front time, thus producing
hadronic light-front Fock wave functions [9]. Bakker and van Iersel have developed
new methods to find solutions to bound-state light-front equations in ladder approx-
imation [21]. Pauli has shown how one can construct an effective light-front Hamil-
tonian which acts within the valence Fock state sector alone [22]. Another possible
method is to construct the qq̄ Green’s function using light-front Hamiltonian theory,
DLCQ boundary conditions and Lippmann-Schwinger resummation. The zeros of the
resulting resolvent projected on states of specific angular momentum Jz can then gen-
erate the meson spectrum and their light-front Fock wavefunctions. As emphasized
by Weinstein and Vary, new effective operator methods [23, 24] which have been de-
veloped for Hamiltonian theories in condensed matter and nuclear physics, could also
be applied advantageously to light-front Hamiltonian. Reviews of nonperturbative
light-front methods may be found in references [2, 8, 25, 26].

Even without explicit solutions, much is known about the explicit form and struc-
ture of LFWFs. They can be matched to nonrelativistic Schrodinger wavefunctions
at soft scales. At high momenta, the LFWFs at large k⊥ and xi → 1 are constrained
by arguments based on conformal symmetry, the operator product expansion, or per-
turbative QCD. The pattern of higher Fock states with extra gluons is given by ladder
relations [27]. The structure of Fock states with nonzero orbital angular momentum
is also constrained by the Karmanov-Smirnov operator [10].

2 AdS/CFT and Its Consequences for Near-Conformal

Field Theory

As shown by Maldacena [28], there is a remarkable correspondence between large NC

supergravity theory in a higher dimensional anti-de Sitter space and supersymmetric
QCD in 4-dimensional space-time. String/gauge duality provides a framework for
predicting QCD phenomena based on the conformal properties of the AdS/CFT cor-
respondence. For example, Polchinski and Strassler [29] have shown that the power-
law fall-off of hard exclusive hadron-hadron scattering amplitudes at large momentum

6



transfer can be derived without the use of perturbation theory by using the scaling
properties of the hadronic interpolating fields in the large-r region of AdS space. Thus
one can use the Maldacena correspondence to compute the leading power-law falloff of
exclusive processes such as high-energy fixed-angle scattering of gluonium-gluonium
scattering in supersymmetric QCD. The resulting predictions for hadron physics ef-
fectively coincide [29, 30, 31] with QCD dimensional counting rules [32, 33, 34, 35].
Polchinski and Strassler [29] have also derived counting rules for deep inelastic struc-
ture functions at x → 1 in agreement with perturbative QCD predictions [36] as well
as Bloom-Gilman exclusive-inclusive duality. An interesting point is that the hard
scattering amplitudes which are normally or order αp

s in PQCD appear as order αp/2
s

in the supergravity predictions. This can be understood as an all-orders resummation
of the effective potential [28, 37]. The near-conformal scaling properties of light-front
wavefunctions thus lead to a number of important predictions for QCD which are
normally discussed in the context of perturbation theory.

De Teramond and I [38] have shown how one can use the scaling properties of
the hadronic interpolating operator in the extended AdS/CFT space-time theory to
determine the form of QCD wavefunctions at large transverse momentum k2

⊥ → ∞
and at x → 1 [38]. The angular momentum dependence of the light-front wavefunc-
tions also follow from the conformal properties of the AdS/CFT correspondence. The
scaling and conformal properties of the correspondence leads to a hard component of
the light-front Fock state wavefunctions of the form:

ψn/h(xi, ~k⊥i, λi, lzi) ∼ (gs NC)
1
2
(n−1)

√
NC

n−1∏

i=1

(k±i⊥)|lzi| (5)

×



Λo

M2 −∑
i

~k2
⊥i+m2

i

xi
+ Λ2

o




n+
∑

i
|lzi|−1

,

where gs is the string scale and Λo represents the basic QCD mass scale. The scaling
predictions agree with the perturbative QCD analysis given in the references [39], but
the AdS/CFT analysis is performed at strong coupling without the use of perturbation
theory. The form of these near-conformal wavefunctions can be used as an initial
ansatz for a variational treatment of the light-front QCD Hamiltonian.

The recent investigations using the AdS/CFT correspondence has reawakened
interest in the conformal features of QCD [40]. QCD becomes scale free and confor-
mally symmetric in the analytic limit of zero quark mass and zero β function [41].
This correspondence principle provides a new tool, the conformal template, which
is very useful for theory analyses, such as the expansion polynomials for distribu-
tion amplitudes [42, 43, 44, 45], the non-perturbative wavefunctions which control
exclusive processes at leading twist [46, 47]. The near-conformal behavior of QCD is
also the basis for commensurate scale relations [48] which relate observables to each
other without renormalization scale or scheme ambiguities [49]. An important exam-
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ple is the generalized Crewther relation [50]. In this method the effective charges of
observables are related to each other in conformal gauge theory; the effects of the
nonzero QCD β− function are then taken into account using the BLM method [51]
to set the scales of the respective couplings. The magnitude of the corresponding ef-
fective charge [52] αexclusive

s (Q2) = Fπ(Q2)/4πQ2F 2
γπ0(Q2) for exclusive amplitudes is

connected to the effective charge ατ defined from τ hadronic decays [53] by a commen-
surate scale relation. Its magnitude: αexclusive

s (Q2) ∼ 0.8 at small Q2, is sufficiently
large as to explain the observed magnitude of exclusive amplitudes such as the pion
form factor using the asymptotic distribution amplitude [54].

Theoretical [55, 56, 57, 58, 59] and phenomenological [60, 53, 61] evidence is
now accumulating that the QCD coupling becomes constant at small virtuality; i.e.,
αs(Q

2) develops an infrared fixed point in contradiction to the usual assumption of sin-
gular growth in the infrared. If QCD running couplings are bounded, the integration
over the running coupling is finite and renormalon resummations are not required. If
the QCD coupling becomes scale-invariant in the infrared, then elements of conformal
theory [45] become relevant even at relatively small momentum transfers.

Menke, Merino, and Rathsman [53] and I have presented a definition of a physical
coupling for QCD which has a direct relation to high precision measurements of the
hadronic decay channels of the τ− → ντH

−. Let Rτ be the ratio of the hadronic decay
rate to the leptonic one. Then Rτ ≡ R0

τ

[
1 + ατ

π

]
, where R0

τ is the zeroth order QCD
prediction, defines the effective charge ατ . The data for τ decays is well-understood
channel by channel, thus allowing the calculation of the hadronic decay rate and the
effective charge as a function of the τ mass below the physical mass. The vector and
axial-vector decay modes can be studied separately. Using an analysis of the τ data
from the OPAL collaboration [62], we have found that the experimental value of the
coupling ατ (s) = 0.621±0.008 at s = m2

τ corresponds to a value of αMS(M
2
Z) = (0.117-

0.122)± 0.002, where the range corresponds to three different perturbative methods
used in analyzing the data. This result is in good agreement with the world average
αMS(M

2
Z) = 0.117 ± 0.002. However, one also finds that the effective charge only

reaches ατ (s) ∼ 0.9 ± 0.1 at s = 1 GeV2, and it even stays within the same range
down to s ∼ 0.5 GeV2. The effective coupling is close to constant at low scales,
suggesting that physical QCD couplings become constant or “frozen” at low scales.

The near constancy of the effective QCD coupling at small scales helps explain
the empirical success of dimensional counting rules for the power law fall-off of form
factors and fixed angle scaling. As shown in the references [52, 63], one can calculate
the hard scattering amplitude TH for such processes [54] without scale ambiguity
in terms of the effective charge ατ or αR using commensurate scale relations. The
effective coupling is evaluated in the regime where the coupling is approximately
constant, in contrast to the rapidly varying behavior from powers of αs predicted
by perturbation theory (the universal two-loop coupling). For example, the nucleon
form factors are proportional at leading order to two powers of αs evaluated at low
scales in addition to two powers of 1/q2; The pion photoproduction amplitude at fixed
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angles is proportional at leading order to three powers of the QCD coupling. The
essential variation from leading-twist counting-rule behavior then only arises from the
anomalous dimensions of the hadron distribution amplitudes.

3 Light-Front Phenomenology

Light-front Fock state wavefunctions ψn/H(xi, ~k⊥i, λi) play an essential role in QCD

phenomenology, generalizing Schrödinger wavefunctions ψH(~k) of atomic physics to

relativistic quantum field theory. Given the ψ
(Λ)
n/H , one can construct any spacelike

electromagnetic, electroweak, or gravitational form factor or local operator product
matrix element of a composite or elementary system from the diagonal overlap of the
LFWFs [7]. Exclusive semi-leptonic B-decay amplitudes involving timelike currents
such as B → A`ν̄ can also be evaluated exactly in the light-front formalism [64].
In this case, the timelike decay matrix elements require the computation of both
the diagonal matrix element n → n where parton number is conserved and the off-
diagonal n + 1 → n− 1 convolution such that the current operator annihilates a qq̄′

pair in the initial B wavefunction. This term is a consequence of the fact that the
time-like decay q2 = (p` + pν̄)

2 > 0 requires a positive light-cone momentum fraction
q+ > 0. Conversely for space-like currents, one can choose q+ = 0, as in the Drell-Yan-
West representation of the space-like electromagnetic form factors. The light-front
Fock representation thus provides an exact formulation of current matrix elements
of local operators. In contrast, in equal-time Hamiltonian theory, one must evaluate
connected time-ordered diagrams where the gauge particle or graviton couples to
particles associated with vacuum fluctuations. Thus even if one knows the equal-
time wavefunction for the initial and final hadron, one cannot determine the current
matrix elements. In the case of the covariant Bethe-Salpeter formalism, the evaluation
of the matrix element of the current requires the calculation of an infinite number of
irreducible diagram contributions.

One can also prove directly from the LFWF overlap representation that the
anomalous gravitomagnetic moment B(0) vanishes for any composite system [65].
This property follows directly from the Lorentz boost properties of the light-front
Fock representation and holds separately for each Fock state component.

Given the LFWFs, one can also compute the hadronic distribution amplitudes
φH(xi, Q) which control hard exclusive processes as an integral over the transverse
momenta of the valence Fock state LFWFs [54]. In addition one can compute the
unintegrated parton distributions in x and k⊥ which underlie generalized parton dis-
tributions for nonzero skewness. As shown by Diehl, Hwang, and myself [66], one
can give a complete representation of virtual Compton scattering γ∗p → γp at large
initial photon virtuality Q2 and small momentum transfer squared t in terms of the
light-cone wavefunctions of the target proton. One can then verify the identities be-
tween the skewed parton distributions H(x, ζ, t) and E(x, ζ, t) which appear in deeply
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virtual Compton scattering and the corresponding integrands of the Dirac and Pauli
form factors F1(t) and F2(t) and the gravitational form factors Aq(t) and Bq(t) for
each quark and anti-quark constituent. We have illustrated the general formalism
for the case of deeply virtual Compton scattering on the quantum fluctuations of a
fermion in quantum electrodynamics at one loop.

The integrals of the unintegrated parton distributions over transverse momentum
at zero skewness provide the helicity and transversity distributions measurable in po-
larized deep inelastic experiments [54]. For example, the polarized quark distributions
at resolution Λ correspond to

qλq/Λp(x, Λ) =
∑
n,qa

∫ n∏

j=1

dxjd
2k⊥j

∑

λi

|ψ(Λ)
n/H(xi, ~k⊥i, λi)|2 (6)

× δ

(
1−

n∑

i

xi

)
δ(2)

(
n∑

i

~k⊥i

)
δ(x− xq)

× δλa,λqΘ(Λ2 −M2
n) ,

where the sum is over all quarks qa which match the quantum numbers, light-cone
momentum fraction x, and helicity of the struck quark.

Hadronization phenomena such as the coalescence mechanism for leading heavy
hadron production are computed from LFWF overlaps. Diffractive jet production
provides another phenomenological window into the structure of LFWFs. However,
as shown recently [67], some leading-twist phenomena such as the diffractive com-
ponent of deep inelastic scattering, single spin asymmetries, nuclear shadowing and
antishadowing cannot be computed from the LFWFs of hadrons in isolation.

As shown by Raufeisen and myself [68], one can construct a “light-front density
matrix” from the complete set of light-front wavefunctions which is a Lorentz scalar.
This form can be used at finite temperature to give a boost invariant formulation of
thermodynamics. At zero temperature the light-front density matrix is directly con-
nected to the Green’s function for quark propagation in the hadron as well as deeply
virtual Compton scattering. One can also define a light-front partition function ZLF as
an outer product of light-front wavefunctions. The deeply virtual Compton amplitude
and generalized parton distributions can then be computed as the trace Tr[ZLFO],
where O is the appropriate local operator [68]. This partition function formalism
can be extended to multi-hadronic systems and systems in statistical equilibrium to
provide a Lorentz-invariant description of relativistic thermodynamics [68].

4 Complications from Final-State Interactions

Although it has been more than 35 years since the discovery of Bjorken scaling [69] in
electroproduction [70], there are still many issues in deep-inelastic lepton scattering
and Drell-Yan reactions which are only now being understood from a fundamental
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basis in QCD. In contrast to the parton model, final-state interactions in deep in-
elastic scattering and initial state interactions in hard inclusive reactions cannot be
neglected—leading to T−odd single spin asymmetries [71, 72, 73] and diffractive con-
tributions [67, 74]. This in turn implies that the structure functions measured in deep
inelastic scattering are not probability distributions computed from the square of the
LFWFs computed in isolation [67].

It is usually assumed—following the parton model—that the leading-twist struc-
ture functions measured in deep inelastic lepton-proton scattering are simply the
probability distributions for finding quarks and gluons in the target nucleon. In fact,
gluon exchange between the fast, outgoing quarks and the target spectators effects
the leading-twist structure functions in a profound way, leading to diffractive lep-
toproduction processes, shadowing of nuclear structure functions, and target spin
asymmetries. In particular, the final-state interactions from gluon exchange between
the outgoing quark and the target spectator system lead to single-spin asymmetries in
semi-inclusive deep inelastic lepton-proton scattering at leading twist in perturbative
QCD; i.e., the rescattering corrections of the struck quark with the target spectators
are not power-law suppressed at large photon virtuality Q2 at fixed xbj [71] The final-
state interaction from gluon exchange occurring immediately after the interaction
of the current also produces a leading-twist diffractive component to deep inelastic
scattering `p → `′p′X corresponding to color-singlet exchange with the target sys-
tem; this in turn produces shadowing and anti-shadowing of the nuclear structure
functions [67, 75]. In addition, one can show that the pomeron structure function
derived from diffractive DIS has the same form as the quark contribution of the gluon
structure function [74]. The final-state interactions occur at a short light-cone time
∆τ ' 1/ν after the virtual photon interacts with the struck quark, producing a non-
trivial phase. Here ν = p · q/M is the laboratory energy of the virtual photon. Thus
none of the above phenomena is contained in the target light-front wave functions
computed in isolation. In particular, the shadowing of nuclear structure functions
is due to destructive interference effects from leading-twist diffraction of the virtual
photon, physics not included in the nuclear light-front wave functions. Thus the
structure functions measured in deep inelastic lepton scattering are affected by final-
state rescattering, modifying their connection to light-front probability distributions.
Some of these results can be understood by augmenting the light-front wave functions
with a gauge link, but with a gauge potential created by an external field created by
the virtual photon qq̄ pair current [72]. The gauge link is also process dependent [73],
so the resulting augmented LFWFs are not universal.

Single-spin asymmetries in hadronic reactions provide a remarkable window to
QCD mechanisms at the amplitude level. In general, single-spin asymmetries measure
the correlation of the spin projection of a hadron with a production or scattering
plane [76]. Such correlations are odd under time reversal, and thus they can arise in a
time-reversal invariant theory only when there is a phase difference between different
spin amplitudes. Specifically, a nonzero correlation of the proton spin normal to a
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production plane measures the phase difference between two amplitudes coupling the
proton target with Jz

p = ±1
2

to the same final-state. The calculation requires the
overlap of target light-front wavefunctions with different orbital angular momentum:
∆Lz = 1; thus a single-spin asymmetry (SSA) provides a direct measure of orbital
angular momentum in the QCD bound state.

The observation that ' 10% of the positron-proton deep inelastic cross section at
HERA is diffractive [77, 78] points to the importance of final-state gauge interactions
as well as a new perspective to the nature of the hard pomeron. The same interactions
are responsible for nuclear shadowing and Sivers-type single-spin asymmetries in semi-
inclusive deep inelastic scattering and in Drell-Yan reactions. These new observations
are in contradiction to parton model and light-cone gauge based arguments that final
state interactions can be ignored at leading twist. The modifications of the deep
inelastic lepton-proton cross section due to final state interactions are consistent with
color-dipole based scattering models and imply that the traditional identification
of structure functions with the quark probability distributions computed from the
wavefunctions of the target hadron computed in isolation must be modified.

The shadowing and antishadowing of nuclear structure functions in the Gribov-
Glauber picture is due to the destructive and constructive coherence, respectively, of
amplitudes arising from the multiple-scattering of quarks in the nucleus. The effec-
tive quark-nucleon scattering amplitude includes Pomeron and Odderon contributions
from multi-gluon exchange as well as Reggeon quark exchange contributions [75]. The
multiscattering nuclear processes from Pomeron, Odderon and pseudoscalar Reggeon
exchange leads to shadowing and antishadowing of the electromagnetic nuclear struc-
ture functions in agreement with measurements. An important conclusion is that
antishadowing is nonuniversal—different for quarks and antiquarks and different for
strange quarks versus light quarks. This picture thus leads to substantially different
nuclear effects for charged and neutral currents, particularly in anti-neutrino reac-
tions, thus affecting the extraction of the weak-mixing angle sin2 θW and the constant
ρo which are determined from the ratios of charged and neutral current contributions
in deep inelastic neutrino and anti-neutrino scattering. In recent work, Schmidt,
Yang, and I [79] find that a substantial part of the difference between the standard
model prediction and the anomalous NuTeV result [80] for sin2 θW could be due to the
different behavior of nuclear antishadowing for charged and neutral currents. Detailed
measurements of the nuclear dependence of charged, neutral and electromagnetic DIS
processes are needed to establish the distinctive phenomenology of shadowing and an-
tishadowing and to make the NuTeV results definitive.
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5 Other QCD Phenomenology Related to Light-

Front Wavefunctions

A number of important phenomenological properties follow directly from the structure
of light-front wavefunctions in gauge theory.

(1). Intrinsic Glue and Sea. Even though QCD was motivated by the successes of
the parton model, QCD predicts many new features which go well beyond the simple
three-quark description of the proton. Since the number of Fock components cannot
be limited in relativity and quantum mechanics, the nonperturbative wavefunction
of a proton contains gluons and sea quarks, including heavy quarks at any resolution
scale. Thus there is no scale Q0 in deep inelastic lepton-proton scattering where the
proton can be approximated by its valence quarks. Empirical evidence also continues
to accumulate that the strange-antistrange quark distributions are not symmetric in
the proton [81, 82].

(2) Intrinsic Charm. [83] The probability for Fock states of a light hadron such as
the proton to have an extra heavy quark pair decreases as 1/m2

Q in non-Abelian gauge
theory [84, 85]. The relevant matrix element is the cube of the QCD field strength
G3

µν . This is in contrast to abelian gauge theory where the relevant operator is F 4
µν

and the probability of intrinsic heavy leptons in QED bound state is suppressed as
1/m4

` . The intrinsic Fock state probability is maximized at minimal off-shellness. It

is useful to define the transverse mass m⊥i =
√

k2
⊥i + m2

i . The maximum probability

then occurs at xi = mi
⊥/

∑n
j=1 mj

⊥; i.e., when the constituents have minimal invariant
mass and equal rapidity. Thus the heaviest constituents have the highest momentum
fractions and the highest xi. Intrinsic charm thus predicts that the charm structure
function has support at large xbj in excess of DGLAP extrapolations [83]; this is
in agreement with the EMC measurements [86]. It predicts leading charm hadron
production and fast charmonium production in agreement with measurements [87].
In fact even double J/ψ′s are produced at large xF , consistent with the dissociation
and coalescence of double intrinsic Fock states of the projectile LFWF [88].

The proton wavefunction thus contains charm quarks with large light-cone momen-
tum fractions x. The recent observation by the SELEX experiment [89, 90] showing
that doubly-charmed baryons such as the Ξ+

cc and hence two charmed quarks are pro-
duced at large xF and small pT in hadron-nucleus collisions provides additional and
compelling evidence for the diffractive dissociation of complex off-shell Fock states of
the projectile. These observations contradict the traditional view that sea quarks and
gluons are always produced perturbatively via DGLAP evolution. Intrinsic charm can
also explain the J/ψ → ρπ puzzle [91]. It also affects the extraction of suppressed
CKM matrix elements in B decays [92].

3. Hidden Color. A rigorous prediction of QCD is the “hidden color” of nuclear
wavefunctions at short distances. QCD predicts that nuclear wavefunctions contain
“hidden color” [93] components: color configurations not dual to the usual nucleonic
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degrees of freedom. In general, the six-quark wavefunction of a deuteron is a mixture
of five different color-singlet states [93]. The dominant color configuration at large
distances corresponds to the usual proton-neutron bound state where transverse mo-
menta are of order ~k2 ∼ 2MdεBE. However, at small impact space separation, all
five Fock color-singlet components eventually acquire equal weight, i.e., the deuteron
wavefunction evolves to 80% hidden color.

At high Q2 the deuteron form factor is sensitive to wavefunction configurations
where all six quarks overlap within an impact separation b⊥i < O(1/Q). Since the
deuteron form factor contains the probability amplitudes for the proton and neutron
to scatter from p/2 to p/2 + q/2, it is natural to define the reduced deuteron form
factor[94, 93]

fd(Q
2) ≡ Fd(Q

2)

F1N

(
Q2

4

)
F1N

(
Q2

4

) . (7)

The effect of nucleon compositeness is removed from the reduced form factor. QCD
then predicts the scaling

fd(Q
2) ∼ 1

Q2
; (8)

i.e., the same scaling law as a meson form factor. This scaling is consistent with
experiment for Q2 > 1 GeV2. In fact as seen in Fig. 1, the deuteron reduced form
factor contains two components: (1) a fast-falling component characteristic of nuclear
binding with probability 85%, and (2) a hard contribution falling as a monopole with
a scale of order 0.5 GeV with probability 15%. The normalization of the deuteron
form factor observed at large Q2 [95], as well as the presence of two mass scales in
the scaling behavior of the reduced deuteron form factor [94] thus suggests sizable
hidden-color Fock state contributions such as | (uud)8C

(ddu)8C
〉 with probability of

order 15% in the deuteron wavefunction [96].

(4) Color transparency. The small transverse size fluctuations of a hadron wave-
function with a small color dipole moment will have minimal interactions in a nu-
cleus [97, 98].

This has been verified in the case of diffractive dissociation of a high energy
pion into dijets πA → qq̄A′ in which the nucleus is left in its ground state [99].
When the hadronic jets have balancing but high transverse momentum, one studies
the small size fluctuation of the incident pion. The diffractive dissociation cross
section is found to be proportional to A2 in agreement with the color transparency
prediction. Color transparency has also been observed in diffractive electroproduction
of ρ mesons [100] and in quasi-elastic pA → pp(A−1) scattering [101] where only the
small size fluctuations of the hadron wavefunction enters the hard exclusive scattering
amplitude. In the latter case an anomaly occurs at

√
s ' 5 GeV, most likely signaling

a resonance effect at the charm threshold [102].

Color transparency, as evidenced by the Fermilab measurements of diffractive
dijet production, implies that a pion can interact coherently throughout a nucleus
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Figure 1: Reduced Deuteron Form Factor showing the scaling predicted by perturba-
tive QCD and conformal scaling. The data show two regimes: a fast-falling behavior
at small Q2 characteristic of normal nuclear binding, and a hard scattering regime
with monopole fall-off controlled by the scale m2

0 = 0.28 GeV2. The latter contribution
is attributable to non-nucleonic hidden-color components of the deuteron’s six-quark
Fock state. From Ref. [94].

with minimal absorption, in dramatic contrast to traditional Glauber theory based
on a fixed σπn cross section. Color transparency gives direct validation of the gauge
interactions of QCD.

6 Hard Exclusive Processes and Form Factors at

High Q2

Leading-twist PQCD predictions for hard exclusive amplitudes [54] are written in a
factorized form as the product of hadron distribution amplitudes φI(xi, Q) for each
hadron I convoluted with the hard scattering amplitude TH obtained by replacing
each hadron with collinear on-shell quarks with light-front momentum fractions xi =
k+

i /P+. The hadron distribution amplitudes are obtained by integrating the n−parton
valence light-front wavefunctions:

φ(xi, Q) =
∫ Q

Πn−1
i=1 d2k⊥i ψval(xi, k⊥). (9)
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Thus the distribution amplitudes are Lz = 0 projections of the LF wavefunction,
and the sum of the spin projections of the valence quarks must equal the Jz of the
parent hadron. Higher orbital angular momentum components lead to power-law
suppressed exclusive amplitudes [54, 39]. Since quark masses can be neglected at
leading twist in TH , one has quark helicity conservation, and thus, finally, hadron-
helicity conservation: the sum of initial hadron helicities equals the sum of final
helicities. In particular, since the hadron-helicity violating Pauli form factor is com-
puted from states with ∆Lz = ±1, PQCD predicts F2(Q

2)/F1(Q
2) ∼ 1/Q2 [modulo

logarithms]. A detailed analysis shows that the asymptotic fall-off takes the form
F2(Q

2)/F1(Q
2) ∼ log2 Q2/Q2 [103]. One can also construct other models [9] incorpo-

rating the leading-twist perturbative QCD prediction which are consistent with the
JLab polarization transfer data [104] for the ratio of proton Pauli and Dirac form
factors. This analysis can also be extended to study the spin structure of scattering
amplitudes at large transverse momentum and other processes which are dependent
on the scaling and orbital angular momentum structure of light-front wavefunctions.
Recently, Afanasev, Carlson, Chen, Vanderhaeghen, and I [105] have shown that
the interfering two-photon exchange contribution to elastic electron-proton scatter-
ing, including inelastic intermediate states, can account for the discrepancy between
Rosenbluth and Jefferson Lab spin transfer polarization data [104].

A crucial prediction of models for proton form factors is the relative phase of
the timelike form factors, since this can be measured from the proton single spin
symmetries in e+e− → pp̄ or pp̄ → `¯̀ [106]. Carl Carlson, John Hiller, Dae Sung
Hwang and I [106] have shown that measurements of the proton’s polarization strongly
discriminate between the analytic forms of models which fit the proton form factors in
the spacelike region. In particular, the single-spin asymmetry normal to the scattering
plane measures the relative phase difference between the timelike GE and GM form
factors. The dependence on proton polarization in the timelike region is expected to
be large in most models, of the order of several tens of percent. The continuation
of the spacelike form factors to the timelike domain t = s > 4M2

p is very sensitive
to the analytic form of the form factors; in particular it is very sensitive to the
form of the PQCD predictions including the corrections to conformal scaling. The
forward-backward `+`− asymmetry can measure the interference of one-photon and
two-photon contributions to p̄p → `+`−.

As discussed in section 2, dimensional counting rules for hard exclusive processes
have now been derived in the context of nonperturbative QCD using the AdS/CFT
correspondence. The data for virtually all measured hard scattering processes ap-
pear to be consistent with the conformal predictions of QCD. For example, recent
measurements of the deuteron photodisintegration cross section γd → pn follow the
leading-twist s11 scaling behavior at large momentum transfers in the few GeV re-
gion [107, 108, 109]. This adds further evidence for the dominance of leading-twist
quark-gluon subprocesses and the near conformal behavior of the QCD coupling. As
discussed above, the evidence that the running coupling has constant fixed-point be-
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havior, which together with BLM scale fixing, could help explain the near conformal
scaling behavior of the fixed-CM angle cross sections. The angular distribution of
hard exclusive processes is generally consistent with quark interchange, as predicted
from large NC considerations.

7 New Directions

As I have emphasized in this talk, the light-front wavefunctions of hadrons are the
central elements of QCD phenomenology, describing bound states in terms of their
fundamental quark and gluon degrees of freedom at the amplitude level. Given the
light-front wavefunctions one can compute quark and gluon distributions, distribution
amplitudes, generalized parton distributions, form factors, and matrix elements of
local currents such as semileptonic B decays. The diffractive dissociation of hadrons
on nucleons or nuclei into jets or leading hadrons provides new measures of the LFWFs
of the projectile as well as tests of color transparency and intrinsic charm.

It is thus imperative to compute the light-front wavefunctions from first principles
in QCD. Lattice gauge theory can provide moments of the distribution amplitudes by
evaluating vacuum-to-hadron matrix elements of local operators [15]. The transverse
lattice is also providing new nonperturbative information [13, 14].

The DLCQ method is also a first-principles method for solving nonperturba-
tive QCD; at finite harmonic resolution K the DLCQ Hamiltonian acts in physical
Minkowski space as a finite-dimensional Hermitian matrix in Fock space. The DLCQ
Heisenberg equation is Lorentz-frame independent and has the advantage of provid-
ing not only the spectrum of hadrons, but also the complete set of LFWFs for each
hadron eigenstate.

An important feature the light-front formalism is that Jz is conserved; thus one
simplify the DLCQ method by projecting the full Fock space on states with specific
angular momentum. As shown in ref. [9], the Karmanov-Smirnov operator uniquely
specifies the form of the angular dependence of the light-front wavefunctions, allowing
one to transform the light-front Hamiltonian equations to differential equations acting
on scalar forms. A complementary method would be to construct the T -matrix for
asymptotic qq̄ or qqq or gluonium states using the light-front analog of the Lippmann-
Schwinger method. This allows one to focus on states with the specific global quantum
numbers and spin of a given hadron. The zeros of the resulting resolvent then provides
the hadron spectrum and the respective light-front Fock state projections.

The AdS/CFT correspondence has now provided important new information on
the short-distance structure of hadronic LFWFs; one obtains conformal constraints
which are not dependent on perturbation theory. The large k⊥ fall-off of the valence
LFWFs is also rigorously determined by consistency with the evolution equations for
the hadron distribution amplitudes [54]. Similarly, one can also use the structure of
the evolution equations to constrain the x → 1 endpoint behavior of the LFWFs.
One can use these strong constraints on the large k⊥ and x → 1 behavior to model
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the LFWFs. Such forms can also be used as the initial approximations to the wave-
functions needed for variational methods which minimize the expectation value of the
light-front Hamiltonian.
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