Charmless 2- and 3-body B decays and the angle $\alpha(\phi_2)$

Markus Cristinziani (representing the BABAR collaboration) Stanford Linear Accelerator Center Menlo Park, CA 94025 E-mail: markus@slac.stanford.edu

Abstract

We present preliminary measurements of branching fractions and *CP*-asymmetry parameters in two- and three-body charmless hadronic *B* decays. The available data sample consists of 227 million $\Upsilon(4S) \to B\overline{B}$ decays collected with the *BABAR* detector at the PEP-II asymmetric-energy e^+e^- collider at SLAC. We establish the observation of the decays $B^0 \to \pi^0\pi^0$ and $B^0 \to K^0\overline{K}^0$ and constrain the CKM angle α with a full SU(2) isospin analysis in the $B \to \pi\pi$ system and with a $B^0 \to \pi^+\pi^-\pi^0$ time-dependent Dalitz plot analysis.

Contributed to the Proceedings of the 32^{nd} International Conference on High Energy Physics, ICHEP'04, 16 August — 22 August 2004, Beijing, China

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Work supported in part by Department of Energy contract DE-AC02-76SF00515.

1 Introduction

According to the Standard Model CP violation is attributed to the presence of one complex phase in the CKM quark-mixing matrix. The relations between the matrix elements V_{ij} are usually represented as a triangle in the complex plane, the Unitarity Triangle. The program of the *B* factories aims at overconstraining its sides and angles. Most measurements of branching fractions and CP parameters presented in this talk can be used to extract information about the angle $\alpha = \arg \left[-V_{td}V_{tb}^*/V_{ud}V_{ub}^*\right]$.

More detail about the analyses presented here can be found in the conference contributions[1].

2 Hadronic Charmless *B* Decays

These results are based on the analysis of 227 million $B\overline{B}$ decays recorded by the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider at SLAC. The BABAR detector is described in detail elsewhere[2].

Decays of a *B* meson into final states with two or three charmless particles are rare, with branching fractions typically of $\mathcal{O}(10^{-5})$. Signal decays are identified using two kinematic variables: (1) the difference ΔE between the energy of the *B* candidate in the e^+e^- center-of-mass (CM) frame and $\sqrt{s}/2$ and (2) the beam-energy substituted mass $m_{\rm ES} = \sqrt{(s/2 + \mathbf{p}_i \cdot \mathbf{p}_B)^2/E_i^2 - \mathbf{p}_B^2}$, where \sqrt{s} is the total CM energy, and the B momentum $\mathbf{p}_{\mathbf{B}}$ and the four-momentum of the initial state (E_i, \mathbf{p}_i) are defined in the laboratory frame.

The main common background consists of continuum $(e^+e^- \to q\bar{q})$ events where two or three mesons combine kinematically to mimic a *B* decay. To suppress this jet-like background, a cut on the sphericity of the event is applied. Additionally, a Fisher discriminant \mathcal{F} is defined as an optimized linear combination of $\sum_i p_i$ and $\sum_i p_i \cos^2 \theta_i$, where p_i is the momentum and θ_i is the angle with respect to the thrust axis of the *B* candidate, both in the CM frame, for all tracks and neutral clusters not used to reconstruct the *B* meson. Alternatively a neural network is trained on those two variables and the angles with respect to the beam axis of the *B* momentum and *B* thrust axis in the $\Upsilon(4S)$ frame. Background sources from *B* decays are vector-pseudoscalar decays, where one of the decay products remains undetected, and cross-feed among the charmless modes.

The determination of CP parameters relies on the tagging technique and a precise measurement of the flight time. Those particles in the event that are not used to reconstruct the decay mode under study provide information about whether the other B meson decayed as a B^0 or \overline{B}^0 . The CP asymmetry parameters in $B^0 \to \pi^+\pi^-$ decays are determined with a maximum likelihood fit including information about the B flavor and the difference Δt between the decay times. The decay rate distribution $f_+(f_-)$ for the tagged $B = B^0(\overline{B}^0)$ is given by

$$f_{\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} [1 \pm S_{\pi\pi} \sin(\Delta m_d \Delta t) \mp C_{\pi\pi} \cos(\Delta m_d \Delta t)],$$

where τ is the mean B^0 lifetime and Δm_d is the mixing frequency due to the neutral-*B*-meson eigenstate mass difference.

All new results described here are summarized in the two tables showing branching fractions and CP parameters.

2.1 $B \rightarrow \pi \pi$ modes

We updated the time-dependent CP asymmetry measurement in the decay $B^0 \to \pi^+\pi^-$. After selection of events with two charged tracks, a maximum-likelihood fit is performed using $m_{\rm ES}$, ΔE , \mathcal{F} and θ_C , the Čerenkov angle measured by the detector of internally reflected Čerenkov light which provides good $K - \pi$ separation in the relevant momentum region. Signal and background yields of the four related h^+h^- modes ($h \equiv \pi, K$) are determined in a first fit and fixed in the final fit where information about *B*-flavor and decay-time is added. We measure the *CP* parameters in the decay $B^0 \to \pi^+\pi^-$ to be $C_{\pi\pi} = -0.09 \pm 0.15 \pm 0.04$ and $S_{\pi\pi} = -0.30 \pm 0.17 \pm 0.03$ which does not indicate presence of significant *CP* violation. As shown in Fig. 1 this result is not compatible with Belle's measurement with 152 million B^0 's[3].

For the analysis of the modes $B^+ \to \pi^+ \pi^0$ and $B^0 \to \pi^0 \pi^0$ candidate π^0 mesons are reconstructed as pair of photons in the electromagnetic calorimeter with requirements on minimum energy and lateral shower shape. For high momentum π^0 's the two-photon mass resolution is approximately 8 MeV/ c^2 . For both the $B^0 \to \pi^0 \pi^0$ signal and the $B^{\pm} \to \rho^{\pm} \pi^0$ background the $m_{\rm ES}$ and ΔE variables are correlated and therefore a two-dimensional PDF from a smoothed, simulated distribution is used. To eliminate systematic uncertainties associated with the choice of fit function of the \mathcal{F} distribution, a parametric step function is used[4]. The result of the maximum likelihood fit for $B^0 \to \pi^0 \pi^0$ is $n(B^0 \to \pi^0 \pi^0) = 61 \pm 17$. The significance of the event yield is found to exceed 5.0σ including systematic effects. The event yield is transformed into a measurement of the branching fraction $\mathcal{B}(B^0 \to \pi^0 \pi^0) = (1.17 \pm 0.32 \pm 0.10) \times 10^{-6}$. Considering the improved understanding of the π^0 detection efficiency and the additional data this result is consistent with our previous measurement[4]. In the same fit the time-integrated *CP* asymmetry, defined as $C_{\pi^0\pi^0} = (|A_{00}|^2 - |\overline{A}_{00}|^2)/(|A_{00}|^2 + |\overline{A}_{00}|^2)$, where A_{00} (\overline{A}_{00}) is the $B^0(\overline{B}^0) \to \pi^0\pi^0$ decay amplitude is measured. We find $C_{\pi^0\pi^0} = -0.12 \pm 0.56 \pm 0.06$. Finally the charge asymmetry and branching fraction for the decay $B^+ \to \pi^+\pi^0$ are measured and shown in the tables.

2.2 Twobody charmless decays with kaons

 $B \to K\pi$ decays are dominated by $b \to s$ penguin transitions and are interesting modes to look for possible new physics or constrain the CKM angle $\gamma[5]$. New results presented here are included in the tables. We note that the charge asymmetry $\mathcal{A}_{K^+\pi^0} = (6\pm 6\pm 1)\%$ is consistent with zero, while the measured direct asymmetry $\mathcal{A}_{K^+\pi^-} = (-13.3 \pm 3.0 \pm 0.9)\%$ is not[6]. The time-dependent *CP* parameters of $B \to K_s^0 \pi^0$ are related to the angle β and discussed in[7].

The branching fraction and asymmetry of the previously unobserved decay $B^0 \to K^0 \overline{K}{}^0$ is measured with a significance of 4.5σ including systematic uncertainties. Figure 2 shows the background-subtracted ΔE distributions. The background subtraction is performed by weighting events using the $_s\mathcal{Plot}$ technique[8].

2.3 $B^0 \rightarrow \rho^{\pm} \pi^{\mp}$

The final state of the decay $B^0 \to \rho^{\pm} \pi^{\mp}$ is not a *CP* eigenstate and the decay $B^0 \to \rho^0 \pi^0$ has not yet been observed. A direct extraction of α using simple isospin relations like in the $B \to \pi \pi$ system does not appear promising. Instead, we performed a full time-dependent Dalitz analysis of the charmless three-body system $B^0 \to \pi^+ \pi^- \pi^0$ with 213 million $B\overline{B}$ pairs, which allows a theoretically cleaner extraction of the angle $\alpha[9]$ compared to the previously adopted quasi-twobody approach. The 16 coefficients of the bilinear form factor terms occurring in the time-dependent decay rate of the B^0 meson are determined in a maximum-likelihood fit with an event yield of $n(B^0 \rightarrow \pi^+\pi^-\pi^0) = 1184 \pm 58$. The physically relevant quantities are derived from these coefficients, resulting in the measurement of the direct *CP*-violation $\mathcal{A}_{\rho\pi} = -0.088 \pm 0.049 \pm 0.013$ and $C = 0.34 \pm 0.11 \pm 0.05$ and the mixing-induced *CP*-violation parameter $S = -0.10 \pm 0.14 \pm 0.04$. For the dilution and strong phase shift we obtain $\Delta C = 0.15 \pm 0.11 \pm 0.03$ and $\Delta S = 0.22 \pm 0.15 \pm 0.03$, respectively. These results can be expressed in terms of the asymmetries $\mathcal{A}_{\rho\pi}^{+-}$ ($\mathcal{A}_{\rho\pi}^{-+}$), which involve only diagrams where the $\rho(\pi)$ meson is emitted by the W boson, and are shown in Tab. 2. For the relative strong phase δ_{+-} between the $B^0 \to \rho^- \pi^+$ and $B^0 \to \rho^+ \pi^-$ transitions we find $(-67\frac{+28}{-31} \pm 7)^{\circ}$.

3 Extraction of α

We use the isospin relations of reference[10] to extract information on the angle difference $\delta = \alpha - \alpha_{\text{eff}}$, based on the measurement of the branching fraction[11] $\mathcal{B}(B^0 \to \pi^+\pi^-) = (4.7\pm0.6\pm0.2) \times 10^{-6}$ in conjunction with the asymmetries $C_{\pi^+\pi^-}$ and $C_{\pi^0\pi^0}$ and the $B^0 \to \pi^0\pi^0$ and $B^{\pm} \to \pi^{\pm}\pi^0$ decay rates described here. We scan over all values of $|\delta|$ and calculate a χ^2 for the decay amplitudes, given these five measurements and the two isospin constraints for each value of $|\delta|$. The χ^2 is converted into a confidence level, as shown in Fig. 3, from which we derive an upper bound on $|\delta|$ of 35° at the 90% C.L.

From the measured coefficients of the amplitude relations in the Dalitz analysis we can extract an independent bound on α , with little theoretical assumptions. We find $\alpha = \left(113 \frac{+27}{-17} \pm 6\right)^{\circ}$, while only a weak constraint is achieved at the significance level of more than two standard deviations.

Acknowledgments

I would like to thank the organizers for an enjoyable and stimulating conference, and my BABAR colleagues for their assistance and helpful discussions.

References

- BABAR Collaboration, B. Aubert et al., hep-ex/0408062, hep-ex/0408080, hep-ex/0408081, hep-ex/0408089 and hep-ex/0408099.
- [2] BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Methods A479, 1 (2002).
- [3] Belle Collaboration, K. Abe et al., Phys. Rev. Lett. **93**, 021601 (2004).
- [4] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 91, 241801 (2003).
- [5] Z. Ligeti, talk at this conference, hep-ph/0408267.
- [6] J. Wu, talk at this conference.
- [7] A. Höcker, talk at this conference.
- [8] F. Le Diberder and M. Pivk, physics/0402083.

- [9] A. E. Snyder and H. R. Quinn, Phys. Rev. D 48, 2139 (1993).
- [10] M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990).
- [11] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 281802 (2002); A. Jawahery, Int. J. Mod. Phys. A 19, 975 (2004).

Decay	$\mathcal{B} \times 10^{-6}$	$N\sigma$
$B^+ \to \pi^+ \pi^0$	$5.8\pm0.6\pm0.4$	
$B^0 \to \pi^0 \pi^0$	$1.17 \pm 0.32 \pm 0.10$	5.0
$B^+ \to K^+ \pi^0$	$12.0\pm0.7\pm0.6$	
$B^0 \to K^0 \pi^0$	$11.4\pm0.9\pm0.6$	
$B^+ \to K^0 \pi^+$	$26.0 \pm 1.3 \pm 1.0$	
$B^0 \to K^0 \overline{K}{}^0$	$1.19 \pm 0.38 \pm 0.13$	4.5
$B^+ \to K^+ \overline{K}{}^0$	< 2.35 90% C.L.	

Table 1: Summary of branching fractions measured with 227 million $B\overline{B}$ pairs. The last column $(N\sigma)$ shows the significance including systematic effects.

Parameter	Value
$S_{\pi\pi}$	$-0.30 \pm 0.17 \pm 0.03$
$C_{\pi\pi}$	$-0.09 \pm 0.15 \pm 0.04$
$\mathcal{A}_{\pi^+\pi^0}$	$-0.01\pm 0.10\pm 0.02$
$C_{\pi^0\pi^0}$	$-0.12 \pm 0.56 \pm 0.06$
$\mathcal{A}_{K^+\pi^0}$	$0.06 \pm 0.06 \pm 0.01$
$\mathcal{A}_{K^0\pi^+}$	$-0.087 \pm 0.046 \pm 0.010$
$\mathcal{A}^{+-}_{ ho\pi}$	$-0.21 \pm 0.11 \pm 0.04$
$\mathcal{A}_{ ho\pi}^{-+}$	$-0.47 \pm 0.15 \pm 0.06$

Table 2: Summary of updated *CP* parameters.

Figure 1: Central values and 1σ contours of the time-dependent *CP* parameters $C_{\pi\pi}$ and $S_{\pi\pi}$ in the decay $B^0 \to \pi^+\pi^-$ on different *BABAR* datasets in contrast to the measurement from Belle.

Figure 2: ΔE distribution for background subtracted $B^0 \to K^0 \overline{K}^0$ events (see text).

Figure 3: Confidence level for the parameter δ from the full $B \to \pi \pi$ isospin analysis.

Figure 4: Confidence level for the CKM angle α from the $B^0 \to \pi^+ \pi^- \pi^0$ Dalitz analysis.