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Abstract. We present a fully object-oriented framework which provides the tools for track 
finding and fitting in a particle physics detector. The software is modular and extensible so that 
it can be applied to a wide range of detectors and can be finely tuned to optimize performance. 
We believe that this package can provide a common solution to the requirements of the Linear 
Collider simulation community. 

INTRODUCTION 

Reconstructed tracks are an important component in identifying all of the 
elementary particles in a physics event: electrons require the presence of a track with 
momentum matched to the energy of a calorimeter cluster, photons require the absence 
of such a match, muons require a track matching to a minimum-ionizing trace in the 
calorimeter or a track in tracking chambers outside the calorimeter, taus are narrow 
jets with one or three matching tracks, heavy quarks are tagged by tracks arising from 
secondary vertices within jets, etc. The tracking system is tasked with finding and 
reconstructing the trajectories of charged particles with high efficiency and precision 
over a wide range of track momenta and track densities.  

Designing central tracking detectors for high energy and high luminosity linear 
colliders requires sophisticated analysis tools to be available to answer detailed 
questions regarding pattern recognition and momentum resolution. Track finding is, 
however, one of the most challenging pattern recognition problems in the processing 
of data from a particle physics detector and mature software is traditionally not 
available when design decisions are being made. Efficient use of resources is also an 
essential part of this task, both computing cycles during processing and (perhaps more 
importantly) physicist’s time during development. The process of identifying energy 
deposits in various tracking detectors and using these signals to reconstruct the 
trajectories of the original charged particles lends itself naturally to an object-oriented 
implementation. We describe here an existing fully object-oriented framework which 
provides the tools for track finding and fitting in a particle physics detector. We 
believe that the linear collider tracking community would benefit by adopting this 
package as a common solution.  
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PACKAGE COMPONENTS 

Tracks 

We define a reconstructed track as a list of hits deduced from energy depositions in 
a detector and one or more kinematical fits based on these signals. In principle, six 
parameters are required to determine a charged particle’s path in a magnetic field. 
However, specifying these parameters at a single point (e.g. the distance of closest 
approach to the beam (DCA) is insufficient for precision fits due to material effects 
such as energy loss (dE/dx), multiple Coulomb scattering, and bremsstrahlung, and the 
effects of magnetic field inhomogeneities. There is, in practice, no global functional 
form for the fit: we use instead optimal fits at each surface. These fits themselves are 
referred to as tracks, as they are composed of a surface, a set of track parameters at 
that surface, and a corresponding error matrix for those parameters. Typically, there 
are five track parameters (two specifying the track position on the surface, two 
characterizing the direction and one determining the momentum) and one parameter 
provided by the constraint that the track lie on the surface. It should be noted, 
however, that this number can be different; the momentum parameter may be 
unnecessary in the absence of a magnetic field, or if additional measurements are 
involved, such as time or energy, they may be included.  

Clusters and Hits 

Clusters represent the observed signals from detector elements. Signals from nearby 
particles may not be separable and thus be merged into a single cluster. The 
measurements used to fit tracks are derived from hits. A cluster takes a track as input 
and returns a list of viable hits. A hit returns a measurement of any dimension along 
with an error matrix for that measurement. A hit can also provide a prediction of the 
measurement from the track along with its error matrix, and therefore the difference 
between the prediction and the measurement and the derivative of the prediction with 
respect to the track parameters. This is all the information required to fit the track with 
the hit.  

Surfaces and Layers 

A Surface describes an (N-1)-dimensional surface in the N-dimensional track 
parameter space.  In practice, this almost always reduces to an ordinary two-
dimensional surface in the usual three-dimensional coordinate space.  Surfaces come 
in two flavors: pure surfaces which are unbounded and bounded surfaces. Pure 
surfaces have the job of giving meaning to the parameters in a track vector.  They 
provide methods to return the position and direction of the track and the difference 
between two track vectors (accounting for circular variables). Bounded surfaces 
always inherit from a pure surface, and provide additional methods to return whether a 
specified track vector falls within their bounds. Several concrete surfaces covering 



most of the detector geometries typically found in high energy collider detectors are 
provided in the base distribution. 

We define a Cylinder as coaxial with the z axis and is therefore specified by a 
single parameter representing the radius of the cylinder. A bounded Cylinder adds a 
minimum and maximum extent in z. This surface would naturally be used for central 
drift chambers or other barrel-shaped detectors. We currently support pure axial and 
stereo hits (e.g. drift chamber or scintillating fiber detectors) as well as two-
dimensional hits (e.g. TPC) on this surface. 

An XYPlane is defined as a planar surface parallel to the z axis. It is specified by a 
distance from the axis and an angle with respect to the x axis. A bounded XYPlane 
adds rectangular boundaries to this plane. Silicon wafers in a vertex detector or silicon  
strip tracking detector would be modeled with this surface. Axial, stereo and 2D hits 
are supported. 

A plane perpendicular to the z axis is represented as a ZPlane, and specified by a 
single parameter z, the distance from the origin. Silicon wafers in a disk configuration 
or straw tubes in a forward tracking detector would be modeled with a bounded 
ZPlane, which introduces arbitrary closed, concave boundaries on the plane. Again, 
both one and two-dimensional hits are supported. 

The final surface is the distance of closest approach, DCA, defined to be where the 
track direction is normal to the track position in the x-y plane. Unlike the other 
surfaces discussed, it is not a 2D surface in 3D space but is unique to each track. 

Layers describe the geometry of the detector by holding surfaces, either directly or 
through sub-layers. Each cluster in an event is associated with a surface in the layer. A 
Detector is built from a collection of Layers which again may be organized in a 
hierarchy of detectors.  

Propagators and Interactors  

Propagators propagate track parameters and their errors from one surface to 
another. In general, they will account for the magnetic field and the effects of material 
interactions along the way. Propagators between and amongst all of the defined 
surfaces are provided in the base distribution. Currently, however, only homogeneous 
fields are handled, and interactions with material are handled separately. Interactors 
are defined for abstract interactions, with concrete implementations provided for thin 
scatterers and gaussian energy loss. 

Track Finding and Fitting  

Tracks are found by propagation between and through layers. When a track reaches 
a surface with associated clusters, each of the nearby clusters is used to generate hits 
and each of these hits is used to extend the original track. The default extension 
proceeds via a Kalman filter update, allowing us to take the track parameters and their 
error matrix and optimally add the information from a hit and its uncertainty to 
generate a new set of track parameters and error matrix. This process of propagation 
and updating can be used to perform pattern recognition in the same loop as the track 
fitting, or a list of hits can be provided from some external pattern recognition stage 



and simply fit. If a track encounters a surface without clusters, a Miss is added to the 
track. A Miss encapsulates the probability that no hit was found (representing for 
example the intrinsic efficiency of the detector, or the proximity of the track to a 
detector boundary), and at the end of the track finding one can cut on a combined miss 
probability instead of a fixed number of hits or misses. 

SIMULATION 

In order to test the various components of the toolkit, simulation tools were written 
during the development phase. These can now be used for fast simulations to model 
the response of various detector designs without having to write detailed GEANT-
level descriptions. The detector can be assembled from the provided surfaces, and 
interactors added to each appropriate layer. Particles from a Monte Carlo event can be 
propagated to each detector element in turn, generating the appropriate hit at the 
intersection of the track with the surface. The track vector is smeared to account for 
multiple coulomb scattering and modified for energy loss, then propagated to the next 
element. The full pattern recognition and fitting software can then be run on the event, 
providing fast feedback in the development cycle. 

SUMMARY 

The TRF++ track finding and fitting toolkit described here was originally written in 
object-oriented C++ for use in the DØ experiment at the Fermilab Tevatron [1,2]. 
From its inception, however, it was intended to be experiment-neutral in its 
implementation. Much of the software represents abstract base classes, providing 
developers the opportunity to extend the base functionality. We propose that 
substantial time and effort could be saved by adopting this toolkit for Linear Collider 
simulations. Most of the code has also been ported to Java to plug into the Java 
Analysis Studio [3] which is currently the framework for full reconstruction for the 
North American Linear Collider Detector simulation group.  
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