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Abstract

We compute the spectrum of light hadrons in a holographic dual of QCD defined on AdS5 × S5

which has conformal behavior at short distances and confinement at large interquark separation.

Specific hadrons are identified by the correspondence of string modes with the dimension of the

interpolating operator of the hadron’s valence Fock state. Higher orbital excitations are matched

quanta to quanta with fluctuations about the AdS background. Since only one parameter, the

QCD scale ΛQCD, is used, the agreement with the pattern of physical states is remarkable. In

particular, the ratio of Delta to nucleon trajectories is determined by the ratio of zeroes of Bessel

functions.
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The correspondence [1] between 10-dimensional string theory defined on AdS5 × S5

and Yang-Mills theories at its conformal 3+1 space-time boundary [2] has led to impor-

tant insights into the properties of QCD at strong coupling. As shown by Polchinski and

Strassler [3], one can give a nonperturbative derivation of dimensional counting rules [4] for

the leading power-law fall-off of hard exclusive glueball scattering in gauge theories with a

mass gap dual to supergravity in warped space-times. The resulting theories have the hard

behavior expected from QCD at short distances, rather than the soft behavior characteris-

tic of string theory. Other important applications to hadron physics are the description of

form factors at large transverse momentum [5] and the behavior of deep inelastic scattering

structure functions at small x [6]. One can also derive the fall-off of hadronic light-front

wavefunctions in QCD at large transverse momentum by matching their short-distance prop-

erties to the behavior of the string solutions in the large-r conformal region of AdS space [7].

The scale dependence of the string modes as one approaches the boundary from the interior

of AdS space determines the analytic behavior of the QCD hadronic wavefunction, providing

a precise counting rule for each Fock component with any number of quarks and gluons and

any internal orbital angular momentum. The specific correspondence in the k⊥ → ∞ and

x→ 1 limits provides a prescription which maps string modes into boundary states with well

defined number of partons [7]. The predicted orbital dependence coincides with perturba-

tive QCD analyses [8]. The AdS/CFT derivations validate QCD perturbative results [9, 10]

and also confirm the dominance of the quark interchange mechanism [11] for exclusive QCD

processes at large NC . Scaling laws and other aspects of high-energy scattering in warped

backgrounds have also been addressed in [12].

The N = 4 super Yang-Mills (SYM) theory at large NC in four dimensions is dual to the

low energy supergravity approximation to type IIB string compactified on AdS5 × S5 [1].

However, QCD is fundamentally different from SYM theories where all of the matter fields

appear in adjoint multiplets of SU(NC). The introduction of quarks in the fundamental

representation is dual to the introduction of an open string sector [13], where the strings

end on a brane and join together at a point inside AdS space. In the procedure introduced

by Karch and Katz [14], the endpoints of open strings are supported by Nf additional D7-

branes located along 1, 2, . . . , 7 dimensions. This system of NC D3-branes and Nf D7-branes

leads to a a calculable meson spectrum [15].

QCD is a nearly conformal theory in the ultraviolet region and a confining gauge theory
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in the infrared with a mass gap ΛQCD, and a well-defined spectrum of color-singlet hadronic

states. The isomorphism of the group SO(2,4) of conformal QCD in the limit of massless

quarks and vanishing β-function [16] with the isometries of AdS space, xµ → λxµ, r →
λ−1r, allows one to interpret the string wavefunction in the coordinate r as the extension

of the corresponding hadron wavefunction into the fifth dimension. Different values of r

correspond to different energy scales at which the hadron is examined: the holographic

coordinate r determines the scale of the invariant separation between quarks xµx
µ → λ2xµx

µ.

In particular, the r → ∞ boundary correspond to the Q → ∞, zero separation limit.

Conversely, color confinement implies that there is a maximum separation of quarks and a

minimum value of r. We thus shall assume that AdS space ends at a finite value ro = ΛQCDR
2

truncating the regime where the string modes can propagate. The cutoff at ro, breaks

conformal invariance and allows the introduction of the QCD scale.

A 10-dimensional non-conformal metric dual to a confining gauge theory is written as [3]

ds2 =
R2

z2
e2A(z)

(
ηµνdx

µdxν − dz2
)

+ ds2
X , (1)

where A(z) → 0 as z = R2/r → 0, and R is the AdS radius. The metric (1) behaves

asymptotically as a product of AdS space and a compact manifold X. Color confinement

will be described in a simplified model based on a “hard-wall” approximation where the

metric factor e2A(z) is a step function. This provides an analog of the MIT bag model where

quarks are permanently confined inside a finite region of space [17]. However, unlike bag

models, the truncated boundary conditions on string modes are imposed on the holographic

coordinate, not on the bag wavefunction at fixed time. The truncated AdS/CFT theory

thus provides a manifestly Lorentz invariant model with confinement at large distances and

conformal behavior at short distances.

The AdS/CFT correspondence can be interpreted in the present context as a classical

duality between the valence state of a hadron in the asymptotic 3 + 1 boundary and the

lightest mass string mode in AdS5×S5 [7, 18]. Higher Fock components are manifestations of

the quantum fluctuations of QCD; metric fluctuations of the bulk geometry about the fixed

AdS background should correspond to quantum fluctuations of Fock states above the valence

state. In fact, as shown by Gubser, Klebanov and Polyakov for large Lorentz spin, orbital

excitations in the boundary correspond to string degrees of freedom propagating in the bulk

from quantum fluctuations in the AdS sector [19]. We thus should identify the higher spin
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hadrons with the fluctuations around the spin 0, 1
2
, 1 and 3

2
string solutions on AdS5 × S5.

This identification avoids the huge string dimensions associated with spin > 2, which grow as

∆ ∼ (gsNC)
1
4 at large NC . The interpolating operators O, 〈P |O|0〉 6= 0, which couple to the

color-singlet hadrons at the boundary can be constructed from gauge-invariant products

of local quark and gluon fields taken at the same point in four-dimensional spacetime.

In contrast with the D3/D7 construction [14], we introduce quarks in the fundamental

representation at the AdS boundary, and follow their wavefunctions as they propagate into

the bulk. The endpoints of the open strings of the quarks of a given hadron then converge

to a point in the limit r →∞.

As a first application of our procedure, consider the twist -dimension minus spin- two glue-

ball interpolating operators O4+L = FD{`1 . . . D`m}F , written in terms of the symmetrized

product of covariant derivatives D. The operator O4+L has total internal spacetime or-

bital momentum, L =
∑m

i=1 `i and conformal dimension ∆ = 4 + L. We shall match the

large r asymptotic behavior of each string mode in the bulk to the corresponding conformal

dimension of the boundary operators of each hadronic state while maintaining conformal

invariance [18]. In the conformal limit, an L-quantum, which is identified with a quan-

tum fluctuation about the AdS geometry, corresponds to an effective five-dimensional mass

µ in the bulk side. The allowed values of µ are uniquely determined by requiring that

asymptotically the dimensions become spaced by integers, according to the spectral relation

(µR)2 = ∆(∆− 4). For large spacetime angular momentum L, we recover the string theory

results for the spectrum of oscillatory exited states µ ' L/R. The physical string modes are

plane waves along the Poincaré coordinates with four-momentum Pµ and hadronic invariant

mass states given by PµP
µ = M2. The four-dimensional mass spectrum ML then follows

when we impose the truncated space boundary condition Φ(x, zo) = 0 on the solutions of

the AdS wave equation with effective mass µ:

[
z2 ∂2

z − (d− 1)z ∂z + z2 M2 − (µR)2
]
f(z) = 0, (2)

where Φ(x, z) = e−iP ·xf(z). The normalizable modes are

Φα,k(x, z) = Cα,k e
−iP ·xz2Jα (zβα,kΛQCD) , (3)

with Cα,k =
√

2 ΛQCD/Jα+1(βα,k)R
3
2 , α = 2 + L and ∆ = 4 + L for d = 4. For small-z, Φ

scales as z−∆, where the scaling dimension ∆ of the string mode has the same dimension of
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the interpolating operator which creates a hadron. The four-dimensional mass spectrum is

then determined by the zeros of Bessel functions βα,k :

Mα,k = βα,kΛQCD (4)

The lattice results for the lowest glueball state Θ++, M' 1.5 GeV are consistent with the

holographic model predictions for ΛQCD ' 0.3 GeV.

We next consider the twist-two, dimension 3 + L, vector-meson operators Oµ
3+L =

ψγµD{`1 . . . D`m}ψ, dual to string modes Φµ = e−iP ·xfµ(z) propagating on AdS space with

polarization along the Poincaré coordinates. The string wavefunctions of the vector mesons

are then determined by the five-dimensional wave equation

[
z2∂2

z − (d− 1)z∂z + z2M2 − (µR)2 + d− 1
]
fµ(z) = 0, (5)

in the Φz = 0 gauge [20], with normalizable modes

Φµ
α,k(x, z) = Cα,ke

−iP ·xz2Jα (zβα,kΛQCD) εµ, (6)

where α = 1 + L and ∆ = 3 + L. The hadronic mass spectrum follows from Φµ(x, zo) = 0.

Similarly, the pseudoscalar mesons are described by the operator O3+L = ψγ5D{`1 . . . D`m}ψ,

dual to string modes polarized along the radial coordinate in the Φµ = 0 gauge.

The predicted spectrum is compared in Fig. 1 with the masses of light mesons listed

by the PDG [21]. We plot the values of M2 as function of L for ΛQCD = 0.263 GeV. The

predicted masses for the lightest hadrons are too high, but otherwise the results are in good

agreement with the empirical values. A string mode with a node in the coordinate r should

correspond to a radial resonance with a node in the interquark separation. The first radial

AdS eigenvalue has a mass 1.8 GeV which is high compared to the masses of the observed

radial excited mesons, the π(1300) or the ρ(1450). These defects could possible be cured by

modifying the sharp cutoff at ro.

The study of the baryon spectrum is crucial for our understanding of bound states of

strongly interacting relativistic confined particles. Different QCD-based models often dis-

agree, even in the identification of the relevant degrees of freedom [22]. There have been

recent advances with the computation of orbital excitations based on the 1/NC expansion [23]

and lattice gauge theory [24]. AdS/CFT provides new insights: consider the twist-three,

dimension 9
2

+ L, baryon operators O 9
2
+L = ψD{`1 . . . D`qψD`q+1 . . . D`m}ψ, dual to spin-1

2
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or 3
2

modes in the bulk. We need to solve the full ten-dimensional Dirac wave equation

/DΨ̂ = 0, since the lowest Kaluza-Klein (KK) mode of the Dirac operator on an N-sphere

is not zero. Consequently, baryons are charged under SO(4) ∼ SO(6) as obtained from

the isometries of X = S5. The field Ψ̂ can be expanded in terms of eigenfunctions ηκ(y)

of the Dirac operator on the compact space X, i/DXηk(y) = λκηκ(y), with eigenvalues λκ as

Ψ̂(x, z, y) =
∑

κ Ψκ(x, z)ηκ(y), where the y are coordinates of X. The AdS Dirac equation

is [20]
[
z2 ∂2

z − d z ∂z + z2M2 − (λκ + µ)2R2 +
d

2

(
d

2
+ 1

)
+ (λκ + µ)R Γ̂

]
f(z) = 0 (7)

where Ψ(x, z) = e−iP ·x f(z) and Γ̂u± = ±u±. For AdS5, Γ̂ is the four-dimensional chirality

operator γ5. The AdS mass µ is determined asymptotically by the orbital excitations in the

boundary: µ = L/R. The eigenvalues on Sd+1 are λκR = ± (
κ+ d

2
+ 1

2

)
, κ = 0, 1, 2, ... [25].

The normalizable modes for κ = 0 are

Ψα,k(x, z) = Cα,ke
−iP ·xz

5
2 [Jα(zβα,kΛQCD) u+(P ) + Jα+1(zβα,kΛQCD) u−(P )] (8)

where u− = γµPµ

P
u+, α = 2 + L and ∆ = 9

2
+ L. The solution of the spin-3

2
Rarita-

Schwinger equation in AdS space is more involved, but considerable simplification occurs in

the Ψz = 0 gauge for polarization along Minkowski coordinates, Ψµ, where it becomes similar

to the spin-1
2

solution [26]. The four-dimensional spectrum follows from Ψ±(x, zo) = 0 or

Ψ±
µ (z, zo) = 0

M+
α,k = βα,kΛQCD, M−

α,k = βα+1,kΛQCD, (9)

with a scale independent mass ratio.

It is not possible to match dimensions at the asymptotic boundary using the fully an-

tisymmetric color-singlet representation of SU(NC) at large NC . We use instead the 3-

quark representation of color-singlet baryonic states which has two quarks in the fun-

damental of color NC and one quark in the antisymmetric component of the tensor

product NC ⊗ NC [27]. We then can construct the gauge invariant baryon operator

O(x)9/2 = ψNC
(x)ψNC

(x)ψNC(NC−1)/2(x). For NC = 3 we recover the usual interpolating

operator which creates a physical baryon in QCD(3 + 1): O9/2 = εabcψaψbψc.

The spin-flavor quantum numbers of baryons can be identified from the SU(6) ⊃
SU(3)flavor ⊗SU(2)spin multiplet structure. The intrinsic spin S of a given hadron matches

the spin of its dual string. The boundary conditions are Ψ+(x, zo) = 0 for S = 1
2

nucleons
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FIG. 1: Light meson orbital states for ΛQCD = 0.263 GeV. Results for the vector mesons are shown

in (a) and for the pseudoscalar mesons in (b). The dashed line has slope 1.16 GeV2 and is drawn

for comparison.

and Ψ−
µ (x, zo) = 0 for S = 3

2
. Fig. 2 (a) shows the predicted orbital spectrum of the nucleon

states and Fig. 2 (b) the ∆ orbital resonances. The only parameter is the value of ΛQCD

which we take as 0.22 GeV. The nucleon states with intrinsic spin S = 1
2

lie on a curve

below the nucleons with S = 3
2
. In contrast to the nucleons, all the known ∆ orbital states

with S = 1
2

and S = 3
2

lie on the same trajectory. The boundary conditions in this case

are imposed on Ψ−. The predicted spectrum displays a clustering of states with the same

orbital L, consistent with a strongly suppressed spin-orbit force.

Eq. (9) predicts a novel parity degeneracy between states in the parallel trajectories

shown in Fig. 2 (a), as seen by displacing the upper curve by one unit of L to the right.

Remarkably, the nucleon states with S = 3
2

and the ∆ resonances fall on the same trajec-

tory [28]. In the quark-diquark model of Jaffe and Wilczek [29], baryon states on the lower

trajectory of Fig. 2 (a), correspond to “good” diquarks, the upper to “bad” diquarks, and

all the states shown in Fig. 2 (b) to “bad” diquarks. In contrast to the AdS/CFT results,

quark-diquark models need to tune away the spin-orbit splittings. One difficulty for the

truncated model: the first AdS radial state has a mass 1.85 GeV, so it is difficult to identify

it with the Roper resonance N 1
2

+
(1440).

The general agreement of the holographic model with the known light baryon spectrum

is quite remarkable and nontrivial. Essential features of QCD, its near-conformal behavior

at short physical distances plus color confinement at large interquark separation, are incor-

porated in the model. The AdS/CFT approach contains only one parameter, the QCD scale
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FIG. 2: Predictions for the light baryon orbital spectrum for ΛQCD = 0.22 GeV. The lower curve

in (a) corresponds to nucleon states dual to spin-1
2 modes and the upper to nucleon states dual to

spin-3
2 modes. The Delta states dual to spin-1

2 and 3
2 modes lie on the same trajectory as shown

in (b).

with ΛQCD = 0.24 ± 0.02 GeV. Moreover, the ratio of the Delta to nucleon trajectories is

parameter independent, depending simply on the ratios of zeroes of Bessel functions. The

approach is highly successful in organizing the hadron spectrum, although in the case of

mesons the holographic model underestimates the spin-orbit separations of the lowest or-

bital states. Our results suggest that basic features of the QCD hadron spectrum can be

understood in terms of a higher dimensional dual theory.
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