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Abstract

The electron cloud in positron storage rings is pinched when a bunch passes

by. For short bunches, the radiation due to acceleration of electrons of the cloud

is coherent. Detection of such radiation can be used to measure the density of the

cloud. The estimate of the power and the time structure of the radiated signal is

given in this paper.
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1 Introduction

Effect of the electron cloud on the transverse beam stability in the storage ring has been
discovered in the KEK Photon Factory[1] and studied extensively afterwards [2], [3]. The
instability is one of the culprits limiting performance of the B-factories. The density
of the cloud is the main parameter defining the instability. Diagnostics of the density
could be important in limiting adverse effects of the cloud. Here we study the coherent
radiation from the cloud as a possible tool for diagnostics of the e-cloud density. The
radiation is the result of acceleration of electrons in transverse to the beam plane by the
field of passing bunches. Radiation is coherent and propagates in the beam pipe. It can
be detected with an rf antenna. The amplitude of the signal depends on the density of
the cloud and can be used for the cloud diagnostics. We estimate here the power and the
time structure of the signal.

2 Model

The beam is a train of the high energy positron bunches. Electron cloud is generated by
synchrotron radiation and/or multipaction of secondary electrons. Electrons are acceler-
ated radially by the field of a passing bunch and radiate during the passage of a bunch.
Radiation field can be expanded over the eigen-modes H (±)

m,n, E(±)
m,n in the beam pipe. Con-

sider a round beam pipe with the radius b. The typical b are of few cm and the cut-off
frequency of the beam pipe is several GHz. Let us assume the frequency dependence in
the form e−iωt, use the cylindrical coordinate system with the axis along the beam line,
and denote by zd the point of observation of the radiation. The Fourier harmonics of the
magnetic field radiated at the frequency ω by the current induced in the electron cloud
and propagating in ±z directions are

H
± =

∑

m,n

a(±)
m,nH

(±)
m,ne

±iqm,n(z−zd), (2.1)

and similar equation for E±
m,n. Here m is the azimuthal number, and n the radial mode

number, The propagating constant qm,n = +
√

k2 − λ2
m,n is defined with the cut in the

complex plane of ω along the real axis from k = −λm,n to k = λm,n. On the upper edge of

the cut qm,n = +i
√

λ2
m,n − k2. The small positive imaginary part is implied, k = ω/c+ iε,

ε = 0+, and qm,n(−k∗) = −q∗m,n(k).
For TM mode, λm,n = νm,n/b where νm,n is the n-s root of the Bessel function

Jm(νm,n) = 0.
The explicit form of the eigen-modes can be found in the text books. In the following,

we assume that the induced current in the cloud is axially symmetric and has only radial
component. In this case, it is suffice to consider only m = 0 mode, and we drop this index
below. The nonzero components of azimuthal m = 0 TM modes are
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Es,r
n = is

qn
λn

J ′
0(λnr)e

isqn(z−zd), Es,z
n = J0(λnr)e

isqn(z−zd)

Hs,φ
n =

ik

λn

J ′
0(λnr)e

isqn(z−zd), (2.2)

where prime means derivative over the argument, s = ±1, λn = νn/b, and νn is the
n-th root of J0(νn) = 0.

The modes are orthogonal with the norm N s,s′

n,m being proportional to the integral of
the Pointing vector over cross section of the beam pipe,

N s,s′

n,n′ =
∫

dS(Es,r
n Hs′,φ

n′ − Es′,r
n′ Hs,φ

n ) = 2πb2s′
kqn
λ2

n

J2
1 (νn)δn,n′δs,−s′ . (2.3)

The amplitudes of the modes can be found from the identity following from Maxwell
equations for the free field E2, H2 and the the fields E, H driven in the same volume V
by the current j,

∫

dS[E1 ×H2 − E2 ×H1) = −Z0

∫

dV E1j
ω
2 . (2.4)

Here Z0 = 4π/c0 = 120π Ohms.
Substituting E, and H from Eq. 2.1 we get

a±n = ∓ Z0

N
(−+)
nn

∫

dV ′jr
ω(r′, z′)E∓,r

n (r′, z′). (2.5)

The integral in a± over z is taken over the region where the modes were generated:
−∞ < z < zd for a+ and zd < z <∞ for a−.

The relativistic bunch gives the radial kick to an electron of the cloud. Therefore, in
the axially symmetric structures, the current has only radial component.

The current can be defined from the equation of motion for the trajectory R(r, z, t)

d2R

dt2
=

2Nbrec
2R

R2 + σ2
⊥

ρB(z − ct), (2.6)

where re is classical electron radius, Nb is bunch population, and ρB(z) is the lon-
gitudinal density profile,

∫

ρB(z)dz = 1. We set the initial conditions at t = −∞
R(r0, z, t→ −∞) = r0, Ṙ(r0, z, t→ −∞) = 0.

It follows from Eq. 2.6 that R(r0, z, t) = R(r0, ζ) depends only on the initial location
r0 and the parameter ζ = ct − z. Let us assume the uniform density of the cloud,
n(r0, z0) = n0. Then, the current

j(r, z, t) = e
∫

2πr0dr0dz0n(r0, z0)Ṙ(r0, z0, t)δ(z − z0)
δ[r −R(r0, z0, t]

2πr

=
en0

r

∫

r0dr0Ṙ(r0, ζ)δ[r −R(r0, ζ)] (2.7)
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is also a function of r and ζ = ct− z, j(r, z, t) = j(r, ζ).
The integral in Eq. 2.5 over dr′ gives

∫

r′dr′J ′
0(λnr

′)j(r′, z′, t′) = en0

∫

dt′eikct′
∫

r0dr0
dR(r0, ζ

′)

dζ ′
J ′

0(λnR(r0, ζ
′)). (2.8)

Changing here integration over t′ to integration over dζ ′, ζ ′ = ct′−z′, and substituting
result in Eq. 2.5 we can carry out integration over dz ′. That gives

a(±)
n =

4πen0

kb2c0J2
1 (νn)

eikzd

k ∓ qn

∫

dζeikζ ∂f(ζ)

∂ζ
, (2.9)

where

f(ζ) =
∫ b

0
r0dr0J0[λnR(r0, ζ)]. (2.10)

Let us assume that the amplitude of a signal in the detector situated at z = zd is
determined by the component Er(r = b, zd, t). The field at z = zd is

Er(r, zd, t) =
1

2

∑

n

[a(+)
n E+,r

n n(r, zd) + a(−)E−,r
n (r, zd)], (2.11)

and takes the form

Er(r, zd, t) = θ(ct− zd)
∑

n

4πen0J1(νnr)

λ3
nb

2J2
1 (νn)

[
d2f(ζd)

d(ζd)2
+ λ2

nf(ζd) − λ2
nf(−∞)].(2.12)

Here ζd = ct− zd, and the last term f(−∞) = (b2/νn)J1(νn) is obtained using initial
condition R(r0, ζ → ∞) = r0.

In deriving Eq. 2.12 we used the integral

∫ ∞

−∞

dk

k
[
qn(k)

k + qn
− qn(k)

k − qn
]eikzd−ikc(t−ζ′/c)

= − 2

λ2
n

∫ ∞

−∞

dk

k
[k − λ2

n(k)

k
]eik(zd−ct+ζ′)

= 2πi[− ∂

∂ζ
δ(zd − ct+ ζ ′) + λ2

nθ(zd − ct+ ζ ′)], (2.13)

where θ(x) is the step function.
The power radiated by bunch per turn is P = ∆U/T0 where T0 is the revolution period

and ∆U is radiated energy,
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∆U =
c

4π

∫ dω

2π
|an|2|Nn,n|. (2.14)

∆U is given by the sum over modes propagating in the beam pipe. The sum converge
very rapidly and the main contribution is given by the lowest mode.

To proceed further, we consider two extreme cases of very short and very long parabolic
bunches.

In the first case, interaction with the bunch gives instantaneous kick. The trajectory
given by Eq. 2.6

R(r0, ζ) = r0 −
2Nbrer0
σ2
⊥ + r2

0

ζ. (2.15)

defines the function Eq. 2.10, f(ζ) = b2F (ζ/ζ0), where

F (ξ) =
∫

xdxJ0[νx(1 − ξ

(σ⊥/b)2 + x2
)], (2.16)

and

1

ζ0
=

2Nbre

b2
=
eZ0Ibunch

mc2
R

b2
, (2.17)

where mc2 is electron mass.
The field at r = b takes the form

Er(b, zd, t) = Λθ(ζ) Φ(ζ/ζ0), (2.18)

where

Λ =
4πen0R

2

bν3J1(ν)
(
eIbunchZ0

mc2
)2, (2.19)

and Φ is given by Eq. 2.26,

Φ(ξ) =
d2F (ξ)

dξ2
+ (

νL

b
)2F (ξ) − ν(

L

b
)2J1(ν), (2.20)

where F is related to f , f = b2F .
Because the sum converge very rapidly, we retain only the first term in the sum

ν = ν1 ' 2.4.
With the PEP-II parameters Ibunch = 2.5 mA, 2πR = 2.2 km, b = 2.5 cm, and

assuming typical n0 = 107 cm−3, we get Λ = 1.9 105(e/b2). The function Φ(ξ) is shown in
Fig. 1. It gives the shape of the signal measured at the wall for a short bunch provided
the signal is proportional to Er. For short bunches, the signal is due to radiation of the
instantaneously accelerated electrons and variation in time is defined by the parameter
ζ0.
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Figure 1: Time dependence of a signal proportional to Er at the wall for short bunches.

For parabolic bunches with the length 2L

ρ(ζ) =
3

4L
(1 − ζ2

L2
), (2.21)

and electrons within the beam, r0 < σ⊥, the equation of motion describes oscillations of
the trapped electrons,

d2R

dξ2
+ Ω2(ξ)R = 0,

Ω2(ξ) =
2NbreL

2

σ2
⊥

ρ(ξ) = Ω2
0(1 − ξ2), (2.22)

where ξ = ζ/L, ζ = ct− z and

Ω2
0 =

3NbreL

2σ2
⊥

. (2.23)

The field in this case is given by

Er(b, zd, t) = Λθ(ξ)Φ(ξ), (2.24)

where

6



Λ =
4πen0b

3

ν3L2J1(ν)
. (2.25)

ξ = ζ/L and Φ is given by Eq. 2.26.

Φ(ξ) =
d2F (ξ)

dξ2
+ (

νζ0
b

)2F (ξ) − ν(
ζ0
b

)2J1(ν). (2.26)

With the same parameters for n0 and b, and for L = 10 cm, Nb = 1013, σ⊥ = 5 mm,
we get Λ = (e/b2) 6.8 105. The time dependence in this case is shown in Fig. 2 and is
defined by the frequency Ω0.
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Figure 2: Time dependence of a signal proportional to Er at the wall for long parabolic
bunches.

Let us estimate the energy radiated by a long bunch. The radiated energy Eq. 2.14 is

∆U =
4π

ν2
(
en0

J1(ν)
)2

∫

dk
q

k
| 1

k − q
|2|

∫

dζeikζ df

dζ
|2. (2.27)

Here we neglected contribution of all trems except n = 1, and denote ν = ν1, q =
√

k2 − (ν/b)2.
The radiation is due to oscillations of electrons trapped in the bunch. Therefore, we

can assume that for such electrons R(r0, ζ) ' σ⊥ << b. Because significant contribution
comes from the first Bessel root ν1 ' 1, that allows us expand J0(λnR0) ' 1− (λnR0/2)

2.
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The trajectory with the initial conditions R(r0, 0) = r0, and (dR/dζ)ζ=0 = 0, is R(r0, ζ) =
r0 cosψ(ζ). In this approximation,

f(ζ) =
b2

2
− (

λnb
2

4
)2 cos2 ψ(ζ), , ζ > 0;

∫

dζeikζ df

dζ
= (

λnb
2

4
)2

∫

dζΩ(ζ) eikζ sin(2ψ(ζ)). (2.28)

The last integral can be evaluated by the saddle-point method. The integral is expo-
nentially small for 2Ω0/(kL) < 1, and

|
∫

dζΩ(ζ) eikζ sin(2ψ(ζ)|2 ' (
νb

4
)4(
kL

4
)2 2π

Ω0

√

(2Ω0/kL)2 − 1
(2.29)

otherwise. The radiated energy is given by k > ν/b and the condition 2Ω0b/(νL) > 1

∆U =
e2

b

1

2νΩ0

(
πn0b

3

2J1(ν)
)2(
ν

4
)4(
L

b
)2S(

2Ω0b

νL
), (2.30)

where

S(p) =
∫ p

1

x2dx
√
x2 − 1

(x−
√
x2 − 1)2

√
p2 − x2

. (2.31)

The function S(p) grows fast with p as p4, see Fig. 3.
Taking Nbunch = 1013, the typical density of the cloud n0 = 107 cm−3, σ⊥ = 0.5 cm,

L = 10 cm, and b = 2.5 cm we get Ω0 = 12.9, p = 2.7, S(p) = 181.7, and ∆U =
3.17 1019 (e2/b), about 0.7 µJ .

3 Summary and discussion

We give the estimate of the power radiated by the pinched electron cloud after passage
of a positron bunch. The power seems to be detectable and the detection of the signal
can provide information on the density of the cloud. The main difficulty, probably, is
separation of the signal from the signal induced by the bunch and from the wake field
induced by geometric discontinuities and the noise of the cloud. Placement of the detector
in a straight pipe may help to suppress the wake fields. Dependence of the signal on
current P ∝ n2

0 is quite different from the linear dependence of a signal on current due
to wakefields because the electron cloud density in saturation n0 itself proportional to
beam current. The frequency content of the signal depends on the bunch length and on
the transverse distribution of electrons in the cloud: electrons in the vicinity of the beam
oscillate with plasma frequency (ω/c)2 = 4πnre while electrons with initial radial position
r(0) >> σt shift slightly during the kick from the bunch. That also distinguish the signal
from the signal due to the long-range wake fields which have a narrow bandwidth around
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Figure 3: Function S(p).

the HOM frequency. The time structure of the signal is different from the bunch profile.
It would be interesting to study effect on the signal of the solenoidal magnetic field. Such
a field generated in the beam pipe to suppress the cloud changes the dynamics of the
electrons and would affect the signal.

It is worth mentioning the attempt to measure the density of the cloud by detecting
the phase shift of the RF wave induced in the beam pipe [4]. Unexpectedly, it was
discovered that the passing bunch strongly affects the detected signal. We suggest that
the interference may be explained by the coherent radiation of the cloud described above.
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