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Abstract

We study the influence of coherent synchrotron radiation (CSR) on particle bunches
traveling on arbitrary planar orbits between parallel conducting plates. The plates
represent shielding due to the vacuum chamber. The vertical distribution of charge
is an arbitrary fixed function. Our goal is to follow the time evolution of the phase
space distribution by solving the Vlasov-Maxwell equations in the time domain. This
provides simulations with lower numerical noise than the macroparticle method, and
allows one to study such issues as emittance degradation and microbunching due
to CSR in bunch compressors. The fields excited by the bunch are computed in
the laboratory frame from a new formula that leads to much simpler computations
than the usual retarded potentials or Lienard-Wiechert potentials. The nonlinear
Vlasov equation, formulated in the interaction picture, is integrated in the beam
frame by approximating the Perron-Frobenius operator. The distribution function
is represented by B-splines, in a scheme preserving positivity and normalization of
the distribution. For application to a chicane bunch compressor we take steps to
deal with energy chirp, an initial near-perfect correlation of energy with position in
the bunch.
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1 Introduction

Coherent synchrotron radiation (CSR) is expected to play an important and
often detrimental role in various advanced accelerator projects, for instance in
linac-based coherent light sources [1,2] and energy recovery linacs [3]. A large
concern is that CSR may cause transverse emittance growth in a bunch com-
pressor by inducing an energy spread that is mapped into the transverse mo-
tion through dispersion. There are two principal tasks in numerical modeling
of such phenomena. First, one must compute the fields produced by the par-
ticle bunch from a knowledge of past and present values of its charge/current
density. Principally, the longitudinal field within the bunch is needed, to find
the energy change due to the field of the bunch itself. Second, one needs to find
the effect of this field in subsequent evolution of the bunch form. This second
problem is usually addressed by the macro-particle method. One may aspire
to various degrees of self consistency. In the simplest case one would assume
that the electromagnetic field is that from particles moving under external
fields alone, without self forces. One would then examine the evolution of an
initial macro-particle configuration under that fixed field plus external fields.
Such a calculation is not self-consistent, but it can be useful and informative.
At the other extreme, one would try for full self-consistency, letting self fields
act to rearrange the particles at every time step.

Codes to address these issues have been developed over the past few years [4–
8], and despite formidable complications a decent agreement of the different
codes has been found in a benchmark test proposed at a meeting in Zeuthen
[9]. Nevertheless, because the problem is so complicated there is probably
room for improvement in the algorithms. We report some efforts to improve
the formulation in two directions: (1) to simplify the field calculation, and (2)
to study multi-particle dynamics by the Vlasov equation rather than by the
macro-particle method. We think that our proposal for item (1) will certainly
simplify coding, and we hope that it will also speed up the computation and
make it more robust. In item (2) the use of Vlasov may or may not save time,
but it promises to give much less noise and orderly convergence as the mesh
in phase space is refined. In fact, a Vlasov study of longitudinal motion in
storage rings with CSR has been very successful [10,11]. That was in a two-
dimensional phase space but over time intervals very much longer than those
of the four-dimensional, single-pass problem of a bunch compressor.

A feature of our work on both items (1) and (2) is that we apply a standard
technique of numerical analysis, namely spline approximation, to represent
charge/current densities and the phase space distribution function. Splines
are extremely convenient and have well understood convergence properties.
As far as we know, other investigators have not used general methods of nu-
merical analysis, instead preferring special techniques such as a representation
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of the bunch as a superposition of small Gaussian macro-particles [5].

2 Coordinate Systems and Charge/Current Densities

We have in mind single-pass systems such as a chicane bunch compressor
traversed only once by the particles [9]. With small modifications our treat-
ment should apply as well to multi-pass systems such as storage rings. In the
laboratory frame the spatial coordinates are (Z, X, Y ) and the independent
variable is u = ct. The particle orbits lie between two infinite, parallel, per-
fectly conducting plates, which are perpendicular to the Y -axis and separated
by a distance h = 2g. Points with Y = 0 are in the midplane, and every
orbit is in some plane Y = const ∈ (−g, g). The Y -direction is “vertical”. For
the chicane the reference orbit (design orbit) follows the Z-axis initially and
finally, and is in the midplane. We write the reference orbit as R0(βu) with
R0 = (Z0, X0), where βc is the speed of the reference particle. Generally, bold
face letters refer to two- component vectors.

A point can also be specified in terms of Frenet-Serret coordinates: arc-length
s along the reference trajectory, and the perpendicular distance x from the
trajectory at R0(s). Thus, R = (Z,X) = R0(s) + xn(s) where the unit nor-
mal vector is n(s) = (−X ′

0(s), Z
′
0(s)) and has been chosen so that its X

component is positive and the corresponding unit tangent is t(s) = R′
0(s) =

(Z ′
0(s), X

′
0(s)). After a change of independent variable from u = ct to s through

standard manipulations, a convenient set of dynamical variables for motion
in horizontal planes consists of the “beam frame” phase space coordinates
(z, pz, x, px). Here z(s) = s − βct(s), where t(s) is the time of arrival at arc-
length s. Thus z is the signed distance along the reference orbit, positive in
front of the reference particle. The conjugate variable is the relative energy
deviation pz(s) = (E(s)−E0)/E0, with E0 = mγc2 the energy of the reference
particle. Also px(s) = vx(s)/βc where vx is the velocity component along n.

Clearly Z,X and u are determined explicitly from z, x, s. To obtain an explicit
form for the inverse we note that we are interested in a bunch of particles with
small z and x. Expanding to lowest order in z and x we obtain

R = R0(z + βu) + xn(z + βu) = R0(βu) + M(βu)r + O(κ(z2, xz)) , (1)

where r = (z, x) and M = (t,n) is a rotation matrix. The factor κ in the
remainder is the curvature of the reference orbit and is defined by n′(s) =
κ(s)t(s). Since the radius of curvature is much greater than the bunch size
in our cases of interest, the remainder is negligible. Thus given Z, X and u
we have r = MT (βu)(R −R0(βu)) to good approximation, where T denotes
transpose.
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We wish to solve the Vlasov equation for the distribution function on beam
frame coordinates, f(z, pz, x, px, s). On the other hand, it is most convenient
to solve the Maxwell equations in the laboratory frame. We must then express
the lab frame charge/current density in terms of f . To that end suppose that
f has unit integral over all space and define

ρ(r, s) = Q
∫

dpzdpxf(z, pz, x, px, s) ,

τ(r, s) = Q
∫

dpzdpx pxf(z, pz, x, px, s) , (2)

where Q is the total charge. To an excellent approximation the lab frame
charge density ρL is

ρL(R, Y, u) = H(Y )ρ(r, βu) , r = MT (βu)(R−R0(βu)) , (3)

where
∫

H(Y )dY = 1 and H(Y ) is an arbitrary fixed vertical distribution of
charge. The main approximation (beyond the use of the first order expansion
(1)) is that at fixed r the density ρ(r, s) does not change appreciably when s
varies by an amount comparable to the bunch size. If in addition we assume
that f varies little when s changes by a bunch size then we find a corresponding
good approximation for the lab frame current density, which is defined by
JL(R, Y, u) = QH(Y )

∫
VF (R,V, u)dV, where V is the lab frame velocity

and F the lab frame phase space density with unit integral. The formula is

JL(R, Y, u) = βcH(Y )
[
ρ(r, βu)t(βu + z) + τ(r, βu)n(βu + z)

]
, (4)

where r is as in (3). It is justified to expand t and n through first order in z.
A derivation of (3) and (4) will be reported elsewhere.

3 Field Calculation

We calculate the electric field produced by (ρL,JL), but averaged over the
Y -distribution:

E(R, u) := 〈E(R, ·, u)〉 =

g∫

−g

H(Y )E(R, Y, u)dY . (5)

The averaged field can be computed much more quickly, and we believe that
it will produce nearly the same dynamics in the (Z, X) plane as the full field.

4



To evaluate (5) we begin with the general formula for the retarded potential
(scalar or vector),

ψ(R, Y, u) =

1

4π

∫
dR′

∫
dY ′ξ(Y ′)

S(R′, u− [(R′ −R)2 + (Y − Y ′)2)]1/2

[(R′ −R)2 + (Y − Y ′)2)]1/2
, (6)

where ξ(Y ) is the effective vertical charge distribution needed to impose
boundary conditions at the parallel plates by the method of images, namely

ξ(Y ) =
∞∑

k=−∞
(−1)kH(Y − kh) . (7)

Here we assume that the support of H(Y ) is well within the interval (−g, g).
The term with k = 0 gives the potential for free space. To average the potential
over Y as in (5) we replace the integration variable Y ′ by η = Y ′−Y and find

ψ(R, u) := 〈ψ(R, ·, u)〉 =

1

4π

∫
dR′

∫
dηΦ(η)

S(R′, u− [(R′ −R)2 + η2)]1/2

[(R′ −R)2 + η2)]1/2
, (8)

where Φ(η) =
∫

H(Y )ξ(Y + η)dY . For a Gaussian H(Y ) with rms width σY

we suppose that σY ¿ g and obtain

Φ(η) =
∞∑

k=−∞

(−1)k

√
2πσ

exp
(
− 1

2

(
η − kh

σ

)2)
, σ =

√
2σY . (9)

We assume that σ is sufficiently small to justify replacing the Gaussians in
(9) by delta functions. Thus, the averaging produces just a two-dimensional
integral,

ψ(R, u) =
1

4π

∞∑

k=−∞
(−1)k

∫
dR′S(R′, u− [(R′ −R)2 + (kh)2)]1/2

[(R′ −R)2 + (kh)2)]1/2
. (10)

The sources S in (10) for averaged scalar and vector potentials φ, A are
ρL/(Hε0), µ0JL/H, respectively. These are expressed in terms of beam frame
densities by (3) and (4). The averaged electric field is E = −∇φ− ∂A/∂t.

The integration in (10) is restricted to a very small part of the full R′ plane,
because of the small size of the bunch, but it is awkward to locate this region
owing to the fact that spatial and temporal arguments of the source both
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depend on R′. The bunch moves around, so to speak, during integration. The
task of integration is made drastically easier if we take the temporal argument
to be a new variable of integration. We first go into polar coordinates (ζ, θ),
then use the temporal argument v in place of the radial coordinate ζ. That is,

R−R′ = ζe(θ) , e(θ) = (cos θ, sin θ) , v = u− [ζ2 + (kh)2]1/2 . (11)

This incidentally gets rid of the small divisor in (10), giving the potential as
simply an integral over the source:

ψ(R, u) =

1

2π

∞∑

k=0

(−1)k(1− δk0/2)

u−kh∫

−∞
dv

π∫

−π

dθ S(R− [(u− v)2 − (kh)2]1/2e(θ), v) .

(12)

A further bonus is that the derivatives required to construct the field from
potentials act only on the spatial argument of the source (and the upper limit
of the v-integral). We have

E(R, u) = − 1

2π

∞∑

k=0

(−1)k(1− δk0/2)
[
2πµ0cJL(R, u− kh) +

u−kh∫

−∞
dv

π∫

−π

dθ
(

1

ε0

∇ρL(R̂, v)− µ0c(u− v)

[(u− v)2 − (kh)2]1/2
(e(θ) · ∇)JL(R̂, v)

)]
, (13)

R̂ = R− [(u− v)2 − (kh)2]1/2e(θ) . (14)

Strictly speaking the integrand has integrable singularities for k 6= 0, however
practically there are no points of singularity since ∇JL is effectively zero in a
neighborhood of such points. It is very fortunate for the numerical scheme that
(13) involves derivatives of the source only with respect to its spatial argument
(denoted by ∇), which will be given conveniently as derivatives of splines. A
differentiable representation of the time dependence of the source, something
relatively hard to achieve, is not needed. However, there is one remaining
numerical difficulty in that the boundary term 2πµ0cJL(R, u − kh) and the
integral may be nearly equal and opposite in sign for k = 0, thus requiring
a careful integration to get an accurate difference of two large terms. This
striking but mysterious feature was observed in the calculation with assigned
source reported in Section 5, but it may or may not happen in a self-consistent
field calculation. For k 6= 0 there is no problem since JL(R, u−kh) is negligible
for R near to the bunch at time u.
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It is quite easy to determine the effective region of the θ integration in (13).
Note that the sources in (13) have significant values only for R̂ of (14) re-
stricted to a bunch-sized neighborhood of R0(βv), according to (3) and (4).
For the CSR wake field at time u we are interested only in R in a bunch-sized
neighborhood of R0(βu). Thus the integrand is appreciable only when

R0(βu)−R0(βv)− [(u− v)2 − (kh)2]1/2e(θ) = O(∆) , (15)

where ∆ is a suitable measure of the bunch size. For k = 0 and u − v large
compared to ∆, this cannot be satisfied unless e(θ) has nearly the same di-
rection as R0(βu)−R0(βv), which is to say that the domain of θ integration
is tiny (and close to θ = 0 for a chicane with small bending angle). When
u − v gets close to ∆ the domain expands precipitously to the full (−π, π).
For k 6= 0 the condition (15) cannot be met unless u − v À kh, so for image
charges there are no contributions to the v-integral close to its upper limit.

4 Integration of Vlasov Equation

To state the Vlasov equation in the beam frame coordinates we need the
single-particle equations of motion. We assume that the only external forces
are from sharp-edged bending fields. To a good approximation the equations
can be linearized, except for the nonlinear CSR force. Using also the fact that
γ is large (order of 104) we obtain

dz

ds
= − x

R(s)
,

dpz

ds
=

eE(r, s)

E0

,
dx

ds
= px ,

dpx

ds
=

pz

R(s)
. (16)

These are the equations of standard linear optics perturbed by the collective
force from CSR, as in [12]. Here R is the bending radius and its sign must be
taken consistent with the definition of κ and the sign of the external magnetic
field. Also E(r, s) = t(s) · E(R0(s) + xn(s), s/β) is the tangential component
of the electrical field. We defined the field as a function of u = ct rather than
as a function of s, so we properly should use E(R0(s) + xn(s), (s − z)/β).
Since in integration of the Vlasov equation we freeze the field over times much
longer than typical z/c, this refinement would be useless as well as expensive.
We have neglected the transverse electric and transverse magnetic force, since
for relativistic particles one is expected to cancel the other to high accuracy.
The validity of this neglect will be checked at a later stage.

The unperturbed version of (16) with E = 0 can be solved explicitly [12] in
terms of the lattice functions D(s) , D′(s) , R56(s). This gives the transport
map Φ(s|0) from s = 0 to arbitrary s, with inverse Φ(0|s). For the Vlasov
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formulation we use the initial conditions of the unperturbed motion as phase
space variables [12]. With ζ = (z, pz, x, px), the phase space coordinates will
be

ζ0 = Φ(0|s)ζ . (17)

Now ζ0 is constant in the unperturbed case, and possibly slowly varying in
presence of the perturbation. The Vlasov equation for the distribution function
g(ζ0, s) = f(ζ, s) is

∂g(ζ0, s)

∂s
+

∂g(ζ0, s)

∂pz

e

E0

E([Φ(s|0)ζ0]1, [Φ(s|0)ζ0]3, s; g) = 0 . (18)

The Vlasov equation is to be integrated by approximating the Perron-Frobenius
(PF) operator. Over a small interval (s, s + ∆s) we regard E(r, s; g) as inde-
pendent of s, having the value it had after the previous s-step, and solve the
initial value problem for the single-particle equations corresponding to (18) on
that interval. We represent the solution of the IVP as a map Ψ(s + ∆s|s)(ζ0)
that takes any initial ζ0 into its image under the flow. The inverse map is
Ψ(s|s + ∆s). The propagation of g is given by the PF operator P associated
with Ψ, which is to say

g(ζ0, s + ∆s) = Pg(ζ0, s) = g(Ψ(s|s + ∆)(ζ0), s) . (19)

To apply this method we need some finite-dimensional representation of g and
a numerical integration of the differential equations to produce Ψ(s|s + ∆s).
For the former we choose an expansion in a spline basis made of Kronecker
products of one-dimensional B-splines [13]. Rather than using splines that
interpolate values of the function at mesh points, which are expensive to com-
pute and do not guarantee positivity of g, we use Schönberg’s Variation Di-
minishing Approximation, in which the coefficients are evaluated more quickly
as values of the function at averages of knots. In one dimension this is

f(x) =
∑

i

f(x∗i )Bi(x) , x∗i =
1

k − 1
(xi+1 + · · ·+ xi+k−1) , (20)

for B splines Bi of order k and knot sequence {xj}. The approximation has
second order accuracy for any k, so that the choice of k just controls the
smoothness. Since B-splines are non-negative, this method ensures that posi-
tive data f(x∗i ) produce a positive function. Our algorithm will be to start with
a positive distribution and redetermine the Schönberg spline coefficients after
each application of the PF operator. This guarantees that the distribution
stays positive. It is also important to guarantee conservation of probability,∫

gdζ0 = 1, which we do by dividing each new spline by its integral.
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For integration of the single-particle equations to find Ψ(s|s + ∆s) we apply
Euler’s method for a first try in code development, but there are various
possibilities for improvement. A factorization into maps moving the point
along coordinate axes in phase space may be efficient for evaluating the PF
operator on the Kronecker product of B-splines.

Now consider the particular case of a bunch compressor, similar to that of the
LCLS design. The initial distribution has the form

f(ζ0, 0) =
1

2πε0

exp
[
− 1

2ε0β0

(x2
0 + (α0x0 + β0px0)

2)
]
µ(z0)ρc(pz0, z0) , (21)

where β0, α0, ε0 are initial Twiss parameters and x-emittance. The factor ρc ex-
presses “energy chirp”, a close correlation of energy with longitudinal position
in the bunch:

ρc(pz0, z0) = a exp
[
− 1

2σ2
u

(
pz0 − uz0(1 + C(z0))

)2]
. (22)

Here u is the slope of the correlation line at z = 0, σu is a small parame-
ter expressing lack of the desired perfect correlation, a is for normalization,
and z0C(z0) is a small nonlinearity in the correlation, significant at the ends
of the z0-distribution and well represented as cubic. This nonlinearity repre-
sents effects of wake fields in the linac. The function µ(z0) is approximated as
parabolic over an interval, and zero elsewhere. Because of the tight correlation,
the pz0 distribution will also be nearly parabolic.

The pz0 − z0 correlation presents a previously unmentioned problem in the
spline representation of the distribution. The function ρc is a prime example
of functions that cannot be represented efficiently through a Kronecker prod-
uct basis {Bi(z0)Bj(pz0)}. To avoid the problem at s = 0 all we have to do is
use pz0 − uz0 as one phase space variable, and some independent linear com-
bination of pz0 and z0 as the complimentary variable, then use a Kronecker
product basis in the new variables. Since we work in the interaction picture,
we expect that the distribution of the two new variables will not change drasti-
cally with s, and therefore the spline representation will be efficient at all s. A
convenient coordinate change (z0, pz0) → (w1, w2) is the one that diagonalizes
the quadratic form in the exponent of ρc (with C(z0) = 0):

1

σ2
u

(
pz0 − uz0

)2

= (1 + u2)w2
1,

[ z0

pz0

]
= b

[−u 1

1 u

][ w1

w2

]
, b =

σu

(1 + u2)1/2
. (23)

Now the w1−w2 dependence of the initial distribution is exp(−(1 + u2)w2
1/2)
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·µ(b(w2−uw1)) which can easily be represented by Kronecker products. Then
our distribution will be

g(w1, w2, x0, px0, s)=
∑

ijkl

g(w∗
1i, w

∗
2j, x

∗
0k, p

∗
x0l, s)Bi(w1)Bj(w2)Bk(x0)Bl(px0), (24)

with a reasonable choice of spline knots. We allow B-splines of different phase
space variables to have different knot sequences, but do not show that in the
notation. It may be useful, if not strictly necessary, to diagonalize and scale
the initial distribution in (x0, px0) as well.

The densities (2) will also be represented as Schönberg B-spline series, but in
the original coordinates with basis functions Bi(z)Bj(x). The coefficients for
every s-step must be stored, at least until the early densities can no longer
communicate by light rays with the relevant evaluation points (R, u) of the
field.

5 Preliminary Numerical Studies

We have concentrated to date on the crucial matter of field computation,
taking an assigned charge/current source rather than one determined self-
consistently. The source in (13) is determined from (21) evolved in time by
the backward linear map Φ(0|s). All numerical calculations reported here take
µ(z0) to be Gaussian, C(z0) = 0 and use benchmark bunch compressor pa-
rameters from [9], i.e. γ = 9785, ε0/γ = 1mm-mrad, β0 = 40m, α0 = 2.6,
σz0 = 200µm, σu = 2 × 10−6, u = −36m−1, Q = 1 nC. The evolution of the
charge density in the Z −X plane in the absence of CSR is shown in Fig.(1).
We have focused on calculations of the mean and variance of the relative en-
ergy loss, the variance of the relative energy deviation and the normalized
transverse emittance (x-emittance) for comparison with [9]. We report results
on the first two. We calculate these in a first order perturbation theory where
we integrate the equations of motion (16) with initial conditions at s = 0 cho-
sen randomly according to (21), (22) and using the field E from the assigned
charge/current source.

The relative energy loss, pzL(s), for a single particle is given by

pzL(s) = pz(s)− pz0 =
e

E0

s∫

0

E(r(s′), s′)ds′ (25)

where r(s) is determined from (16), and depends on the initial conditions,
and pz0 is the unperturbed relative energy deviation which is constant. Since
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the standard deviation of pzL is roughly 2× 10−4, the statistical error with n
particles is 2× 10−4/

√
n. Thus we have taken 400 particles giving a statistical

error of order 10−5.

Our result for no shielding is shown by the solid (blue) curve in Fig.(2) where
we plot 〈pzL〉 vs s. Note our statistical error of 10−5 is very small on the
scale of the figure. The self-consistent, no shielding calculation of Kabel [6],
[9] is also shown on the figure by the dotted (red) curve and the agreement
is good. Nevertheless we expect that our self-consistent calculation will make
changes in the result. By the dashed (green) curve we plot our result including
shielding, for interplate gap h = 1cm. We added only the contribution from
k = 1 which we believe to be dominant.

In Fig. (3) we show our results for the standard deviation SD(pzL(s)) =
〈(pzL(s) − 〈pzL(s)〉)2〉1/2 of pzL by the dashed (blue) curve. The solid (red)
curve is the negative of 〈pzL(s)〉 with no shielding from Fig. (2). As in Fig. (2)
SD(pzL) was computed using 400 particles only as fluctuations for this number
of particles were small. In Fig. (4), the results of Emma, [6], [9], are plotted
similarly. The agreement is reasonable given that Emma’s field calculation in-
volves simplifications that we have not invoked; for instance his charge/current
source is one-dimensional.

We do not show our preliminary results for increase in the normalized trans-
verse emittance due to CSR, but we have evidence that they are consistent
with the results shown in [6], [9].

We continue to work on refining the above results, in particular the emittance.
In addition it will be interesting to repeat our calculations with realistic C(z0)
and µ(z0). The effect of C has big practical importance. The assigned source
model is a good guide of what to expect in the field calculation with self-
consistency. In fact, we plan to use it to determine the regime in which the
θ-integrand of (13) is appreciable, using analytic formulas to make precise the
considerations at the end of Section 3. In Fig.(5), for u = 12.75 at the center
of the fourth magnet, we show that the important range of θ is very small for
most v, but spreads out precipitously to the full (−π, π) when v gets close to
u. This means that the v-integrand also shoots up, roughly as a hyperbola.
It is then useful to change integration variable v → ξ = − log(u − v + ε),
with a small positive ε, to spread out the peak. A typical ξ-integrand is shown
in Fig.(6). Except for the small blip near ξ = −1.6, which is easy to locate
because it is near the retarded time, this can easily be integrated on a uniform
mesh.

11



6 Acknowledgments

Conversations with P. Emma, A. Kabel, and M. Venturini are gratefully ac-
knowledged.

References

[1] LCLS Design Study Report, SLAC, 1998.

[2] TESLA X-ray FEL project. See http://tesla-new.desy.de.

[3] For an overview see J. B. Murphy, Proc. 2003 Part. Accel. Conf., p.176, paper
TOAC001.

[4] R. Li, Nuc. Instrum. Methods Phys. Res., Sect.A 429, 310 (1998).

[5] A. Kabel, M. Dohlus, and T. Limberg, Nuc. Instrum. Methods Phys. Res.,
Sect.A 455,185 (2000); M. Dohlus, A. Kabel, and T. Limberg, ibid. 445, 338
(2000).

[6] L. Giannessi and M. Quattromini, Phys. Rev. ST Accel. Beams 6, 120101
(2003).

[7] M. Borland, Argonne National Laboratory report APS LS-287 (2000).

[8] P. Emma, private communication, and G. Stupakov and P. Emma, Proc. 2002
Euro. Part. Accel. Conf., p.1479.

[9] ICFA Beam Dynamics Mini-Workshop on CSR, Berlin-Zeuthen, 2002. See
http//www.desy.de/csr.

[10] M. Venturini and R. Warnock, Phys. Rev. Lett. 89, 224802 (2002).

[11] M. Venturini, R. Warnock, R. Ruth, and J. A. Ellison, “Coherent Synchrotron
Radiation and Bunch Stability in a Compact Storage Ring”, submitted to Phys.
Rev. ST Accel. Beams.

[12] S. Heifets, G. Stupakov, and S. Krinsky, Phys. Rev. ST Accel. Beams, 5, 064401
(2002).

[13] C. de Boor, A Practical Guide to Splines, (Springer, New York, 2002).

12



z -0.008
-0.006

-0.004
-0.002

 0
 0.002

 0.004
 0.006

 0.008

x

 0
 

 1e+08
 

 2e+08
 

 3e+08
 

Fig. 1. Charge density in Z −X-plane at successive times, showing bunch compres-
sion.
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Fig. 2. Mean relative energy loss, 〈pzL〉, vs. position in chicane.
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Fig. 6. ξ-integrand.
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