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Abstract--This paper presents the improvement in wall loss 

determination when adaptive mesh refinement (AMR) methods 
are used with the parallel finite element eigensolver Omega3P. 
We show that significant reduction in the number of degrees of 
freedom (DOFs) as well as a faster rate of convergence can be 
achieved as compared with results from uniform mesh refinement 
in determining cavity wall loss to a desired accuracy. Test cases 
for which measurements are available will be examined, and 
comparison with uniform refinement results will be discussed.  
 

Index Terms--Adaptive mesh refinement, finite element 
analysis, wall losses, error estimator  

I. INTRODUCTION 

    Wall loss calculations are becoming increasingly important 
in accelerator cavity design, especially for next generation 
high energy accelerators which plan to operate at higher 
currents and energies. In an accelerating cavity, increased wall 
loss reduces the shunt impedance and at high power, can lead 
to RF surface heating that degrades the cavity’s performance. 
Determining wall loss in complex cavity shapes requires 
numerical modeling which becomes more difficult when 
external coupling is introduced into the cavity. This causes the 
wall currents to localize in narrow regions around the coupling 
iris, making accurate wall loss calculation a challenging task. 
As part of the DOE SciDAC Accelerator Simulation project, 
SLAC and RPI are collaborating on the development of an 
adaptive mesh refinement (AMR) capability to improve the 
accuracy and convergence of wall loss (or quality factor) 
calculations in accelerating cavities. Specifically, the effort 
focuses on combining the parallelism and higher-order finite 
element formulation of SLAC’s eigensolver Omega3P and the 
mesh adaptation and geometry modules developed at RPI to 
provide a design tool that can predict a cavity’s properties such 
as frequency and quality factor reliably and with high 
accuracy.   

II. ADAPTIVE MESH REFINEMENT (AMR) 

The approach consists of interfacing SLAC’s parallel 
eigenmode solver Omega3P to RPI-SCOREC’s meshing 
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module to form a refinement loop (Fig.1). Beginning with an 
initial coarse mesh, Omega3P calculates the starting field 
solutions from which error estimates are derived [1-2] to 
provide as input to the meshing module. Based on the error 
estimates, the initial mesh is then modified in reference to the 
CAD model and a new mesh is generated for the next 
execution of Omega3P. This iterative procedure repeats until 
the desired accuracy is reached.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1 SLAC-RPI AMR loop. 

A.  Eigenmode Calculations 

Omega3P belongs to a suite of codes that includes time and 
frequency domain solvers that are based on tetrahedral mesh 
and finite element basis functions up to 6th order. The target 
applications are large, complex 3D accelerator components 
and beamline systems. Its development has been motivated by 
the need of the Next Linear Collider (NLC) project for a 
modeling tool that can provide frequency accuracy of 0.01%. 
The eigensolver incorporates the AV formulation and consists 
of an iterative method based on an Inexact Shift-Invert 
Lanczos algorithm, as well as an Exact Shift-Invert Lanczos 
scheme using SuperLU or WSMP as the direct linear solver. 
Parallelization is based on MPI and the code is portable to any 
Operating System in which an MPI implementation is 
available. The largest eigen-problem solved to date is 93 
million DOFs on 1024 IBM Power3 375MHz processors, 
taking about 700 GB memory and 420 minutes [3] to obtain 12 
eigenvalues and their corresponding eigenvectors.  The code 
has succeeded in meeting the NLC design requirements and is 
being applied routinely to simulate large structures consisting 
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of many cavities that cannot be modeled by codes running on  
a single CPU.  

  
B.  Error Estimator 

In AMR, the Zienkiewicz-Zhu (ZZ) method is used as the 
error estimator for mesh modification due to its advantages of 
simplicity in implementation and cost effectiveness [1-2]. 
From the Omega3P eigensolver, we obtain the numerical field 
solutions and their derivatives which are regarded as the raw 

field data rawE , rawH , rawE∇  and rawH∇ . In the ZZ error 

estimator, the basic assumption is that based on the raw fields, 

we can construct more accurate recovered fields recE , recH , 

recE∇  and recH∇ . Under this assumption, the error in the 

primary field or derived field is the difference between the raw 
field and the recovered field, which is measured by the L-2 
norm 

2Lrecraw EEerr −= ,           
2Lrecraw HHerr −= , 

or 

 
2Lrecraw EEerr ∇−∇= ,   

2Lrecraw HHerr ∇−∇= . 

The parameter err  is a piecewise continuous function which 
we integrate over each element to get an error for that element. 
For a given threshold, we judge which elements need to be 
refined or coarsened. The refine-coarsen process will be 
stopped if the total error δ is less than a specified value where 
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and     δ   : the sum of errors from all the elements, 

           Ω  : the whole solution domain, 

           iΩ : the ith element domain, 

           N : the total number of elements. 
 
C.  Mesh Adaptation 

Based on the error field derived above, a mesh size field is 
generated by performing an optimization that minimizes the 
total number of elements in the whole domain subject to a 
constraint set by the local error field and size field. The mesh 
size field is used as the input to the mesh modification package 
to perform mesh refinement or coarsening and smoothing.  

RPI’s mesh modification package [4-6] contains a general 
mesh adaptation procedure that applies mesh modification 
operations to yield a mesh of the same quality as one that 
would be obtained by the standard re-meshing procedure but at 
less computational cost [7]. In particular, based on the 3-D 
geometry model and the corresponding tetrahedral mesh, the 
package can effectively modify the starting mesh until the 
target element size and shape distribution are met with the 
curved domain boundaries properly approximated. 

III. NUMERICAL RESULTS 

A. Trispal 4-Petal Accelerating Cavity 
The first test case for the AMR procedure is the Trispal 4-

petal accelerating cavity for which measured data are generally 
available [8-10]. Frequency and quality factors are known for 
the zero and pi modes so that direct comparison with 

simulation can be made to provide a benchmark for the 
method. The Trispal 4-petal accelerating cavity (CEA, France) 
is a 2 cell cavity in which the cells are coupled through 4 
“petal” holes in the common cavity wall. The coupling hole 
influence on Q is quantified by QQ /∆ , which is defined as 

the factional change in Q as a result of the cell-to-cell coupling 
when compared with the uncoupled cavity. . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2   Frequency (Top) and Q (Bottom) convergence vs. the number of 
unknowns for the pi mode in the Trispal cavity. 

       

     Fig.2 shows the convergence of frequency and Q with the 
number of unknowns for the pi mode where each data point 
represents a refinement step. Fig.3 shows the mesh and wall 
loss distribution on the cavity surface for three AMR steps 
with increasingly denser mesh in the area of high field 
concentration (from left to right). Table I shows the Omega3P 
results with AMR and with uniform mesh refinement (UMR) 
and how they compare with measurement data for the pi and 
zero modes. We can see that the AMR capability provides a 
much closer agreement to measured data and requires a much 
reduced number of DOFs, clearly demonstrating its advantage 
in generating the optimal mesh for accurate wall loss 
calculations. 

  
 
 
 
 
 
 

 
Fig. 3 Mesh and wall loss distribution for three AMR steps. 

 
 Frequency 

(MHz) 
Q Factor dQ/Q 

    Mode Pi Zero Pi Zero Pi Zero 

Measurement 1064 1072 11340 12938 -22.5% 0.9% 

Omega3P (UMR) 1066 1074 12111 13738 -19.6% 3.4% 

Omge3P (AMR) 1066 1074 12004 13688 -21.7% 1.4% 
 

Table I. Comparisons among measured data, Omega3P with AMR & 
Omega3P with UMR on Trispal 4-petal cavity. 
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B. NLC Damped Detuned Structure 
The Damped Detuned Structure (DDS) [11-12] is the 

baseline linac structure design for the NLC, a proposed DOE 
accelerator for high energy physics research. The important 
requirements for the DDS cavity are that the accelerating mode 
frequency has to be known to within 0.01% of the designed 
value, and that the wall loss to be calculated as accurately as 
possible for efficiency and thermal management reasons. 
Previously, Omega3P calculations have shown capable of 
meeting these requirements using uniform refinement and they 
form the basis on which the NLC linac has been developed and 
prototyped. The goal of the AMR is to improve on this design 
procedure by reducing both manual and computing resources.  

 
 
 

 
 
 
 
 
 
 

Fig. 4   Mesh and wall loss distributions corresponding to three AMR steps 
for the DDS pi mode from Omega3P solutions.  

 
Fig. 4 shows the mesh adaptivity for the DDS pi mode as 

the AMR process progresses and the allocation of new mesh 
points to regions of high wall loss concentration. The 
effectiveness of the procedure is demonstrated in Fig. 5 which 
compares the convergence of freqency and Q from uniform 
refinement (Blue) and from adaptive refinement (Purple). The 
convergence is much faster using AMR which means a much 
reduced number of unknowns is needed to reach the target 
accuracy. In the case of the Q calculations, the reduction is a 
factor of 18, which is expected to be even more significant 
when large problem sizes are considered.  

IV. CONCLUSION 

Under the DOE SciDAC Accelerator Simulation project, 
SLAC and RPI are working together on the development of an 
adaptive mesh refinement capability to improve the accuracy 
and convergence of wall loss determination in accelerating 
cavity design. The adaptive procedure has been implemented 
in the parallel finite element eigensolver Omega3P and applied 
to the Trispal 4-petal accelerating cavity, for which measured 
data are available as a benchmark test. When applied to the 
NLC DDS cavity, an order of magnitude reduction in the 
number of unknowns has been achieved to obtain the desired 
accuracy. The team is now focused on implementing a parallel 
AMR capability to further reduce the amount of computing 
and human effort involved in these important computations 
that are necessary for next-generation accelerator 
development. 
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    Fig. 5 Frequency (Top) and Q (Bottom) convergence vs. number of 

unknowns for DDS pi mode with blue line denoting uniform refinement and 
purple line denoting adaptive refinement.  
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