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We study a new approach to produce x-ray by cascading several stages of a High-Gain Harmonic
Generation (HGHG) Free-Electron Laser (FEL). Besides the merits of a Self-Amplified Spontaneous
Emission (SASE) scheme, an HGHG scheme could also provide much better stability of the radiation
power, controllable short pulse length, more stable central wavelength, and radiation with better
longitudinal coherence. Detailed design and optimization scheme, simulation results and analytical
estimate formulae are presented. To lay results on a realistic basis, the electron bunch parameters
used in this paper are restricted to be those of DESY TTF and SLAC LCLS projects; however, such
sets of parameters are not necessary to be optimized for an HGHG FEL.
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I. INTRODUCTION

Short wavelength Free-Electron Lasers (FELs) are per-
ceived as the next generation of synchrotron light sources.
In the past decade, significant advances have been made
in the theory and technology of high-brightness elec-
tron beams and single-pass FELs. These developments
facilitate the construction of practical vacuum ultra-
violet (VUV) FELs and make x-ray FELs possible.
Self-Amplified Spontaneous Emission (SASE) [1–15] and
High-Gain Harmonic Generation (HGHG) [16–24] are the
two leading candidates for VUV and x-ray FELs. The
first HGHG proof-of-principle experiment [19, 20] suc-
ceeded in August, 1999 in Brookhaven National Labo-
ratory. The experimental results agree with the theory
prediction. The following advantages of the HGHG FEL
over the SASE FEL were confirmed: 1. much better
longitudinal coherence, 2. much narrower bandwidth, 3.
more stable central wavelength. These HGHG FEL ad-
vantages were further confirmed recently in ultraviolet
wavelength regime [23, 24]. These stimulated our inter-
est in investigating whether it is now feasible to produce
an x-ray FEL by the HGHG-based scheme. This is the
purpose of this study.

In this paper, we first describe the principle of HGHG
FEL in Section II. Then in Section III, we give the details
of how to produce x-ray by the HGHG scheme. The
stability of such an HGHG scheme and its sensitivity to
electron quality are discussed in Section IV. The results
are presented in Section V. Finally, in Section VI, after
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some discussion, we present our conclusions.

II. THE HGHG PRINCIPLE

The HGHG scheme was inspired by some earlier and
related ideas [25–37]. A one-stage HGHG FEL scheme
has three components: one undulator used as the mod-
ulator, one dispersion section, and a second undulator
used as the radiator. As shown in Fig. 1, a seed laser,
together with an electron beam, is introduced into the
modulator. In the modulator, the seed laser (λ=10.6 µm)
interacts with the e-beam, and a small energy modulation
is formed in the e-beam. Note that the energy modula-
tion is induced by a high-peak-power, high quality seed
laser, rather than by the spontaneous emission of the elec-
tron beam itself. The energy-modulated e-beam passes
through the dispersion section (a three-dipole chicane),
where the energy modulation in the e-beam is converted
into spatial modulation. Again, because the high-peak-
power, high quality seed laser dominates the spontaneous
emission from the electron beam itself, the phase infor-
mation of the seed laser is preserved in the spatial mod-
ulation in the electron beam. Abundant harmonics exist
in such spatially modulated e-beam, which then enters
the radiator. The radiator is designed to be resonant
to one of the harmonics of the seed laser frequency ω.
Once the spatially modulated e-beam enters the radia-
tor, rapid coherent emission at this resonant harmonic n
ω is produced, and then this harmonic is further amplified
exponentially until saturation. This is exactly the main
set-up for the first HGHG experiment [19, 20]. In this
experiment, the input CO2 seed laser power was 0.7 MW
at 10.6 µm, the output HGHG FEL power was about
35 MW at 5.3 µm. Compared with the seed laser, Har-
monic Generation was achieved, i.e. the second harmonic
was radiated. This harmonic is then amplified by a High
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Gain FEL process. The final HGHG FEL pulse energy
was measured to be ∼ 107 times as large as the spon-
taneous radiation and ∼ 106 times as large as the SASE
FEL. This experiment proved the principle of the HGHG
FEL, and also demonstrated the advantages of HGHG
FEL.

In order to distinguish the relative local energy spread
before the e-beam enters the undulator from the relative
local energy spread growth due to the quantum diffusion
effect [38] when the e-beam traverses the undulator, in
our paper we use “initial relative local energy spread” to
refer to the value before the e-beam enters the undulator.
Thus in Fig. 1, σγ/γ = 0.043% is the initial relative local
energy spread.

III. THE HGHG SCHEME TO PRODUCE
X-RAY

A. Design scheme

We now describe the approach to generate x-ray by
cascading HGHG stages [39, 40]. Cascading two stages
of HGHG for soft x-ray FEL has been proposed before
[41, 42]. To reach x-ray, we need more than two stages
and there are new issues to be addressed here.

Lasers with wavelengths of thousands Ångstrom are
commercially available. We hoped to produce x-rays of
only several Ångstroms. To achieve 1 Å by one step
of HGHG would require extremely high harmonics, of
the order of several thousands. Previous studies [41, 42]
tried to reach XUV wavelengths by one stage of Har-
monic Generation followed by an amplifier Such an ap-
proach requires very high input seed laser power to get
high harmonic output. Beyond the 60th harmonic, this
becomes difficult. Also, as we will discuss in the Sec. IV,
trying to reach a very high harmonic of the seed laser
causes the stability of the output FEL to be bad. Hence,
we need to cascade several stages of HGHG, and there
are new isses to be addressed. We make the following
modifications.

1. We need multiple stages. During each stage the nth
harmonic of the seed laser will be produced at the end
of the radiator, and then this harmonic will be used as
the seed for the next stage. In reality, n could not be too
large. In our design we use n = 3, 4 and 5 to achieve
stable performance. If we begin with a commercial laser
of thousands of Ångstrom as the seed, we need several
stages to get down to the hard x-rays with a wavelength
of several Ångstroms.

2. Conceptually, the device is composed of two parts,
a converter [28], and an amplifier. The converter, con-
sisting of several stages, converts the seed laser to the
designed wavelength step by step. Then at the end, an
amplifier exponentially amplifies the radiation obtained
from the last stage to saturation.

3. Except for the first two stages and the last amplifier,
each stage only converts the light to its nth harmonics.

Exponential growth is not required as long as the har-
monic power is high enough to be used as the seed for
the next stage.

4. Since the energy of the electron beam should match
the corresponding radiation wavelength to achieve best
efficiency, electron beam will have different optimized en-
ergy for each stage. For the purpose of comparison, we
restrict ourselves to the parameters from the DESY TTF,
and SLAC LCLS projects. The one with the lower en-
ergy, E = 2 GeV, works in the longer-wavelength stages,
and the other, E = 14 GeV, works in the shorter-wave
length stages. Without this restriction, further optimiza-
tion of the results presented in this paper should be pos-
sible [43].

5. As we will illustrate in the following, the phase mix-
ing induced by the emittance in the dispersion section is
negligible compared with that induced by the local en-
ergy spread. Because of the Natural Emittance Effect
Reduction (NEER) mechanism, the emittance will play
a less important role in the converter, i.e., the Harmonic
Generation stages. For the purpose of comparison with
the SASE FEL, in this paper we restrict ourselves to
the parameters from DESY TTF with normalized emit-
tance εn = 2 π mm-mrad, and SLAC LCLS project with
normalized emittance εn = 1.5 π mm-mrad. A new oper-
ation mode by optimizing the electron beam parameters
in a different way is underinvestigation [43].

6. Since we need cascade several stages of HGHG, we
need some extra components. Each stage will be the same
as that shown in Fig. 1, i.e., each stage will consist of one
modulator, a dispersion section, and one radiator. The
physics process in each stage will be the same as in the
recent experiment [19, 20]. During the process, the out-
put radiation has disturbed a part of the e-beam, which
coincides with it. Therefore, to achieve the best efficiency
in the next stage of HGHG, we need use a fresh e-beam.
There are two methods for this. The first is to shift the
laser (i.e., the output radiation from the previous HGHG
stage) to the front part of the same e-beam, so that the
laser will interact with a “fresh” part of the same e-beam.
The second is to introduce a different electron bunch for
each stage, so that again the laser will interact with a
“fresh” bunch. This is the “fresh bunch technique” [44].
Both are schematically plotted in Fig. 2. For the first
case, i.e. using the same e-beam, we use a “shifter” to
“shift” the laser to the “fresh” part of the same e-beam.

Let us now present the details of the whole device. As
shown in Fig. 3, we consider an available laser with a
wavelength of 2, 250 Å, and a peak power of Pin = 1
GW. The corresponding start-up shot-noise power [10]
is only about Pnoise ≈ 60 W. Thus the input seed laser
power dominates the shot-noise power. This is true for
all seed lasers into the five stages and the last amplifier.
This dominance is necessary, because even though there
is only negligible noise power in the initial stage, the
signal-to-noise ratio of the final radiation at 1.5 Å might
be degraded [45]. Calculation [43] shows that a 1 GW
seed laser could ensure that the signal-to-noise ratio at
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FIG. 1: Schematic plot of the set-up of the first lasing HGHG experiment.

FIG. 2: Schematic plot of the two types of the “fresh bunch technique”. In the first case, we use the same e-beam; in the
second case, the first e-beam is dumped and a second e-beam is introduced. The filled pulse stands for the laser pulse.
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the final 1.5 Å radiation to be around 10. After 5 stages,
we get 1.5 Å radiation, and then this 1.5 Å radiation
is amplified to the saturation region with a peak power
around 15 GW by traversing the last undulator, called
the amplifier. The parameters for the electron beam, the
undulators, and the dispersion section are given in the
table of Fig. 3. Let us first explain the meaning of each
parameter in Fig. 3. The number in the first row stands
for the output power of each stage. The output power
of one stage is the input power of the next stage, though
diffraction effect should be taken into consideration as
we will discuss shortly. The second row stands for the
corresponding wavelength of the radiation. The e-beam
parameters are printed just below the schematic device.
The relative local energy spread given in the plot is the
initial relative local energy spread before the e-beam goes
into the first modulator. This is increased by sponta-
neous radiation. We take this into account [38], and give
its value at the end of the modulators in the table. For
the first two stages, where the wavelength of the radia-
tion is comparably long, we use a lower-energy e-beam.
The parameters are those of the DESY TTF, except that
the energy is 2 GeV. The e-beam has a peak current of
2, 500 Amp, an energy of 2 GeV, a normalized emittance
εn = 2 π mm-mrad and an initial relative local energy
spread σγ

γ = 5× 10−4. For the following stages, a higher
energy e-beam is used. It has the parameters of those of
SLAC LCLS project. That e-beam has a peak current of
3, 400 Amp, an energy of 14 GeV, normalized emittance
εn = 1.5 π mm-mrad and an initial relative local energy
spread σγ

γ = 6 × 10−5. In the table, the fist row gives
the radiation wavelength; the second row, the undulator
period, and the third row the dispersion strength. The
fourth row gives the relative local energy spread (with
the quantum diffusion effect [38] taken into account) at
the end of the modulator in each stage. This number is
used as the effective relative local energy spread in the
calculation for this paper. We further upgrade [46] our
code to simulate the growing of the relative local energy
spread along the undulator, and the results obtained us-
ing this effective relative local energy spread agree well
with the results given by the upgraded code. The fifth
row gives the length of the undulators (modulators, radi-
ators, and the amplifier). For example, the last amplifier
has a length of 33.5 m. The sixth row gives the power
e-folding length in each undulator without energy modu-
lation. The table has six boxes; the first five boxes stand
for the five stages and the last one for the amplifier. In
each of the five boxes, which stand for each stage, the
left column gives the parameters for the modulator and
the right column those for the radiator; the numbers in
the middle stand for the dispersion strength dψ

dγ and the
relative local energy spread σγ

γ at the end of the modu-
lator. For example, the second box stands for the second
stage. The left column in this second box stands for the
modulator of the second stage. The table shows that in
the modulator the resonant radiation has a wavelength of
450 Å, the modulator has a period of 4.6 cm, the length

of the modulator is 0.7 m, and the corresponding power
e-folding length without energy modulation is 0.6 m. The
right column shows that the radiation in the radiator has
a wavelength of 90 Å, the radiator has a period of 3.2 cm,
the length of the radiator is 4 m, and the corresponding
power e-folding length is 0.7 m. In the middle, i.e. 0.21,
stands for the dispersion strength dψ

dγ , and 5×10−4 stands
for the relative local energy spread σγ

γ at the end of mod-
ulator. Similarly for the other boxes, except for the sixth
one. Since the sixth box stands for the amplifier, there
is no dispersion strength dψ

dγ , and the relative local en-
ergy spread σγ

γ is the average value along the amplifier.
The effect of the global energy spread (or correlated en-
ergy spread, in the terminology of certain other workers
in this field) is addressed in the following discussion of
the sensitivity to the parameter variation, for its effect is
essentially an issue of detuning.

Now, let us explore the physics process in such a de-
vice. As shown in Fig. 3, the 2, 250-Å laser, with a
peak power of 1 GW, together with the 2-GeV e-beam,
is introduced into the modulator of the first stage, where
an energy modulation is formed in the e-beam. Then by
passing through the following dispersion section, the en-
ergy modulation is converted into a spatial modulation.
Such a spatially-modulated e-beam is then introduced
into the following radiator. Since the radiator is reso-
nant to the fifth harmonic of the seed laser, we will have
450-Å radiation, which is produced by coherent emis-
sion followed by an exponential growth into saturation.
In order to go to next stage, we need a shifter, in which
the e-beam is magnetically delayed. Thus, effectively, the
450-Å radiation is shifted to the front part of the same
e-beam, where the e-beam is still “fresh”. Because, for
the 2 GeV e-beam and the parameters we choose for the
undulators, the quantum diffusion effect [38] is negligible,
we use a “shifter” to meet the “fresh-bunch” requirement
to achieve the best efficiency. Now, the 450-Å radiation
serves as the seed laser in the second stage, where the
450-Å radiation input generates a 90-Å output with
a power of 1.7 GW. Up to this stage, we are using the
lower energy e-beam, and the wavelength is relatively
long. In order to achieve high-power x-rays, the 2-GeV
e-beam is dumped after this stage, and a 14-GeV e-beam
is introduced for the next stage. Now, the 90-Å radia-
tion is the seed laser for the next stage to be converted
to 18-Å. Here we would like to emphasize that, for this
and for the following fourth and fifth stages, the radiator
works in the coherent emission region, i.e. after the co-
herent emission is finished, the radiation is introduced to
the next stage without exponential growth. This makes
the total length of the device short. For the 14-GeV e-
beam and the parameters we choose for the undulators
of each stage, the quantum diffusion effect [38] will lead
to a local energy spread growth comparable to the initial
local energy spread. Local energy spread growth will de-
grade the harmonic generation efficiency, we therefore use
one bunch for each stage to meet the “fresh bunch” re-
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FIG. 3: Schematic plot of the device for producing x-rays with an HGHG-based approach.

quirement to achieve the best efficiency in an ideal study.
Hence, after the 18-Å radiation is produced, the e-beam
is dumped and a “fresh” bunch is introduced into the
next modulator, where the 18-Å radiation interacts with
this “fresh bunch” to produce energy modulation. This
process is repeated at the 4th and 5th stage. After each
stage, the used e-beam is dumped with a new beam in-
troduced for the next stage to reduce the energy spread
growth. In the radiator of the 5th stage, right after the
coherent emission is finished, the e-beam is also dumped
and a “fresh bunch” is introduced to interact with this
1.5-Å radiation in the last undulator, i.e. the amplifier,
of the device. In the amplifier, the 1.5-Å radiation in-
teracts with a “fresh” 14-GeV e-beam, and the radiation
is amplified exponentially until saturation. Finally, with
a total undulator length of about 88 m for the whole
device, we will obtain about 15-GW radiation at 1.5-Å,
in deep saturation region. We emphasize that, in the
radiator of the third, fourth and fifth stage, there is no
exponential growth of the harmonic, but rather, after the
coherent emission is finished, the harmonic is introduced
to the next stage directly. For example, the length of the
fifth radiator is only 5 m, while the corresponding power
e-folding length without energy modulation is about 5.4
m, so no exponential growth is expected.

We remark here that if we choose the relative local
energy spread as the relative global energy spread as 2×
10−4, then we can ignore the quantum diffusion effect
[38] entirely, and we could just one electron bunch for

the 3rd and the 6th stages. calculation leads to a similar
system with the total wiggler length increased to about
120 meters, i.e. the increase is not a dramatic one.

When the radiation traverses the shifter, and the con-
nection region where the 2 GeV e-beam is dumped and
14 GeV e-beam is introduced, there is diffraction loss
in the radiation. Such diffraction effects are also taken
into account for the connection regions of the following
stages, where a “fresh” 14 GeV e-beam is introduced and
the previous 14 GeV e-beam is dumped. These consid-
erations will be detailed in the following section.

B. Analytic estimate

1. General criteria

Now let us give some analytical description of the
physics in each stage. As we can see from Fig. 3 (by com-
paring wiggler length with the power e-folding length),
the modulators of all the stages and the radiators in
stages 3, 4 and 5 are not working in exponential region.
For these sections, we are justified in analyzing the pro-
cess within small-gain theory. We will give further details
of derivation in the following section and in the Appen-
dices, here we give a brief qualitative description.

As what we described in the HGHG principle section,
in each HGHG stage, when the electron bunch enters the
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radiator, the harmonic contents at the seed laser wave-
length and also its high harmonics are abundant. The
radiator is designed to be resonant to a special harmon-
ics, therefore coherent emission at this special harmonic
is obtained. Suppose we want to get the nth harmonics
of the seed laser, then the quantity we need look at is the
nth harmonic coefficient of the spatial modulation. The
harmonic coefficient is twice of the more frequently used
bunch factor. The corresponding bunching factor is [16]

bn(r, z) ≡ | < e−i n θj > |

= exp

[
−1

2
n2 σ2

γ

(
dθ

dγ

)2
] ∣∣∣∣Jn

[
n ∆γ

(
dθ

dγ

)]∣∣∣∣

= exp

[
−1

2
σ2

γ

(
dψ

dγ

)2
] ∣∣∣∣Jn

[
∆γ

(
dψ

dγ

)]∣∣∣∣ (1)

where θ = (kr + kw)z − ωrt is the ponderomotive phase
of the e-beam in the modulator; kr and ωr are the seed
laser wave number and frequency, respectively; kw = 2π

λw
,

and λw is the period of the modulator; ψ = n θ is the
ponderomotive phase in the radiator; ∆γ is the energy
modulation produced in the modulator, and σγ is the rms
local energy spread.

Since, in the bunching factor, the exponential part is
monotonous, if we want to optimize the system, we try to
adjust the parameter so that Jn[x] is near its maximum.
Empirically, knowing that Jn[x] peaks around x ∼ 1.2 n,
gives us the first criterion in the design,

∆γ

(
dψ

dγ

)
≈ 1.2n (2)

Now, the exponential part in the bunching factor reads,

exp

[
−1

2
σ2

γ

(
1.2n

∆γ

)2
]

. (3)

Obviously, we need the energy modulation to dominate
the energy spread to get a large bunching factor. Thus
the first thought might be: the larger the modulation,
the better the result. On the other hand, the larger the
modulation, the larger the effective energy spread in the
electron beam, and this may reduce the radiation power.
The exponent of Eq. (3) should be on the order of one,
and thus the second criterion is

∆γ ≥ nσγ . (4)

Equations (2) and (4) are essentially the starting points
of all our considerations, though some details need be
considered in the real simulation. In the one-stage case
as of the experiment [19, 20], Eq. (4) may not be satisfied,
because we need to consider also the limit of ∆γ

γ < ρ, the
Pierce parameter [2], to ensure the exponential growth in
the radiator. In the Harmonic Generation stages, i.e., in
the converter of the cascading scheme [39, 40], exponen-
tial growth is not needed. Therefore, ∆γ could be bigger
than nσγ . We will explore this further in the following
sections.

2. Modulator

In the modulator, we model the seed laser as a Gaus-
sian TEM00 mode [47] centered at ZW . The interaction
between the electron transverse wiggling and the trans-
verse electric field of the seed laser leads to an energy
modulation ∆γ(r, θ) = ∆γ(r) sin θ, with

∆γ(r) ≈ w0

w̄

aw[JJ ]Lmod

γ0
e−

r2

w̄2
1

mc2/e

√
2Z0Pin

λrZR
, (5)

where Z0 = 120 π Ω is the vacuum impedance; Pin is the
input seed power; λr is the seed laser wavelength; γ0 is
the electron’s Lorentz factor; Lmod is the length of the
modulator; ZR = πw2

0
λr

is the Rayleigh range; and w0 is
the waist diameter of the seed laser. In Eq. (5), w̄ is
defined as

w̄2 ≡ 1
Lmod

∫ Lmod

0

w2(z) dz, (6)

where,

w2(z) = w2
0

[
1 +

(z − Zw)2

Z2
R

]
. (7)

We must also take the optical guiding mechanism [48, 49]
into consideration. Since the seed laser has extremely
high peak power, optical guiding is achieved within a very
short interaction time. Once optical guiding is achieved
in the linear region, the FEL beam size stays almost con-
stant. Hence, in Eq. (5), we need replace w̄ with w(0),
i.e., the laser beam size at the entrance of the modulator.

For a planar undulator, the Bessel factor [JJ ] is given
by

[JJ ] = J0

[
a2

w

2(1 + a2
w)

]
− J1

[
a2

w

2(1 + a2
w)

]
, (8)

where aw ≡ K√
2

is the rms dimensionless undulator vector
potential.

Now, let us design the modulator. Given an e-beam, σγ

is given. Therefore, according to Eq. (4), we know how
large an energy modulation we need in order to induce
enough spatial modulation after the dispersion section.
Then according to Eq. (5), we get the length of the
modulator as a function of given input seed power. Once
the input power is given, the length of the modulator
could be estimated. Since the eigenmode of the FEL is
neither a plane wave nor a focused Gaussian beam, Eq.
(5) can provide only an estimate for the length of the
modulator, though this estimate agrees with numerical
simulation fairly well.

3. Dispersion Section

3.1 Dispersion Strength
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In order to convert the energy modulation obtained in the
modulator into a spatial modulation we need a dispersion
section. The phase advance introduced in the dispersion
section is then

∆ψdisp(r) ≈ dψ

dγ disp

∆γ(r) (9)

A few comments have to be added here, when we use this
criterion in the numerical simulation, we need also con-
sider the effective dispersion in the modulator, and in the
lethargy region of the radiator. According to the pendu-
lum equations, the effective phase advance introduced in
the modulator would be

∆ψmod(r) ≈ n
2ku m

γ0

1
2
∆γ(r)Lmod , (10)

where n is the harmonic number; ku m = 2π
λu m

, with λu m

to be the modulator period. Considering the building up
process of the energy modulation ∆γ in the modulator,
we put 1

2 in front of ∆γ.
The coherent emission takes place in the lethargy re-

gion which is roughly 2LG r as we will discuss in the fol-
lowing. Here LG r is the power e-folding length in the
radiator. In this lethargy region where z < 2LG r, the
effective phase advance is,

∆ψrad(r, z) ≈ 2ku r

γ0
∆γ(r) z , (11)

where ku r = 2π
λu r

, with λu r to be the radiator period. If
the radiator is long enough to have exponential growth,
then we need set z = 2 LG r in the above equation to
compute the total phase advance in the lethargy region
of the radiator.

As we will show in the next section, the coherent emis-
sion power is proportional to the square of the bunching

factor, i.e., PCoh(z) ∝ bn(r, z)2, hence, we hope that
the maximum value of the bunching factor is reached
at roughly the middle of the lethargy region, i.e. around
z = LG r. Therefore, according to the consideration lead-
ing to Eq. (2), we would optimize the dispersion strength
in the dispersion section according to

∆ψmod

(
r =

σ⊥√
2

)
+ ∆ψdisp

(
r =

σ⊥√
2

)

+ ∆ψrad

(
r =

σ⊥√
2
, z = LG r

)
≈ 1.2 n , (12)

i.e.,

dψ

dγ disp

≈

− nku mLmod

γ
+

1.2 n

∆γ
(
r = σ⊥√

2

) − 2ku rLG r

γ
, (13)

where σ⊥ = σx = σy = σr√
2

is the transverse rms size of
the electron beam. We choose the energy modulation to
be the value at r = σ⊥√

2
because the energy modulation is

not constant across the e-beam.

All these analytical considerations are the guidance in
our design. The dispersion strength given in Eq. (13)
serves as an initial try if Eq. (4) is satisfied. Otherwise,
if the energy modulation does not dominate the local
energy spread, Eq. (13) will not give a good starting
estimate. Therefore we must look at the bunching factor
as a whole, i.e., we must exam Eq. (1), or in the notation
of Eq. (A42) in Appendix A, we need to optimize the
bunching fact as a function of dψ

dγ disp
:

b̄m

(
dψ

dγ disp

)
=exp


−1

2


 σγ

∆γ
(
r = σ⊥√

2

)



2[
∆ψmod

(
r =

σ⊥√
2

)
+

dψ

dγ disp

∆γ

(
r =

σ⊥√
2

)
+ ∆ψrad

(
r =

σ⊥√
2
, z = LG r

)]2




×
∣∣∣∣Jm

[
∆ψmod

(
r =

σ⊥√
2

)
+

dψ

dγ disp

∆γ

(
r =

σ⊥√
2

)
+ ∆ψrad

(
r =

σ⊥√
2
, z = LG r

)]∣∣∣∣ . (14)

This optimization gives a value of dψ
dγ disp

, which agrees

quite well with the simulation result for dψ
dγ disp

. As we
will discuss in the following section, we also have to con-
sider the stability of the system, and we need further
“over-tune” the dispersion strength.

3.2 Emittance Effects

In the dispersion section, the emittance-induced phase

mixing is far smaller than that due to the local energy
spread [31]. This is the key point why in the HGHG
scheme, the emittance will be a less important factor, and
it suggests a new operation mode, i.e., higher current,
though unavoidably with higher emittance. To illustrate
this, let us compute an ideal case, i.e., we assume that the
idealized dispersion section is divided into three sections
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with a total length Ld, the field is

B(z) =





B 0 ≤ z < Ld

4

−B Ld

4 < z < 3Ld

4

B 3Ld

4 < z ≤ Ld .

(15)

In such dispersion section, both the emittance ε and the
local energy spread σγ of the electron bunch lead to a
path length difference. The emittance acts like an effec-
tive relative local energy spread of [43]

σγ

γ

∣∣∣∣
disp

eff,ε

=
48R2ε

L2
dβ

, (16)

where R is the bending radius; β = λβ

2π , with λβ to be
the betatron motion period.

In the undulator, there is also a natural dispersion as in
Eqs. (10) and (11). The emittance acts like an effective
relative local energy spread, which is [43]

σγ

γ

∣∣∣∣
undul

eff,ε

=
λwε

2λsβ
. (17)

Let us analyze the device in Fig. 3. Shown in Table I
are the effective relative local energy spread due to the
emittance in the dispersion sections and the undulators
in each stage. In our calculation, we use Ld = 0.32 m.
There are 5 stages as in Fig. 3; “Mod.” stands for the
modulator, “Disp.,” the dispersion section and “Rad.,”
the radiator. We found that the effective relative local
energy spread due to the emittance in the dispersion sec-
tion is far smaller than that in the undulators. Hence,
by reducing the undulator length, the emittance effect
is greatly reduced. This is called the Natural Emittance
Effect Reduction (NEER) mechanism. The NEER mech-
anism suggests a new operation mode, i.e., we could use
an electron bunch with a higher current, even though un-
avoidably higher emittance, in the Harmonic Generation
stages, i.e., in the converter, though in the amplifier we
would still use a low-emittance electron beam. Detailed
investigation is underway [43].

4. Radiator

4.1 Start-up Coherent Emission Power

For the radiator, the energy modulation from the mod-
ulator makes the effective energy spread in the electron
beam larger, so that the power e-folding length LG in-
creases accordingly. Hence as long as the radiation power
from the coherent radiation is large enough for the next
stage, there is no need for exponential growth. The
length of the radiator is chosen to just reach the power
required for the modulation of the next stage.

In the HGHG scheme, the electron beam is spatially
bunched after passing through the dispersion section. A
bunched beam has abundant spatial harmonics, so the

radiations at the fundamental frequency and its harmon-
ics are greatly enhanced. In the Appendix A, we give
some brief derivation for such radiation.

If the radiator is resonant to the mth harmonic of the
seed laser in the modulator, then, according to the deriva-
tion in Appendix A, we know

PCoh
1 (z) =

Z0 I2
peak

8
1

4πσ2
x

(
K [JJ ]

γ

)2 (∫ z

0

b̄m(z) dz

)2

, (18)

where Ipeak = Ne e0/Lt, and b̄m(z) is the average of the
bunching factor over the transverse area, and it is given
by Eq. (A42) in Appendix A.

As we show in Appendix B, the start-up region is
about the first two power e-folding length. If the ra-
diator is shorter than 2 LG r, we would use Eq. (18) to
compute the coherent emission power, but if it is longer
than 2 LG r, we need to use the Eq. (19), below, for the
exponential growth region.

4.2 Amplified Guided Mode

The coherent emission has finite bandwidth as we dis-
cussed in Appendix A, hence the question of how much
coherent emission power is coupled into the guided mode
[6, 48, 49] needs to be addressed. In Appendix B, we give
some brief derivation on this question. The guided mode
has a peak power of

PGuided
00 = C00P

Coh
1 (z = 2 LG r) e

z
LG r , (19)

where C00 is the coupling coefficient. The physics mean-
ing of Eq. (19) is clear. The coherent emission in the first
two power-e-folding length serves as the start-up power.
This amount of coherent emission power is coupled into
the guided mode with a coefficient of C00. Then this
amount of power is amplified further in the undulator.
In Appendix B, we give some derivations. An estimate
for a large e-beam limit gives C00 ≈ 3.71

12 ≈ 1
3 . A more

careful estimate puts C00 ≈ 1
5 . The similar question

of how much incoherent noise power is coupled into the
guided mode has been studied [6, 10, 50] for the SASE
FEL.

4.3 Exponential Growth Region

As shown in Eq. (19), after the coherent emission is
finished, the system goes into the exponential region.
Again, it is seen that the lethargy region is around 2LG r

for C00 ≈ 1
5 as in the Appendix B.

Since there is energy modulation after the modulator,
the local energy spread no longer has its initial value.
Here we use an effective energy spread to take this energy
modulation into account,

σγ

γ

∣∣∣∣
eff

=

√√√√
(

σγ

γ

)2

+

(
∆γ(r = σ⊥√

2
)

√
2 γ

)2

, (20)
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Stage 1 Stage 2

Mod. Disp. Rad. Mod. Disp. Rad.

3.1× 10−5 1.0× 10−5 1.0× 10−4 1.0× 10−4 5.5× 10−5 3.6× 10−4

Stage 3 Stage 4

1.4× 10−5 3.6× 10−7 4.5× 10−5 4.5× 10−5 2.6× 10−6 1.3× 10−4

Stage 5

1.3× 10−4 5.9× 10−6 3.0× 10−4

TABLE I: The effective relative local energy spread σγ/γ due to the emittance ε of the electron beam.

where ∆γ(r) is given in Eq. (5). Then LG r is the
power e-folding length in the radiator or the final ampli-
fier based on this effective relative local energy spread.
LG r could be found analytically from the scaling func-
tion [7, 51] for a water-bag model. Or, for a Gaussian
Model, one could get the value, based on a 19-parameter
polynomial fitting formula [52].

4.4 Saturation Power and Radiator Length

In order to estimate the radiator or the amplifier length,
we need know the saturation power. The saturation
power obtained empirically by fitting simulation results
is given by [53],

Psat ≈ 1.6ρ

(
LG r,1D

LG r

)2

Pb,pk. (21)

Here Pb,pk = Ipeakγ m c2

e is the total peak beam power,
and LG r,1D = λu r

4π
√

3ρ
is the 1-D power e-folding length.

Therefore, if we design the system so that the radiator
extends to the saturation region, then the length of the
radiator could be estimated by solving

PGuided
00 (z = Lrad) = Psat, (22)

i.e.,

Lrad ≈ LG r ln

[
8ρPpk

PCoh
1 (z = 2 LG r)

(
LG r,1D

LG r

)2
]

, (23)

for C00 ≈ 1
5 in Eq. (19).

With such a straightforward analytical estimate, we
could check the numerical simulation results from up-
graded version [46] of TDA [55]. The analytical estimate,
though very rough, agrees with the TDA numerical sim-
ulation within a factor of 2, which seems reasonable.

5. Shifter, Connection Region and Rayleigh Range of the
FEL

So far, we have described the details for designing one
complete stage, i.e. a modulator, the dispersion section,
and then the radiator. In the cascading scheme [39–41],
we use a “fresh-bunch technique” [44] either to shift the

light to a fresh part of the e-beam or to dump the e-beam
of the current stage and introduce a new e-beam for the
following stage. In these connection spaces, we need to
consider the diffraction effect.

If we want to shift the light pulse for a distance of ∆S
with respect to the electron bunch, the corresponding
length of the shifter, Ls reads,

Ls =
[
96∆Sγ2

0m2c2

e2B2

] 1
3

. (24)

As usual, we assume an idealized dispersion section as
given by Eq. (15).

For the connection part, suppose we need bend the e-
beam ∆x vertically, then the corresponding longitudinal
drift distance S is

S =
√

2∆xγ0mc

eBb
, (25)

where we apply a field Bb for bending the e-beam.
According to Eq. (7) of Ref. [7], the fundamental

mode of the FEL is assumed to be a Gaussian within
the e-beam, and a Hankel function outside the e-beam.
Hence, once we found the fundamental mode, we know
the Rayleigh range and the waist position of the FEL.
These numbers are used in our simulation.

As we are now equipped with analytical estimate for
all the details, we could use numerical simulation to get
the design done.

IV. STABILITY AND SENSITIVITY TO
PARAMETER VARIATION

A. Design thought

We need check the stability of the performance of this
system. For each stage, the fluctuation in any parameter
of the e-beam, or the seed laser, will lead to the fluc-
tuation of the output power of the harmonic at the end
of the radiator. But this output harmonic is the input
seed laser for the next stage. Therefore, the fluctuation
in the output power of the harmonic in one stage is just
the fluctuation in the input power of the seed laser for
the next stage. Thus the stability consideration could be
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simplified, i.e. we need only check whether each stage
of the HGHG could reduce the fluctuation. To be more
explicit, we need to check whether the fluctuation of the
output power of the harmonic in each stage is less than
the fluctuation in the input power of the seed laser of the
same stage.
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Output Power vs. Input Power
for the 5th stage

FIG. 4: The relation between the output power change and
the input power change in the fifth stage. The fluctuation in
the output power is only about 20% when the input power
changes from 1 GW to 3 GW. This is an attractive feature of
the HGHG scheme.

In Fig. 4, we plot the relation between the output
power and the input power for the fifth stage. The fluc-
tuation in the output power is only about 20%, when the
input power changes from 1 GW to 3 GW. This is an
attractive feature of the HGHG scheme. For the first,
second, third and fourth stages, the variation of a factor
3 in input power (like that in the fifth stage) generates
an output fluctuation of 10%, 15%, 45% and 30% respec-
tively. This result is a trade-off between better stability
and total wiggler length, i.e., if we use a lower harmonic
number and add one more stage, the stability will be
further improved. Analytical study described in the fol-
lowing section shows that such attractive feature holds as
long as the harmonic number is not too high. Therefore,
in our scheme, we use harmonic number, 3, 4 and 5. As
each stage reduces the fluctuation, we could expect that
the radiation fluctuation caused by the fluctuation in the
parameters of the preceding stage will be stabilized in
the following stage. Therefore, not much fluctuation is
expected after all five stages. Thus the stability of the
whole system is determined mostly by the last amplifier.
Fig. 5 shows its performance in the amplifier. Since the
amplifier is only 33.5 m long, which should be compared
with the 100 m long undulator in the SASE scheme [54],
the stability of the HGHG scheme is expected to be bet-
ter than that of the SASE scheme. The results of the

calculation confirmed this.
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FIG. 5: The radiation power along the device. The solid
line indicates the radiation power in the last amplifier of the
HGHG scheme. The radiation power of the previous stages
is not plotted. The dashed line shows data for the SASE
scheme. The performance at 85 m for the HGHG scheme is
similar to that at 110 m for the SASE scheme.

B. Analytic consideration

In order for the system to have good performance, we
need to consider the stability. Let us reexamine the
bunching factor, i.e. Eq. (1). The exponential part is
monotonous but since the Bessel function has a peak, we
can make use of this property. In the bunching factor, for
a given e-beam, σγ is fixed, and we are left with two free
parameters to adjust: ∆γ is a property from the mod-
ulator, and dψ

dγ is related to the dispersion section. For
simplicity, we set x = ∆γ(dψ

dγ ), and we set n = 5; the
J5[x] curve is plotted in Fig. 6. Our first thought would
be to adjust x, so that J5[x] reaches maximum, i.e. we
would like put x ≈ 6.4. Now, recall that

∆γ ∝
√

Pin, (26)

according to Eq. (4). While according to Eqs. (18) or
(19) and (1), we know

Pout ∝ b2
n ∝ (Jn[x])2 . (27)

Now, suppose that dψ
dγ is tuned so that for an input power

P peak
in ,

∆γpeak(
dψ

dγ
) = 6.4, (28)
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where ∆γpeak is the energy modulator produced by
P peak

in . Based on the same dψ
dγ , we could compute the

output power, if the input power is P e−1

in = e−1P peak
in ≈

1
3P peak

in . Now, let us compute the ratio of the two radia-
tion power. We have

Rn ≡ P e−1

out

P peak
out

=
(Jn[

√
e−1∆γpeak(dψ

dγ )])2

(Jn[∆γpeak(dψ
dγ )])2

. (29)

When the dispersion is tuned so that Eq. (28) is satis-
fied for n = 5, we have R5 ≈ 8%. The system is very
delicate, since we need to use multiple stages, and the
fluctuation in each stage will affect the next stage and
so on. If we optimize the system according to Eq. (28),
we would require very small fluctuation in the system. A
direct way to overcome this problem is to make the ra-
diator longer, so that the exponential growth region will
be reached. Now, if the input power is smaller, so is the
energy modulation. The coherent radiation is smaller,
but the effective energy spread due to the energy modu-
lation is smaller, so the power e-folding length is shorter.
This means that the radiation will grow faster, so some-
where in the radiator, the smaller input power curve will
cross the bigger input power curve as in Fig. 7. Thus, if
the power e-folding length of the FEL is small, we would
like to make the radiator longer, and even let it go to
the saturation region, where the fluctuation is expected
to be small. This is how we would stabilize the first
stage. But, if we want to go to x-ray, the power e-folding
length gets large, LG r = 5.4 m, for 1.5-Å radiation with-
out energy modulation. Because of the effective energy
spread due to the energy modulation, LG r could be even
longer. Therefore, making the radiator longer to ensure
stability is not that practical in reaching x-ray. But, ac-
cording to Fig. 6, if we overtune the dispersion so that
∆γpeak(dψ

dγ ) is larger than 6.4, J5[∆γpeak(dψ
dγ )] will drop

while J5[
√

e−1∆γpeak(dψ
dγ )] will become large, so we can

make these two numbers equal, i.e. we could get Rn = 1.
Or equivalently, we need to solve

Jn[xpeak] = Jn[
√

e−1xpeak], (30)

where xpeak = ∆γpeak(dψ
dγ ), to find the right dψ

dγ for a
given ∆γpeak. Equation (30) tells us that a factor of 3
difference in the two input power will produce the same
coherent radiation output power. Now, let us look at the
fluctuation in the output power for this dψ

dγ . Since we
overtuned the dispersion, the maximum output power
will be produced by some input power smaller than that
for ∆γpeak. Let us introduce

ηn ≡ P peak
out

(Pout)max
=

(Jn[∆γpeak(dψ
dγ )])2

(Jn[∆γ(dψ
dγ )])2max

. (31)

In the above formula, peak stands for the “peak” in the
input power, while the max stands for the “maximum”

in the output power in the case of overtuned dispersion.
We found that η5 ≈ 40%, η4 ≈ 50%, and η3 ≈ 60%.
Recall that in such “overtuning” scheme, we would have
Rn = 1, so the input power varies 3 times from P peak

in

drops to P e−1

in = e−1P peak
in ≈ 1

3P peak
in . Therefore, the

fluctuation in the output power is smaller than that in
the input power for n ≤ 5.
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FIG. 6: The fifth-order Bessel Function J5[x].
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FIG. 7: Demonstration of the situation described in the text.
The dashed line stands for smaller input power, and therefore
smaller energy modulation, and smaller coherent radiation in
the radiator. But, since smaller energy modulation results in
smaller effective energy spread, this curve grows faster in the
exponential region. The solid curve stands for the opposite
situation.

Since the energy modulation also varies across the
transverse section of the e-beam, the “over-tuning” mech-
anism also smoothes the transverse profile of the radia-
tion. For a focused Gaussian seed laser, the on-axis part
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of the e-beam has the largest energy modulation, and the
outside part of the e-beam has a smaller energy modu-
lation. A right strength of dψ

dγ will lead to overbunching
on-axis, best bunching at some part of the e-beam, and
under-bunching at the outside part. But the radiation
produced by some of the outside part could be the same
as that produced by the on-axis part. Therefore the ra-
diation becomes flat, especially after multistage. Shown
in Fig. 8 is the output radiation profile for the 4.5-AA to
1.5-AA single stage, where a focused Gaussian seed laser
at 4.5-AA produces a flatter radiation pulse at 1.5-AA.
This transverse smoothing mechanism leads to a larger
Rayleigh region and reduces the diffraction loss in the
connection region.
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Transverse Radiation Profile
for the 5th stage: 4.5(Angstrom) to 1.5(Angstrom)

FIG. 8: The transverse profile of the 1.5-AA radiation at the
fifth stage, assuming the input 4.5-Å radiation is a focused
Gaussian beam, demonstrating the transverse smoothing ef-
fect due to the “overtuning” mechanism.

The fluctuation in the global or local energy spread,
the current, and the emittance will all result in the fluc-
tuation in the output power, which is the input power
of the next stage; therefore, by overtuning the disper-
sion strength, all such fluctuation could be treated in the
same way, and all get stabilized. Thus in such overtuning
scheme, the negative input effect, could produce positive
output effect.

V. RESULTS

Our calculation was carried out by a modified ver-
sion [16, 46] of TDA code [55], together with an ana-
lytical estimate presented in this paper. For each stage,
the analytical estimates agree with the simulation to
within a factor of 2. In the calculation, we also con-
sider the diffraction effect of the laser when it traverses
the “shifter”, and the connection regions between stages.
In our calculation, we assume the bending magnet field

is B = 2 Tesla; therefore, to achieve a deflection such
that at the entrance to the next stage the e-beam is
displaced by 5 cm, the connection region is about 1.55
m for the 14-GeV e-beam and 0.58 m for the 2-GeV e-
beam. Hence the connection region should be designed
with length Lc = 1.55 m. If we assume that between
the 1st and 2nd stage, the 2-GeV electron bunch needs
to be delayed for 50 fs, then, for the same magnet field
B = 2 Tesla, the “shifter” should be of length Ls = 25
cm. These are the numbers used in our calculation. As
we mentioned before, the local energy spread growth [38]
of the e-beam when it traverses the undulators is also
taken into account in our calculation. For example, after
the modulator of the 4.5-Å to 1.5-Å stage, the rela-
tive local energy spread is increased from 6 × 10−5 to
8× 10−5. This decreases the efficiency of harmonic gen-
eration slightly. The local energy spread growth in the
last amplifier for 1.5-Å is larger, but its effect on the
exponential growth of the radiation is negligible. Now
let us present the results and some discussion.

To test the stability, we check the sensitivity of the out-
put to the peak current, the initial relative local energy
spread, the relative global energy detune, and the nor-
malized emittance. For example, for the first stage, we
varied each of these four parameters of the e-beam inde-
pendently to obtain a range of the output power variation
of the harmonic (the 450-Å radiation) at the end of the
first stage. In so doing, we obtained the fluctuation in
the input power of the seed laser (the 450-Å radiation)
for the second stage. Such input power fluctuation will
lead to a smaller fluctuation in the output power of the
harmonic at 90 Å. This is similar to what we have shown
in Fig. 4. But, since the parameters of the e-beam in
the second stage fluctuates, we varied each of these four
parameters independently again to get a whole range of
the output power fluctuation of the harmonic (the 90-Å
radiation). Thus the total fluctuation we considered in
the output power for each stage is produced by the fluc-
tuation in each of the parameters of the e-beam as well
as the input power of the seed laser for each stage. The
90-Å radiation is the seed laser for the third stage, and
the fluctuation in the input power leads to smaller fluc-
tuation of the output power at the end of the third stage.
But again we needed to vary each of the parameters of
the e-beam for a whole range of output power fluctua-
tions of the harmonic (the 18-Å radiation). Repeating
the same procedure, we finally obtained the fluctuation
of the 1.5-Å radiation.

The output power of each stage has a fluctuation range
which leads to a range of the energy modulation fluctua-
tion at the end of the modulator of the next stage. The
dispersion strength is adjustable. If we want to optimize
the system, then we should tune the dispersion strength
so that the largest energy modulation will be favored.
In this way, the radiator will produce the most coherent
emission, and thus works at the best point. However, in
order to get good stability, we will overtune the disper-
sion strength, so that the largest energy modulation will
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produce overbunching in the e-beam, but medium energy
modulation will produce best spatial bunching. By such
“overtuning” for the dispersion strength, in the small-
est energy modulation case, the e-beam is underbunched,
and radiation rises slowly in the beginning, but continues
growing till the end of the radiator, whereas in the largest
energy modulation case, the e-beam is overbunched, and
radiation grows fast at first, but later drops. As a result,
the smallest energy modulation will produce a similar
amount of coherent radiation as does the largest energy
modulation. Once the dispersion strength is fixed, the
fluctuation range of the radiation is a function of the ra-
diator length, for example, as shown in Fig. 9 for the
2nd stage. We then determine the length of the radiator
to be where the fluctuation of the output power is mini-
mum, thus the radiator length for this 2nd stage should
be around 4 m.
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for the 2nd stage: 450(Angstrom) to 90(Angstrom)

FIG. 9: The radiation power along the 2nd radiator for dif-
ferent values of input power, showing that the output fluctu-
ation is minimum at around 4 m. The solid curve is for input
power P solid

in ; the dotted line: P dotted
in = e−0.25 × P solid

in ; the
dashed line: P dashed

in = e−0.5 × P solid
in ; and the dot-dashed

line: P dot−dashed
in = e−1 × P solid

in .

With this choice of radiator length, the large fluctua-
tion in the input power will result in a small fluctuation
in the output power as long as the harmonic number is
not too high in the harmonic generation, as shown in the
Fig. 4.

Thus we trade off the best performance point for a
stability in the performance. If the fluctuation in the
parameters of the e-beam is small, then we could pursue
the best performance point; if so, the total device will be
less than 70 m long.

The sensitivity of the output power to the e-beam pa-
rameters is plotted in Figs. 10 to 13 for the initial relative
local energy spread σγ

γ , the relative global energy detun-
ing δγ

γ , the peak current, and the normalized emittance

εn respectively. If we set the limit of the peak-to-peak
output power fluctuation to be within 50% at the end of
the whole system, then the tolerance of the parameters
will be the following. For the initial local energy spread,
σγ
γ could vary from 6 × 10−5 up to about 9 × 10−5; for

the global energy spread (its effect corresponds to a de-
tuning), δγ

γ ≈ 2ρ, where ρ = 4 × 10−4, is the Pierce
parameter [2] in the 1.5-Å amplifier; for the current, the
peak-to-peak fluctuation, ∆Ipk

Ipk
≈ 40%; for the normal-

ized emittance, εn could vary from 1.5 π mm −mrad to
about 1.8 π mm − mrad. Tolerance for the 2-GeV part
of the system is much more relaxed.
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FIG. 10: The sensitivity of the output power to the initial
local energy spread.

We now discuss the output as a function of the current
as shown in Fig. 12. When the current is less than the
nominal value 3, 400 Amp, the behavior is almost mono-
tonic; when the current is larger, but by not too much,
there is some oscillation around the mean value. This
is because when the current is larger than the nominal
value, in one of the five HGHG stages, larger current pro-
duces larger output power, which will lead to overbunch-
ing in the radiator of the next stage, and less output
power will be produced. Thus the input power to the
last amplifier could be less than that produced by the
nominal value, 3, 400 Amp. Therefore, the final output
power could be less, even though the last amplifier will
monotonically produce larger output power with larger
current. This is what we observed when the current is
+5%, +15%, and +20% larger than the nominal value in
Fig. 12. Thus the scheme provides the stability of the
system based on overtuning.
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FIG. 11: The sensitivity of the output power to the global
energy detune in units of the Pierce parameter ρ[2].
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FIG. 12: The sensitivity of the output power to the current
fluctuation. Ipk = 3, 400 Amp is the nominal value.

VI. DISCUSSION AND CONCLUSION

A. Total Length

Taking all the fluctuation into consideration, to get an
output power of about 15 GW the HGHG scheme will
require a total undulator length of 85 m, whereas the
corresponding SASE scheme need 100 m according to
the design report [54]. If the fluctuation is fairly small,
i.e. assuming everything works in the ideal status, the
HGHG undulator could be shorten to less than 70 m.
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FIG. 13: The sensitivity of the output power to the normal-
ized emittance.

This advantage agrees with previous study [36].

B. Performance

As discussed in Sections IV and V, the performance
of the HGHG FEL will be very stable. Fluctuations in
any parameters will lead to the fluctuation of the out-
put power of the current stage, which is the fluctuation
of the input power to the next stage. As discussed in
Section IV, such fluctuation could be reduced based on
the “overtuning” scheme. Hence, this intrinsic property
of the HGHG scheme guarantees the stability of the per-
formance.

C. Pulse length, pulse shape and spectrum

To calculate the pulse length of the final output, we
assume the input seed laser of 2, 250 Å is a Gaussian
pulse, with σt = 10 fs. In Fig. 14, we plot the final
output pulse shape. Considering that the radiation pulse
overlaps only a small part of the whole electron bunch
which is 250 fs long, in our calculation we assume the e-
beam parameters remain constant except that there is an
energy linear chirp of 1.5% / mm for the 14-GeV e-beam
as part of the global energy spread. For comparison, we
include a plot of the input Gaussian pulse; both pulse
are normalized. Amazingly, we find that such an HGHG
device could produce a more or less rectangular pulse of
40 fs long. Again, this is due to our “overtuning” scheme
because, in every stage of HGHG, the variation of the
output power is reduced. As discussed in Sec. IV B,
transversely, the radiation profile is also flattened due



15

to this “overtuning” mechanism; after multistage, it is
more or less like a plane wave, as shown in Fig. 8 for
the 4.5-Å to 1.5-Å single-stage example. The spectrum
of this pulse has been calculated. The central peak has
a relative FWHM bandwidth of about 1.8 × 10−5. This
is to be compared with the LCLS SASE bandwidth of
about 7× 10−4.
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FIG. 14: The pulse shape and pulse length of the final output
pulse, with a Gaussian input pulse. Both the output pulse
and the input pulse are normalized for comparison.

D. Harmonic Generation without exponential
growth

The main part of the HGHG device does not work in
the exponential growth region. The modulators are not
in that region. For the radiators of the third, the fourth
and the fifth stage, they work in the coherent emission
region, without exponential growth. As shown in Fig.
3, with a total length of about 50 m, we will achieve
several hundred megawatt output power at 1.5 Å. Con-
sidering that the bandwidth of the HGHG FEL is much
narrower than that of the SASE FEL, even with several
hundred megawatt output power, the power spectrum in
the HGHG central zone is comparable to that provided
by the LCLS SASE scheme.

Because of the NEER mechanism, discussed in Sec.
III B. 3.2, we could use a higher-emittance beam. Prelim-
inary result shows that a 14-GeV e-beam with a normal-
ized emittance of 2 π mm-mrad does not affect Harmonic
Generation much. So relaxing the stringent requirement
on the normalized emittance seems possible. By cascad-
ing five stages of Harmonic Generation, we will get 1.5-Å
radiation with high brightness.

E. High-order Harmonic Generation

Given the high quality of the electron beam proposed
in the SLAC LCLS project, our simulation supports a
high-order HGHG. For example, we could try 12th har-
monics of 18-Å. Then the parameters for that stage would
be, 7 m for the modulator, with 18 Å, and then 8 m for
the radiator to get about 70 MW output power for 1.5 Å.
Then the amplifier needs to be about 38 m to get similar
output power, i.e. about 15 GW. Thus the total length
will be shortened by about 3.5 m.

F. Harmonics in the last Amplifier

At the end the last Amplifier, the FEL is in the deep
saturation region, hence harmonics of this 1.5 Å radi-
ation are also significant. We upgraded [46] the TDA
code [55] to implement the calculation for the harmonic
contents. The 3rd harmonic, i.e. the 0.5 Å light, will
have power up to 30 MW. We believe this will be a good
by-product [46, 56]. In Appendix A, analytically, we also
discuss the coherent emission power of all the harmonics,
even and odd.

G. Conclusion

In conclusion, the cascading HGHG scheme is an at-
tractive scheme for generate coherent x-rays. It will have
the advantages mentioned in the beginning of the pa-
per. Among them, the most attractive feature is that
the HGHG FEL will achieve much better longitudinal
coherence. Such an HGHG scheme seems to be the best
candidate for producing short laser pulse, which is an ex-
tremely important tool in Chemistry and Biology. Also,
the total length will be shorter than the SASE 100 m
length. Because of the NEER mechanism, the emittance
of the electron beam comes out to be less important, es-
pecially in the Harmonic Generation Stages. One other
feature is that the device could provide excellent stability.
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APPENDIX A: COHERENT EMISSION POWER

The energy emitted by an accelerated electron, in MKS
unit, is given by [57]

d2I

dωdΩ
=

Z0 e2
0ω

2

16π3
×

∣∣∣∣
∫ +∞

−∞
~̂n×

(
~̂n× ~β(t)

)
e
+iω

(
t− ~̂n·~r(t)

c

)
dt

∣∣∣∣
2

. (A1)

Here d2I/(dωdΩ) is the energy emitted per unit fre-
quency and solid angle, ~̂n is a unit vector pointing to
the observer of radiation (the detector), ~β(t) is the elec-
tron’s velocity vector and ~r(t) is the electron’s position
vector. For a group of Ne electrons,

d2I

dωdΩ
=

Z0 e2
0ω

2

16π3
×

∣∣∣∣∣∣

Ne∑

j=1

∫ +∞

−∞
~̂n×

(
~̂n× ~βj(t)

)
e
+iω

(
t− ~̂n·~rj(t)

c

)

dt

∣∣∣∣∣∣

2

.(A2)

Here, we make the small-angle approximation,

~̂n× (~̂n× β) = ~β⊥ = ~̂εβ⊥, (A3)

with ~̂ε is the polarization of the radiation. We further
assume that all the electrons in the beam travel the same
trajectory with only their radial positions and starting
times being different, we have

~rj(t) = ~r(t− tj) + ~Rj , (A4)

where tj is the starting time for the electron, given by
tj = − zj

βz c ≈ − zj

c , ~Rj is perpendicular to ẑ, and

βj(t) = β(t− tj). (A5)

Substituting Eqs. (A3), (A4) and (A5) into Eq. (A2)
and making a change of variable τ = t− tj , we are led to

d2I

dωdΩ
=

∣∣∣∣∣∣

Ne∑

j=1

e+iωtj e−iω
~̂n·~Rj

c

∣∣∣∣∣∣

2

d2I0

dωdΩ

= |F |2 d2I0

dωdΩ
. (A6)

Here d2I0
dωdΩ is the radiation produced by a single electron

from Eq. (A1), and |F |2 is the coherent enhancement
factor [58].

Assuming the electrons are distributed at t = 0 ac-
cording to a number density n(x, y, z), we may rewrite
the expression for the coherent enhancement factor as an
integral

|F |2 =
∣∣∣∣
∫

n(x, y, z) e−ikz e−ik~̂n·~Rdxdydz

∣∣∣∣
2

. (A7)

Now we write n(x, y, z) as an original unbunched electron
density times a bunching term,

n(x, y, z) = n0(x, y, z)

(
1 +

∞∑
n=1

an(x, y) cos(nkrz)

)
,

(A8)
where kr = ku

2γ2

1+ K2
2 +γ2θ2

is the resonant wavenumber,

and an(x, y) is the Fourier coefficient for a particular har-
monic. Here we assume that the Fourier coefficients are
independent of z, i.e., there is no dynamics. We assume
initially,

n0(x, y, z) =
Ne

(2π)3/2σxσyσz
e
− x2

2σ2
x e

− y2

2σ2
y e
− z2

2σ2
z

≡ Nen0x(x)n0y(y)n0z(z) (A9)

where σx, σy and σz are the rms beam size, and Ne

is the total number of electrons in the bunch. n0x ≡
1√

2πσx
e
− x2

2σ2
x , and n0y and n0z are similar. If we expand

the square in Eq. (A7), drop cross terms, and examine
the nth term, we have

|Fn|2 =
∣∣∣∣Ne

∫
dxdydz n0x(x)n0y(y)n0z(z)an(x, y)e−ik(nxx+nyy)e−ikz cos(nkrz)

∣∣∣∣
2

. (A10)

After completing the integral for x, y and z, we have
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|Fn|2 =
σ4

n⊥eff

σ4
⊥

a2
n0N

2
e

{∣∣∣∣
1
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σ2
z
2 (k−nkr)2 e−

1
2 k2(n2

x+n2
y)σ2

n⊥eff
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σ2
z
2 (k+nkr)2 e−

1
2 k2(n2

x+n2
y)σ2

n⊥eff

∣∣∣∣
2
}

, (A11)

where we assume

an(x, y) = an0e
−αn(x2+y2), (A12)

and σx = σy = σ⊥, and

σn⊥eff ≡ σ⊥√
1 + 2αnσ2

⊥
. (A13)

In polar coordinates, the direction cosine reads

n2
x + n2

y = sin2 θ0. (A14)

The single electron radiation spectrum [59, 60] reads, in
MKS unit,

d2I0

dωdΩ
=

Z0e
2
0γ

2N2
u

4π
∞∑

n=1

Gn(K, γθ0, φ0)Hn

(
ω

ωr

)
, (A15)

where, Nu is the number of undulator period in the ra-
diator. While

Gn (K, γθ0, φ0) =
4n2

(
1 + 1

2K2 + γ2θ2
0

)2

{[
S1γθ0 cos φ0 −

(
S1 +

2
n

S2

)
1 + 1

2K2 + γ2θ2
0

2γθ0 cos φ0

]2

+ (γθ0)2S2
1 sin2 φ0

}
,

(A16)

with

S1 ≡
∞∑

m=−∞
Jm(nξz)J2m+n(nξx), (A17)

and

S2 ≡
∞∑

m=−∞
mJm(nξz)J2m+n(nξx), (A18)

in which,

ξz ≡ K2

4
(
1 + 1

2K2 + γ2θ2
0

) , (A19)

and

ξx ≡ 2Kγθ0 cosφ0

1 + 1
2K2 + γ2θ2

0

. (A20)

As we find from the expression of Gn(K, γθ0, φ0), on-
axis, i.e., when θ0 → 0, there is radiation only at odd
harmonics.

Hn

(
ω

ωr

)
=

sin2[Nuπ(ω/ωr − n)]
π2N2

u(ω/ωr − n)2
. (A21)

Up to this point, it is clear that, both the coherent en-
hancement factor |Fn|2, and the single electron spectrum
d2I0
dωdΩ provide the information about the angular distribu-
tion, via. θ0 and φ0, and also the bandwidth. For most
cases, the bandwidth at the nth harmonic, is determined
by |Fn|2, which has a much narrower bandwidth than
does the spontaneous radiation d2I0

dωdΩ . We therefore inte-
grate over ω around ωn ≡ nωr for |Fn|2, while keeping
Hn( ω

ωr
) ≈ 1 within this bandwidth. Then we integrate

over all the solid angle to get the total energy radiated
at the nth harmonic. After so doing, we are left with

In =
σ4

n⊥eff

σ4
⊥

Z0a
2
n0N

2
e e2

0γ
2N2

uc

16
√

πσz
×

∫
dΩGn(K, γθ0, φ0)Qn(θ0), (A22)

where
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Qn(θ0) =
1√

1 +
σ2

n⊥eff sin2 θ0

σ2
z

× exp



−

n2ω2
rσ2

z

c2


1− 1

1 +
σ2

n⊥eff sin2 θ0

σ2
z






 . (A23)

Note that in Eq. (A15), both ω = nωr and ω = −nωr

are included already, hence effectively we need only pick
up the positive frequency term in Eq. (A11). Completing
the integral numerically, we could calculate the radiation
energy for any harmonics, odd and even. Suppose the
radiator is resonant to the mth harmonic of the seed laser,
the Fourier coefficients an = 2 bn×m, and bn×m is the
bunching factor and could be computed according to Eq.
(1) in Sec. III B. 1. These Fourier coefficients could also
be obtained from TDA code [55]. We compared these
two approaches and found good agreements.

From the expression of Qn(θ0) in Eq. (A23), we know,
the opening angle

θ̄0 ≈ λr

2πnσn⊥eff
. (A24)

Thus the higher the harmonic, the smaller the opening
angle. Also, the larger the e-beam transverse size, the
smaller the opening angle.

Equation (A24) could also be obtained by a general
consideration of the uncertainty principle, which tells us
that the transverse wavevector should satisfy a condition
regarding a finite cross section,

nk⊥σ⊥ ∼ 1, (A25)

therefore,

k⊥ ∼ 1
nσ⊥

. (A26)

Thus the opening angle is just

θ̄0 ∼ k⊥
k‖

≈ k⊥
kr

≈ 1
krnσ⊥

. (A27)

This agrees with Eq. (A24).
For the fundamental and also the odd harmonics, the

radiation is mainly on-axis, hence, we could make the
following approximation.

∫
dΩGn(K, γθ0, φ0)Qn(θ0)

≈
∫ 2π

0

dφ0

∫ θ̄0

0

sin θ0dθ0Gn(K, γθ0, φ0)Qn(θ0)

≈ Gn(K, γθ0, φ0)|θ0=0Qn(θ0)|θ0=02π(1− cos θ̄0)

≈ πθ̄0
2
Gn(K, γθ0, φ0)|θ0=0, (A28)

where we already used the fact that Qn(θ0)|θ0=0 = 1, and
Gn(K, γθ0, φ0)|θ0=0 is independent of φ0. We also know

that in the limit θ0 = 0,

Gn(K, γθ0, φ0)|θ0=0 ≈ n2K2

(
1 + K2

2

)2

[
Jn+1

2

(
nK2

4 + 2K2

)
− Jn−1

2

(
nK2

4 + 2K2

)]2

.(A29)

Thus, for odd harmonics, we would have
∫

dΩGn(K, γθ0, φ0)Qn(θ0) ≈ π

k2
rσ2

n⊥eff

K2

(
1 + K2

2

)2

×
[
Jn+1

2

(
nK2

4 + 2K2
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− Jn−1

2

(
nK2

4 + 2K2

)]2

≡
(∫

dΩGn(K, γθ0, φ0)Qn(θ0)
)∣∣∣∣

approx.

(A30)

The value of such an approximation is checked with a
numerical integral, and good agreement is found.

Once we had computed the radiated energy, we found
the peak power of the coherent emission,

PCoh
n =

In√
2πσt

, (A31)

where, approximately, we have
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n⊥eff
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e e2
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, (A32)

hence,

PCoh
n
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n⊥eff
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e e2
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. (A33)

In most cases, σn⊥eff ≈ σ⊥, hence we could get a fur-
ther simplified formula. For the radiation power at the
fundamental frequency, we would have,

PCoh
1 =

Z0a
2
10N

2
e e2

0γ
2N2

u

16
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2σ2
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1
k2
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(
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− J0

(
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4 + 2K2

)]2

. (A34)
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To check the reliability of this analytical approach, we
compare our result with the TDA result for the funda-
mental radiation. Considering that, in TDA, the longi-
tudinal distribution of electron in the pulse is in fact a
flat-top model rather than a Gaussian, we should also
compute the flat-top model based on this approach.

For a longitudinally flat-top bunch, we have

n0(x, y, z) =
Ne

2πσxσyLz
e
− x2

2σ2
x e

− y2

2σ2
y , (A35)

where, Lz is the length of the bunch.
We repeated the calculation similar to that for the

Gaussian model until we got the radiated energy, then
the peak power,

PCoh
n =

In

Lt
, (A36)

where, approximately, we would have
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hence,
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Again, in most cases, σn⊥eff ≈ σ⊥, hence we could get
a further simplified formula. For the radiation power at
the fundamental frequency, we would have

PCoh
1 =
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e e2
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. (A39)

If the radiator is resonant to the mth harmonic of the seed
laser in the modulator, then by comparing Eq. (A8) with
the definition of the bunching factor in Eq. (1) in Sec.
III B, we know that an = 2 bn×m, and therefore the above
formula could be written as

P peak
1 =

Z0 I2
peak

8
1

4πσ2
x

(
K [JJ ]

γ

)2

(bm z)2, (A40)

where Ipeak = Ne e0
Lt

.
To do a more precise estimate, then we need to consider

the phase advance in the modulator and the radiator as
we discussed for Eq. (A10) and (A11). Also, as Eq.
(A5) shows, the energy modulation varies transversely,
therefore the bunching factor is not a constant across the
e-beam. Therefore the bm z term in Eq. (A40) needs to
be generalized as

∫ z

0

b̄m(z) dz, (A41)

where

b̄m(z) =
1
A

∫
bm(r, z) d2r =

1
A

∫
exp

[
−1

2

(
σγ

∆γ(r)

)2

[∆ψmod(r) + ∆ψdisp(r) + ∆ψrad(r, z)]2
]

× Jm [∆ψmod(r) + ∆ψdisp(r) + ∆ψrad(r, z)] d2r, (A42)

based on Eqs. (1), (A8), (A10) and (A11). A is the
transverse beam size. This leads to Eq. (B16) in Sec.
III B. 4.1.

APPENDIX B: AMPLIFIED GUIDED MODE

We will use the same notation as in Ref. [6]. We begin
from Eq. (5.14) of Ref. [6], but we use the dimension-
less variable x =

√
2 ks kwr, therefore the total radiation

power is

P =
1

Z0 2 ks kw

〈∫
d2x|E|2

〉
. (B1)

The field is Fourier transformed as

E(τ, ζ, ~x) =
1
2π

∫
Ẽ(τ, q‖, ~x)eiq‖ζdq‖, (B2)

where, ζ = ks(z − v0t). We have
∫
|E|2dζ =

1
2π

∫
dq‖

∣∣∣Ẽ(q‖)
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2

, (B3)

hence 〈∫
|E|2d2x

〉

=
1

2 π ks Lz

∫
dq‖

∫ ∣∣∣Ẽ(q‖)
∣∣∣
2

d2x , (B4)
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where Lz is the e-beam length, and Lz → ∞ is under-
stood. As shown in Eq. (7.23) in Ref. [6], we have

E(τ, ζ, ~x) =
1

2πi

∑
n

∫
d q‖

ei q‖ζ−i Ωn(q‖)τ

1− (
∂Λn

∂Ω

)
Ω=Ωn(q‖)

ψ
(
~x, q‖

)
Sn

(
q‖

)
, (B5)

where

Sn(q‖) ≡
∫

S(~x′, Ωn(q‖), q‖)ψn(~x′, q‖)d2x′, (B6)

and ψn

(
~x, q‖

)
is the guided mode. Hence,

Ẽ
(
τ, q‖, ~x

)
=

∑
n

Gn

(
τ, q‖

) [−iSn(q‖)
]
ψn

(
~x, q‖

)
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(B7)
with

Gn(τ, q‖) =
eiq‖ζ−iΩn(q‖)τ

1− (
∂Λn

∂Ω

)
Ω=Ωn(q‖)

. (B8)

Hence, the power spectrum reads,

dPn l

dq‖
=

1
2 ks kw Z0 2 π ks

×
∑

n,l

Gn G∗l
Sn S∗l
Lz

∫
ψn ψ∗l d2x . (B9)

Now, let us focus on the fundamental mode and write

dP00

dq‖
=

1
2 ks kw Z0 2 π ks

|G0|2 |S0|2
Lz

∫
|ψ0|2 d2x. (B10)

For initial bunching, according to Eq. (7.12) of Ref. [6],
we have

S(~x, Ω, q‖) = −D1

∫
dγ

γ

F̃ (τ = 0, ~x, γ, q‖)
Ω− η(γ)(1 + q‖)

, (B11)

with

F̃ =
∫ ∞

−∞
dζe−iq‖ζF

=
∫ ∞

−∞
dζe−iq‖ζe−iζf(τ, ζ, ~x, γ). (B12)

Let us now assume that the energy spread is small, hence
f ∼ δ(γ − γ0), and there is a spatial bunching in the
electron beam, i.e.

∫
dγf = 1 +

∑
an cosnζ

= 1 +
a1

2
eiζ +

a1

2
e−iζ + · · · . (B13)

Therefore,

∫
dγF̃ =

∫ ∞

−∞
dζe−iq‖ζ a1

2
=

a1

2
2πδ(q‖). (B14)

Hence,

S0(q‖) = −D1

γ0

1
Ω− η(γ0)(1 + q‖)

2πδ(q‖)
∫

a1(~x′)
2

ψ0(~x′, q‖)d2x′ . (B15)

Thus finally we get
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P00 =
∫

dP00

dq‖
dq‖ =

1
2 ks kw

1
2
mc2 γ0 n0 (2ρ)3 c|b̃m|2

∣∣∣∣
G0

Ω− η(γ0)

∣∣∣∣
2 ∫

|ψ0|2d2x

=
Z0I

2
peak

8
1
A

(
K[JJ ]

γ0

)2

|b̃m|2(2LG r)2
{

1
2 ks kw A

∣∣∣∣
Im λ

λ

∣∣∣∣
2

|G0|2
∫
|ψ0|2d2x

}
, (B16)

where we have used LG r = λw

8 π ρ Im λ is the power e-
folding length, and

b̃m =
∫

a1(~x′)
2

ψ0(~x′, 0)d2x′ =
∫

bm(~x′)ψ0(~x′, 0)d2x′,

(B17)
in which we again assume the radiator is resonant to
the mth harmonic of the seed laser. Arriving the above
expression Eq. (B16), we have used the fact that, η(γ0) =
0. The transverse area is defined as Ipeak = e n0 cA for a
flat-top model, with A = π r2

0. In the case of a Gaussian
distribution as in Appendix A, the area A = 4 π σ2

⊥. We
now work out the details for the flat-top model, which
is solved completely in Ref. [6]. In the limit of ã →
∞, we have |λ| → 1, |Im λ| →

√
3

2 , |G0|2 → 1
9e

z
LG r ,∫ |ψ0|2 d2x = 1, and

ψ0(x, 0) → C0J0

(
µ01

x

a

)
, (B18)

with µ01 ≈ 2.4, the first root of the Bessel function J0(x).
According to the normalization condition of Eq. (6. 29)

of Ref. [6], we know that

C2
0 →

1
|J1(µ01)|2 2 ks kw A

. (B19)

Therefore,

b̃m ≈ 2 ks kw C0

∫
bm(r)J0

(
µ01

r

r0

)
d2r

= 2 ks kw AC0




∫
bm(r)J0

(
µ01

r
r0

)
d2r

A




=
√

2 ks kw A
1

J1(µ01)
b̄m R, (B20)

with

R =
1
A

∫
bm(r) J0

(
µ01

r
r0

)
d2r

b̄m
(B21)

Thus we have

P00 =
Z0I

2
peak

8
1
A

(
K[JJ ]

γ0

)2

|b̄m|2(2 LG r)2
1
12

e
z

LG r
R2

|J1(µ01)|2 ≡ C00 P coh
1 (z = 2 LG r) e

z
LG r , (B22)

where |b̄m|2(2LG r)2 is generalized to be

(∫ 2 LG r

0

b̄m(z) dz

)2

, (B23)

considering the transverse and also longitudinal variation
of the bunching factor, and

C00 =
1
12

R2

|J1(µ01)|2 . (B24)

We know from Eq. (1) that the bunching factor bm(r) ∝
Jm

(
αe−r2/w̄2

)
, with α a constant. Since ψ0(~r, 0) ∝

J0

(
µ01

r
r0

)
from the above Eq. (B18), the width of the

bunching factor is much narrower than that of the guided
mode ψ0(~r, 0). Hence we could move J0

(
µ01

r
r0

)
out of

the integral in R of Eq. (B21), and therefore

R ≈
J0

(
µ01

rap

r0

)
1
A

∫
bm(r)d2r

b̄m
= J0

(
µ01

rap

r0

)
. (B25)

Thus, if we choose rap = 0, then R = 1, and therefore

C00 =
1
12

1
|J1(µ01)|2 ≈

3.71
12

≈ 1
3
. (B26)

Since R = 1 is obviously an overestimation, if we choose
rap = σ⊥√

2
, then for a matched beam, i.e., w̄ =

√
2σ⊥ =

r0√
2
, we have R = J0

(
µ01

2
√

2

)
, and therefore

C00 =
1
12

∣∣∣∣∣∣
J0

(
µ01

2
√

2

)

J1(µ01)

∣∣∣∣∣∣

2

≈ 1
5
. (B27)
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For a general case of ã, we need use a software as Math-
ematica [61] to solve a few equations. This could be done

similar to what was done for the SASE case [10].
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